
Page 1 of 16

© AME Publishing Company. J Med Artif Intell 2022;5:11 | https://dx.doi.org/10.21037/jmai-22-36

Original Article

Deep learning applications in coronary anatomy imaging: a 
systematic review and meta-analysis

Ebraham Alskaf1^, Utkarsh Dutta2, Cian M. Scannell1,3, Amedeo Chiribiri1

1School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK; 2GKT School of Medical Education, King’s College 

London, London, UK; 3Medical Image Analysis Group, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 

The Netherlands

Contributions: (I) Conception and design: E Alskaf; (II) Administrative support: U Dutta; (III) Provision of study material or patients: E Alskaf, U 

Dutta; (IV) Collection and assembly of data: E Alskaf, U Dutta; (V) Data analysis and interpretation: E Alskaf, CM Scannell; (VI) Manuscript writing: 

All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Ebraham Alskaf, MD, MRCP. School of Biomedical Engineering & Imaging Sciences, King’s College London, 4th Floor, Lambeth 

Wing, St. Thomas’ Hospital, Westminster Bridge Road, London SE1 7EH, UK. Email: ebraham.alskaf@kcl.ac.uk.

Background: The application of deep learning on medical imaging is growing in prevalence in the recent 
literature. One of the most studied areas is coronary artery disease (CAD). Imaging of coronary artery 
anatomy is fundamental, which has led to a high number of publications describing a variety of techniques. 
The aim of this systematic review is to review the evidence behind the accuracy of deep learning applications 
in coronary anatomy imaging.
Methods: The search for the relevant studies, which applied deep learning on coronary anatomy imaging, 
was performed in a systematic approach on MEDLINE and EMBASE databases, followed by reviewing of 
abstracts and full texts. The data from the final studies was retrieved using data extraction forms. A meta-
analysis was performed on a subgroup of studies, which looked at fractional flow reserve (FFR) prediction. 
Heterogeneity was tested using tau2, I2 and Q tests. Finally, a risk of bias was performed using Quality 
Assessment of Diagnostic Accuracy Studies (QUADAS) approach.
Results: A total of 81 studies met the inclusion criteria. The most common imaging modality was coronary 
computed tomography angiography (CCTA) (58%) and the most common deep learning method was 
convolutional neural network (CNN) (52%). The majority of studies demonstrated good performance 
metrics. The most common outputs were focused on coronary artery segmentation, clinical outcome 
prediction, coronary calcium quantification and FFR prediction, and most studies reported area under the 
curve (AUC) of ≥80%. The pooled diagnostic odds ratio (DOR) derived from 8 studies looking at FFR 
prediction using CCTA was 12.5 using the Mantel-Haenszel (MH) method. There was no significant 
heterogeneity amongst studies according to Q test (P=0.2496).
Conclusions: Deep learning has been used in many applications on coronary anatomy imaging, most of 
which are yet to be externally validated and prepared for clinical use. The performance of deep learning, 
especially CNN models, proved to be powerful and some applications have already translated into medical 
practice, such as computed tomography (CT)-FFR. These applications have the potential to translate 
technology into better care of CAD patients.
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Introduction

Background

Coronary artery disease (CAD) is considered a leading 
cause of death and hospitalisation in high-income countries, 
and worldwide (1). The progressive nature of coronary 
atherosclerosis is the main underlying pathological process. 
Therefore, it is essential to have timely diagnosis of CAD to 
aid the management of patients and reduce both morbidity 
and mortality.

The last two decades have witnessed significant 
advancements in CAD imaging, from functional assessment 
of coronary artery stenoses and how they impact on the 
myocardium at stress and rest, using cardiac magnetic 
resonance (CMR), myocardial perfusion scintigraphy 
(MPS), and echocardiography, to anatomical assessment 
by means of coronary computed tomography angiography 
(CCTA) and invasive X-rays coronary angiography.

Computer vision technology on the other hand is going 
through an exciting era following the revolution of deep 
learning and artificial intelligence (AI) algorithms. CAD 
imaging is one of the key applications which has been 
targeted by many computer vision experts and deep learning 
practitioners.

Rationale and objectives

There has been an explosion in the number of deep learning 
publications in CAD over the recent years with a focus on 
atherosclerosis and coronary anatomy imaging. The wide 

range of methodology presented in the recent literature 
opened the door for applications in various coronary artery 
imaging modalities.

The mounting volume of new literature has left clinicians 
with a two-fold challenge: first of how to deal with 
increasing volume of new information on CAD diagnosis, 
prognosis, and risk stratification, and second of how far can 
we trust the evidence of machine learning and deep learning 
algorithms to make decisions on patients’ care.

This  review aims to unravel  this  chal lenge by 
summarising the new information we gained so far in 
this field, evaluating the performance of the presented 
deep learning algorithms, and drawing some conclusions 
on potential meaningful applications. We present the 
following article in accordance with the PRISMA reporting 
checklist (available at https://jmai.amegroups.com/article/
view/10.21037/jmai-22-36/rc).

Methods

Design

This review follows the Cochrane Review structure of 
diagnostic test accuracy (DTA) (2). The umbrella protocol 
for this systematic review is registered in the International 
Prospective Register of Systematic Reviews (PROSPERO, 
CRD42020204164), and reported according to PRISMA 
guidelines. All searching activities were performed by two 
independent reviewers (EA and UD), with divergences 
solved after consensus.

The PICO approach was used to define the main review 
question:
	 Population: adults’ cohort with suspected or 

known CAD;
	 Intervention: deep learning applications in 

coronary atherosclerosis imaging;
	 Comparison: comparison with conventional 

coronary atherosclerosis imaging;
	 Outcome: improve test accuracy and patient care.

Selection criteria

Without restrictions on minimal sample sizes or recruitment 
process, both prospective and retrospective studies were 
included. The included studies had participants with known 
or suspected CAD who had atherosclerosis imaging (invasive 
and non-invasive) with the application of deep learning 
technology, and compared with the gold standard (reference) 
test used in clinical practice.

Highlight box

Key findings 
• Deep learning has important applications in coronary anatomy 

imaging.
• CT-FFR is an example which has translated into clinical practice 

and patients’ care.
• CNNs have been the most powerful in recent literature.  

What is known and what is new? 
• Coronary anatomy imaging is mainly assessed by human experts.
• Deep learning has shown a high performance in coronary anatomy 

interpretation, prediction, and improving patient care and safety.

What is the implication, and what should change now?
• Research in deep learning for coronary anatomy imaging is making 

significant advancements.
• Successful deep learning applications will require clinical 

validation.

https://jmai.amegroups.com/article/view/10.21037/jmai-22-36/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-22-36/rc
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Competitions presented in conferences on deep learning 
techniques, such as at the Medical Image Computing and 
Computer Assisted Intervention (MICCAI) conference, 
animal studies, and simulation studies were not included due 
to ambiguity in their direct relation to patient care. Studies 
which used atherosclerosis data as a target for outcome 
prediction were excluded, as were studies, which focused on 
clinical data and imaging reports rather than imaging data 
for prediction. Studies, which used deep learning software 
with no details on the deep learning architecture were also 
excluded. Fusion imaging studies were not part of this 
review, and studies of automated coronary anatomy and 
atherosclerosis quantification, which relied mainly on hand 
crafted or non-learning algorithms were not included.

For fractional flow reserve (FFR) derived from CCTA 
using deep learning, only the original publications were 
included in this review, all subsequent publications, which 
used the same algorithms for different clinical applications 
were considered external validation papers and were not 
included in this review.

Search procedure

MEDLINE (with PubMed extension) and EMBASE using 
Ovid search engine was conducted to search the published 
literature. Yale Mesh Analyzer was used to include all possible 
Medline Subject Headings (MeSH) terms, after identifying 
two studies manually on MEDLINE database with focus on 
deep learning and CAD atherosclerosis imaging modalities. 
The PMIDs for those papers were extracted and inserted 
into the analyser, these produced Mesh terms to guide the 
systematic search. Truncation has been used in imaging term: 
[‘coronar*’], [‘myocardia*’], [‘atherosclero*’], [‘isch?mi*’], 
and [‘calci*’]. Plain terms were used for [‘machine learning’], 
[‘deep learning’], [‘artificial intelligence’], [‘neural networks’], 
[‘unsupervised learning’], [‘supervised learning’], [‘semi-
supervised learning’], [‘heart’], [‘plaque’], and [‘stenosis’]. 
The search included all records from database inception until 
21st of October 2020 with no language constraints. Data 
was collected by EA and UD. Full Ovid search strategy and 
output is shown in https://cdn.amegroups.cn/static/public/
jmai-22-36-1.pdf. Due to reports of missing relevant studies 
and inconsistency using methodology search filters (2), this 
approach has not been used.

Search results

Search results yielded 81 studies to be used for the 

systematic review and only a subset of 8 studies with unified 
defined outcomes were used for meta-analysis. Search 
results are shown in Figure 1.

Data extraction

The summary of input data, which were extracted from 
each study are reported below:

(I) First author’s surname;
(II) Year of publication;
(III) Total number of participants (images if not 

available);
(IV) Imaging modality used for deep learning;
(V) Index test;
(VI) Reference test;
(VII) Deep learning techniques;
(VIII) External validation;
(IX) Model performance metrics.

Assessment of risk of bias

The Quality Assessment of Diagnostic Accuracy Studies 
(QUADAS) tool was used to assess the risk of bias. Five 
main fields were assessed using a modified version:

(I) Patient selection: randomly selected patients from 
a population meeting the inclusion criteria is 
considered a high-quality study;

(II) Index test: including a comparator test is expected 
in a high-quality diagnostic test study;

(III) Reference test: a gold standard test for validation 
is mandatory in all high-quality diagnostic test 
studies;

(IV) Index test results blinded: the results of the 
comparator test are expected to be blinded to the 
deep learning arm in a high-quality study;

(V) Reference test results blinded: the results of the 
gold standard test are expected to be blinded to the 
deep learning arm in a high-quality study.

Statistical analysis

The performance of deep learning models was measured 
with various metrics including sensitivity, specificity, area 
under the curve (AUC), precision, recall, F1 score, Dice 
coefficient, Jaccard coefficient, and correlation. Those 
metrics were described quantitatively. 

Data were reported as count or percentages. The pooled 
values of some of the reported diagnostic accuracy after the 

https://cdn.amegroups.cn/static/public/jmai-22-36-1.pdf
https://cdn.amegroups.cn/static/public/jmai-22-36-1.pdf
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Records excluded
(n=964)

Full-text articles excluded, with 
reasons:

• Review article: n=37;
• Editorial: n=17;
• Not relevant: n=154;
• Duplicate: n=25;
• Text not found: n=16; 
• Letter: n=8;
• No details of DL algorithm =38;
• Animal or simulation study =4;
• High risk of bias =2

Full-text articles assessed 
for eligibility

(n=382)

Studies included in qualitative 
synthesis

(n=81)

Studies included in quantitative 
synthesis (meta-analysis)

(n=8)

Figure 1 PRISMA flow diagram showing the results of systematic search strategy. DL, deep learning.

application of deep learning models, which were part of the 
meta-analysis, were visualised by forest plots.

A confusion matrix was produced for each of the 
included studies in meta-analysis given that most studies 
did not report the true negative (TN), true positive (TP), 
false negative (FN), and false positive (FP) values. This was 
calculated by taking sample size (S) to calculate FN from 
sensitivity, and FP from specificity. The TN and TP were 
then calculated from total sample size S.

Meta-analysis was performed on studies, which reported 
the same outputs with the corresponding sensitivity and 
specificity. Since pooling sensitivities or specificities can be 
misleading, the diagnostic odds ratio (DOR) approach is 
taken to calculate the pooled diagnostic performance. The 
fixed effect case of Mantel-Haenszel (MH) method is used.

Heterogeneity was examined using tau2, I2 and Q 
tests. P value of less than 0.05 was considered statistically 
significant.

All statistical analysis was performed using RStudio 
software version 1.4.1106 using R 4.0.4 programming 

language.

Results

Characteristics of studies

The final number of studies included in this systematic 
review was 81, all published over 6 years between 2015 and 
2020, which indicates the recency of this topic.

Details of first author, year of publication, sample size, 
deep learning and machine learning techniques, index test 
(comparator) and reference test (gold standard) are shown 
in Table 1.

The most popular imaging modality in deep learning 
application was CCTA (58%), as shown in Figure 2. 
However, invasive coronary angiography has gained more 
interest in recent years, along with invasive coronary intra-
vascular imaging [optical coherence tomography (OCT) 
and intravascular ultrasound (IVUS)], which have been a 
focus for deep learning applications in recent years. Both 
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Table 1 List of all relevant studies for coronary anatomy imaging included in this systematic review

First author Year Model output Sample size Imaging modality Model Index test Reference test External validation

Rodrigues et al. (3) 2016 Pericardial and mediastinal fat classification 20 CCTA RF Manual feature extraction algorithms Expert reader No

Kang et al. (4) 2015 Coronary stenosis classification 42 CCTA SVM Expert reader Invasive coronary angiography No

Araki et al. (5) 2016 Coronary plaque calcification 15 IVUS SVM NA cIMT No

Itu et al. (6) 2016 FFR prediction 87 CCTA MLP Computational fluid dynamics CT-FFR Invasive FFR Yes

Wolterink et al. (7) 2016 CAC quantification 250 CCTA CNN NA Expert reader No

Su et al. (8) 2017 Media adventitia border detection 4 IVUS MLP NA Expert reader No

Yong et al. (9) 2017 Coronary lumen segmentation 64 OCT CNN NA Expert reader No

Xu et al. (10) 2017 Coronary plaque classification 18 OCT CNN and SVM NA Expert reader No

Zreik et al. (11) 2019 Coronary plaque classification 163 CCTA RNN NA Expert reader No

Zreik et al. (12) 2018 LV segmentation for coronary stenosis significance classification 156 CCTA CNN + SVM NA Invasive FFR No

Kolluru et al. (13) 2018 Coronary plaque classification 48 OCT CNN NA Expert reader No

Zhang et al. (14) 2018 Coronary plaque classification 61 IVUS SVM NA Expert reader No

Oh et al. (15) 2018 Lipid core plaque detection 116 IVUS CNN NA Expert reader No

van Rosendael et al. (16) 2018 Clinical outcome prediction 8,844 CCTA Boosted ensemble algorithm Conventional clinical risk scores Clinical outcomes No

Stuckey et al. (17) 2018 CAD detection 606 cPSTA Elastic net NA Invasive coronary angiography No

Lessmann et al. (18) 2018 CAC detection 1,744 CCTA CNN NA Expert reader No

Šprem et al. (19) 2018 Motion artefact detection in CACS 585 CCTA CNN NA Conventional CACS No

Hae et al. (20) 2018 Prediction of myocardium subtended by coronary stenosis 932 CCTA SVM NA Invasive coronary angiography Yes

Dey et al. (21) 2018 FFR prediction 254 CCTA Boosted ensemble algorithm Conventional CCTA Invasive FFR No

van Hamersvelt et al. (22) 2019 LV segmentation for coronary stenosis significance classification 126 CCTA SVM NA Expert reader No

Cho et al. (23) 2019 FFR classification 1,501 Invasive coronary angiography XGBoost NA Invasive FFR Yes

Liu et al. (24) 2019 Vulnerable plaque detection 2,300 (images) OCT CNN NA Expert reader No

Gessert et al. (25) 2019 Coronary plaque segmentation 49 OCT CNN NA Expert reader No

Abdolmanafi et al. (26) 2019 Coronary artery wall pathology detection 45 OCT CNN NA Expert reader No

Liu et al. (27) 2019 Bifurcation lesion detection 308 Invasive coronary angiography CNN NA Expert reader No

Gharaibeh et al. (28) 2019 CAC quantification 34 IVUS CNN NA Expert reader No

Jun et al. (29) 2019 Thin cap fibroatheroma classification 100 IVUS CNN NA OCT No

Lee et al. (30) 2019 Coronary artery segmentation 4,980 Invasive coronary angiography CNN NA Expert reader No

Yang et al. (31) 2019 Coronary artery segmentation 2,042 Invasive coronary angiography CNN NA Expert reader Yes

Wang et al. (32) 2019 Media adventitia border detection 22 IVUS MLP P6 and P8 detectors Expert reader No

Johnson et al. (33) 2019 Clinical outcome prediction 6,892 CCTA KNN Conventional CT and clinical risk scores Clinical outcomes No

Kolossváry et al. (34) 2019 Coronary plaque classification 21 CCTA Least angle regression + radiomics Histogram assessment by expert reader Histology (ex vivo) No

Wang et al. (35) 2019 FFR prediction 63 CCTA RNN Conventional CCTA Invasive FFR No

Datong et al. (36) 2019 CAC detection 820 (images) CCTA CNN NA Expert reader No

Oikonomou et al. (37) 2019 Clinical outcome prediction 5,487 CCTA RF + radiomics Conventional clinical risk scores Clinical outcomes Yes

Masuda et al. (38) 2019 Coronary plaque classification 78 CCTA Extreme gradient boosting Conventional CCTA IVUS No

Table 1 (continued)
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Table 1 (continued)

First author Year Model output Sample size Imaging modality Model Index test Reference test External validation

Kigka et al. (39) 2019 Coronary plaque progression prediction 40 CCTA RF NA Clinical outcomes No

Zhang et al. (40) 2019 Coronary risk prediction 4,415 CCTA Boosted ensemble algorithm Conventional clinical risk scores Clinical outcomes No

Commandeur et al. (41) 2019 Epicardial adipose tissue quantification 850 CCTA CNN NA Expert reader No

Hong et al. (42) 2019 Coronary artery segmentation 156 CCTA CNN NA Expert reader No

Huo et al. (43) 2019 CAC detection 2,332 CCTA CNN NA Expert reader No

Wang et al. (44) 2020 MPVI prediction 9 IVUS SVM and RF GLMM Follow-up MPVI No

Lee et al. (45) 2020 FFR prediction 1,328 IVUS AdaBoost NA Invasive FFR No

Wu et al. (46) 2020 Coronary stenosis detection 63 Invasive coronary angiography CNN NA Expert reader No

Sampedro-Gómez et al. (47) 2020 Stent restenosis prediction 263 Invasive coronary angiography ERT Conventional clinical risk scores Clinical outcomes No

Miyoshi et al. (48) 2020 Coronary neointimal coverage classification, yellow colour classification, 
red thrombus detection

107 Invasive coronary angioscopy GAN SVM Expert reader Yes

Zhang et al. (49) 2020 Coronary stenosis classification 228 Invasive coronary angiography HEAL NA Expert reader No

Du et al. (50) 2021 Coronary artery segmentation, stenosis classification, total occlusion 
detection, calcification detection, thrombus detection, dissection 
detection

10,073 Invasive coronary angiography CNN and GAN NA Expert reader No

He et al. (51) 2020 Coronary plaque segmentation 24 OCT CNN NA Expert reader No

Yabushita et al. (52) 2021 Coronary artery segmentation 146 Invasive coronary angiography CNN NA Expert reader No

Hamaya et al. (53) 2020 Clustering epicardial functional stenosis with low CFR 364 Invasive coronary angiography Unsupervised hierarchical clustering K-mean clustering Clinical outcomes No

Lee et al. (54) 2019 Coronary plaque segmentation 55 OCT CNN A-line CNN detector Expert reader No

Min et al. (55) 2020 Thin cap fibroatheroma classification 602 OCT CNN NA Expert reader No

Commandeur et al. (56) 2020 Clinical outcome prediction 1,912 CCTA Extreme gradient boosting Conventional CT and clinical risk scores Clinical outcomes No

Muscogiuri et al. (57) 2020 CAD classification 288 CCTA CNN NA Expert reader No

Benz et al. (58) 2020 Coronary artery image reconstruction 43 CCTA CNN Adaptive statistical iterative reconstruction Invasive coronary angiography No

Wang et al. (59) 2020 CAC quantification 530 CCTA CNN NA Expert reader No

Al’Aref et al. (60) 2020 Coronary stenosis prediction from CACS 13,054 CCT Boosted ensemble algorithm NA CCTA No

Kawasaki et al. (61) 2020 FFR prediction 47 CCTA RF NA Invasive FFR No

Fischer et al. (62) 2020 CAC quantification 200 CCTA RNN NA Expert reader No

van Velzen et al. (63) 2020 CAC quantification 7,240 CCTA CNN NA Expert reader No

Zreik et al. (64) 2020 Coronary stenosis classification 187 CCTA CNN + SVM NA Invasive FFR No

Kumamaru et al. (65) 2020 FFR prediction 1,052 CCTA CNN + GAN Conventional CCTA Invasive FFR No

Candemir et al. (66) 2020 Coronary stenosis classification 493 CCTA CNN NA Expert reader Yes

Shu et al. (67) 2022 Clinical outcome prediction 154 CCTA SVM + radiomics NA Expert reader Yes

van den Oever et al. (68) 2020 CAC rule out 100 CCTA CNN NA Expert reader Yes

Han et al. (69) 2020 Coronary stenosis classification 150 CCTA CNN Expert reader Invasive coronary angiography No

Han et al. (70) 2020 Rapid plaque progression prediction 1,083 CCTA Boosted ensemble algorithm Conventional clinical risk scores Clinical outcomes No

Lin et al. (71) 2020 Pericoronary adipose tissue prognosis prediction 177 CCTA Boosted ensemble algorithm + radiomics Conventional CT and clinical risk scores Clinical outcomes No

Table 1 (continued)
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Table 1 (continued)

First author Year Model output Sample size Imaging modality Model Index test Reference test External validation

Chen et al. (72) 2020 Coronary artery segmentation 124 CCTA CNN Expert reader Invasive coronary angiography No

Tesche et al. (73) 2021 Clinical outcome prediction 361 CCTA Boosted ensemble algorithm Conventional CT and clinical risk scores Clinical outcomes No

Al’Aref et al. (74) 2020 CL precursors detection 46 CCTA Boosted ensemble algorithm Traditional CCTA CL precursors Invasive coronary angiography Yes

Hong et al. (75) 2020 CCTA image noise reduction 82 CCTA CNN NA Invasive coronary angiography No

Podgorsak et al. (76) 2020 Coronary segmentation and FFR prediction 64 CCTA CNN Expert reader Invasive FFR No

Eberhard et al. (77) 2020 FFR prediction 56 CCTA CNN Invasive FFR Clinical outcomes No

Son et al. (78) 2020 CAC prediction 20,130 Retinal fundus imaging CNN NA CCTA No

Carson et al. (79) 2020 FFR prediction 25 CCTA MLP and RNN MPR Invasive FFR Yes

Gangl et al. (80) 2019 Coronary plaque segmentation 104 (images) OCT CNN NA Expert reader No

Głowacki et al. (81) 2020 Coronary stenosis prediction from CACS 435 CCT Extreme gradient boosting NA CCTA No

Hoshino et al. (82) 2020 FAI clusters 220 CCTA Unsupervised hierarchical clustering Invasive FFR Clinical outcomes No

Kawaguchi et al. (83) 2018 FFR prediction 934 CCTA CNN NA Invasive FFR No

CCTA, coronary computed tomographic angiography; RF, random forest; SVM, support vector machine; IVUS, intra-vascular ultrasound; NA, not available; cIMT, carotid intima-media thickness; FFR, fractional flow reserve; MLP, multi-layer perceptron; CT, computed tomography; CAC, coronary artery 
calcification; CNN, convolutional neural network; OCT, optical coherence tomography; RNN, recurrent neural network; LV, left ventricle; CAD, coronary artery disease; cPSTA, cardiac phase space tomography analysis; CACS, coronary artery calcium score; KNN, k-nearest neighbours; MPVI, morphological 
plaque vulnerability index; GLMM, generalised linear mixed model; ERT, extremely randomised tree; GAN, generative adversarial network; HEAL, hierarchical attentive multi-view; CFR, coronary flow reserve; CL, culprit lesion; MPR, multi-variant polynomial regression; FAI, fat attenuation index.



Journal of Medical Artificial Intelligence, 2022Page 8 of 16

© AME Publishing Company. J Med Artif Intell 2022;5:11 | https://dx.doi.org/10.21037/jmai-22-36

Figure 2 A stacked bar plot showing the number of studies for 
each imaging modality in the last 6 years. Some imaging modalities 
are very rare and not widely used, therefore they are not explained 
in the text but listed in the table and the bar plot, such as cPSTA 
and coronary angioscopy. Invasive coronary angioscopy is an old 
technique used for direct lumen visualisation using lenses and a 
light bulb, similar to endoscopic principles. One study of retinal 
fundus imaging was included as it used deep learning to predict 
coronary calcification compared to CCTA (78). CCTA, coronary 
computed tomographic angiography; cPSTA, cardiac phase space 
tomography analysis; IVUS, intra-vascular ultrasound; OCT, optic 
coherence tomography.

Figure 3 Bar plots showing the different neural networks models used based on the imaging modality used. CCTA, coronary computed 
tomography angiography; CNN, convolutional neural network; GAN, generative adversarial network; MLP, multi-layer perceptron; RNN, 
recurrent neural network; IVUS, intra-vascular ultrasound; OCT, optimal coherence tomography.

OCT and IVUS are performed during invasive coronary 
angiography to add more detailed imaging analysis of 
atherosclerotic lesions seen on Cine X-ray images.

The most commonly used deep learning technique was 
convolutional neural network (CNN) as shown in Figure 3,  
with more than half of the studies (52%) have used this 
approach as a single model or combined with other models. 
The use of multi-layer perceptron (MLP) was scarce with 
only 4 studies reported their results using MLP approach. 
There was a variety of models used with only a few studies 
in each category, including generative adversarial network 
(GAN), recurrent neural network (RNN), random forest 
(RF), gradient boost, support vector machine (SVM), to 
name a few.

Principle deep learning applications and meta-analysis

Coronary calcification
Several CCTA studies have focused on detection or 
quantification of coronary calcium given its prognostic 
importance in clinical outcomes. There have been successful 
applications of deep learning models using mainly CNNs 
to detect coronary artery calcification (CAC). Studies with 
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large sample sizes have been conducted and reported good 
or excellent model performance in detecting CAC. Huo 
et al. (43) used 2,332 of scan-rescan pairs as input to their 
CNN architecture called AID-Net, which is composed 
of 3D ResNet and 3D DenseNet layers. They reported 
high model performance with AUC as high as 0.93 in 
detecting CAC. van Velzen et al. (63) used a large sample of 
CCTA data from 7,240 participants, and with a CNN they 
quantified CAC and achieved a high model performance 
with 97% inter-class correlation with expert reader and 
96% accuracy. All other studies had smaller sample sizes and 
reported similar level of performance for CAC detection 
and quantification using CNNs.

Fischer et al. (62) used RNN for CAC quantification, and 
their model achieved good performance with sensitivity of 
92% and specificity of 89%. All these reports confirm that 
deep learning algorithms are capable of performing CAC 
detection or rule out, and quantification in a highly reliable 
way and with less time than an expert human reader.

Coronary artery stenosis

All of the four main imaging modalities (CCTA, OCT, 
IVUS, invasive coronary angiography) were used for deep 
learning applications to assess coronary stenosis in various 
ways: coronary plaque classification and segmentation, 
coronary stenosis classification and segmentation, culprit 
lesions predictors, vulnerable plaque precursors, thrombus, 
dissection and clinical outcome prediction.

Invasive coronary angiography studies used large 
numbers of patients for coronary artery segmentation. 
Du et al. (50) looked at 10,073 cases and trained a CNN 
and a GAN for better characterisation of coronary lesion 
location and description. Their model was able to perform 
coronary artery segmentation, stenosis classification, 
detection of total occlusion, calcification, thrombus and 
coronary dissection. They reported an AUC of 0.8 for 
coronary stenosis classification and F1 score of 0.82, and 
similar metrics for the other outputs were achieved, with a 
better performance in coronary segmentation with an AUC 
of 0.86. Similar performance was achieved from CCTA 
studies in coronary artery segmentation, Chen et al. (72) 
reported an AUC of 0.89 after using a CNN with 3D U-Net 
architecture on a sample size of 432 cases.

FFR

The earliest and most successful application of deep 

learning in atherosclerosis and coronary anatomy imaging 
was achieved in the assessment of FFR using CCTA, 
currently there are clinical applications available and it has 
gained a lot of attention in cardiovascular medicine and 
cardiothoracic surgery, due to the advantage of assessing 
coronary anatomy and ischaemic burden of coronary lesions 
both non-invasively.

The first application was in 2016 when Itu et al. (6) 
analysed 87 cases of CCTA and used a MLP architecture 
and some feature extraction techniques to calculate reliable 
FFR values, which was validated by invasive measurements. 
Also, this was compared to conventional CT-FFR based 
on computational fluid dynamics and showed to be more 
efficient. Their reported specificity was 84% and sensitivity 
82% compared to invasive assessment. Many studies have 
been published since then to externally validate those 
findings and the algorithm has been tested for various 
applications beyond just the absolute FFR values, such as 
looking at clinical outcome and prognosis.

Following this successful application, several studies have 
used more developed deep learning techniques to predict 
CT-FFR using CNNs and RNNs, and they all reported high 
performance metrics after comparing with invasive FFR.

A meta-analysis has been performed on eight studies 
which reported FFR prediction and had sensitivity and 
specificity reported. Figure 4 shows a coupled forest plot for 
sensitivity and specificity to assess heterogeneity by visual 
appreciation.

After calculating the DOR for all studies using MH 
method, the pooled value of DOR was estimated at 12.5. 
According to the literature this is considered as a positive 
finding as it is higher than 10 (84). Figure 5 shows a forest 
plot of the natural logarithmic DOR (lnDOR) for all eight 
studies with the pooled value in the summary (MH).

Assessment of heterogeneity

Quantifying heterogeneity of the eight studies included in 
meta-analysis showed tau2 =0.0011 with confidence interval 
(0.0000, 0.0166), this indicates no significant heterogeneity 
between studies.

I2 was calculated at 22.6%, indicating that true effect size 
differences have affected less than quarter of the variation in 
our data. According to “rule of thumb” from the literature, 
heterogeneity based on this value is considered mild.

The predictive interval was ranging from (0.9006 to 
1.1061), this means that based on the present evidence, it 
is possible that some future studies will likely find positive 
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effect.
Finally, Q test has shown a P value above significance 

level (P=0.2496), which indicates that there is no significant 
heterogeneity.

Assessment of risk of bias

Overall, there was a low risk of study bias, a table of the 
included studies with their associated risk of bias is shown 
in Table S1. One of the main observations was that a 
significant number of studies (51 out of 81 studies) did not 
have a comparator conventional test to draw conclusion 
on the performance of the models compared to current 
practice. However, the majority of the studies reported 
reasonable information about their models and performance 
metrics.

Discussion

Deep learning techniques

The three main types of layers which compose artificial 

neural networks (ANNs) are: input layers taking the raw 
image data, hidden layers connected via weight vectors, and 
an output layer which takes the weighted sum, applies an 
output function and return a prediction.

The fully connected layers with MLP put significant 
limitation to the size of the model and the number of filters 
available to learn image features. CNNs overcome this 
challenge by using fully connected layers very sparsely, 
and with more focus on convolution layers using hundreds 
or thousands of filters, the values of which are learnt 
automatically during the training phase. The sequential 
nature of the layers of the CNN can be thought of in the 
following steps: the early layers detect edges from raw pixel 
data, these edges are then used to detect shapes in further 
layers, and these shapes are used to detect higher-level 
features in the later layers. An additional exciting property 
of neural networks is that they can be used with transfer 
learning where high-level feature extraction ability is kept 
by saving the majority of the network, and a new layer to fit 
with the purpose of the study is exchanged with the output 
layer (85).

GANs have been gaining more popularity recently 
in medical imaging, and we saw some novel applications 
which have been applied in CCTA and invasive coronary 
angiography, as shown in Figure 3. These networks were 
first introduced by Goodfellow et al. (86), and can be used 
to generate synthetic images that are perceptually similar to 
their ground truth, authentic originals. This can be achieved 
by training two neural networks, one is called the generator 
that accepts an input vector of randomly generated noise 
and produces an output “imitation” image that looks 
similar to an image from the training image domain, if 
not identical to an authentic image, and the other is called 
the discriminator which attempts to determine if a given 
image is an “authentic” or “fake”. By training both of these 
networks at the same time, one giving feedback to the other, 

Figure 5 Forest plot showing summary of all DOR with the 
pooled summary, all reported in log values. DSL, DerSimonian-
Laird meta-analysis; DOR, diagnostic odds ratio.

Figure 4 Forest plots showing summary of sensitivity and specificity across all eight studies in the meta-analysis.

Diagnostic Odds Ratio Plot

0.64       3.54       6.45
Log diagnostic odds ratio

Itu et al. 2016
Dey et al. 2018
Kawaguchi et al. 2018
Wang ZQ et al. 2019
Carson et al. 2020
Kumamaru et al. 2020
Lee JG et al. 2020
Podgorsak et al. 2020
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we can learn to generate synthetic images. This model 
has been applied by Du et al. (50) successfully to unravel 
the complex features of coronary lesions seen in invasive 
coronary angiography by combining images from lesion 
location with images from lesion morphology to generate 
a high-level diagnostic information including identification 
of every coronary artery lesion and the coronary artery 
segment, in which it is located.

Finally, RNNs are type of neural networks which uses 
sequential data or time series data. They are distinguished 
by their memory as they take information from prior inputs 
to influence the current output. An RNN cell contains a 
closed-loop which allows the output of the current step to 
be influenced by the output of the previous step. Carson 
et al. (79) applied a RNN on CCTA to predict FFR based 
on the fact that coronary anatomy geometry has large 
variations including different vessel sizes, connectivity and 
the inclusion or exclusion of certain vessels. RNN has the 
advantage for providing the solution in the next vessel based 
on the solution of the previous vessel. This model had 
high performance compared to other non-invasive models 
and perfect sensitivity when compared with invasive FFR, 
however, it had very low specificity at 40% with high rate 
of FP FFR. This study had a small sample size of only 25 
cases. Therefore, further testing and studies on RNN is 
required for further evaluation.

Summary of main results

This systematic review shows how extensive the work has 
been made in the last few years in the field of coronary 
anatomy and atherosclerosis imaging using machine 
learning and deep learning applications. Overall, all studies 
reported in this review (81 studies over 6 years) showed 
good performance of the models presented to achieve the 
target outputs for each individual study.

The most popular imaging modality which has been used 
extensively in deep learning application is CCTA, with a 
wide range of applications ranging from coronary anatomy 
segmentation, plaque classification, coronary calcium 
quantification, vulnerable plaque detection, noise reduction 
and image reconstruction, and clinical outcome prediction.

Invasive coronary angiography was a focus in deep 
learning in recent years, various applications looked at 
coronary segmentation, coronary stenosis classification, 
thrombus detection, total occlusion detection and dissection 
detection. Moreover, the intra-vascular coronary imaging 
modalities such as IVUS and OCT have been studied for 

the last few years for various applications, mainly linked to 
segmentation and characterisation of coronary artery lumen 
and plaque.

One of the major works, which shows how effective 
deep learning can be is the CT-FFR algorithm. Our 
meta-analysis of the 8 studies looking at deep learning 
applications to predict CT-FFR showed positive results 
of the pooled diagnostic performance and low level of 
heterogeneity. Furthermore, predictive interval tests 
showed that some future studies will likely find positive 
effect based on the present evidence. Although CT-FFR 
was performed initially by Itu et al. (6) using a MLP, it 
gained popularity after showing superior performance to 
computational fluid dynamics and was tested in several 
studies for external validation, which confirmed its utility in 
clinical applications. There is currently more focus on using 
more advanced deep learning techniques such as CNN, and 
this continues to show promising results.

The positive findings in all the presented studies could 
have an impact on clinical practice by introducing new 
developments to current state of the art imaging modalities, 
such as CCTA, IVUS, and OCT, and improve clinical 
workflow with faster diagnosis and more meaningful image 
analysis.

The quantification ability of deep learning and radiomics 
can unravel features and relationships in the medical images 
which are not easily detected by the human eye, however, 
this area still needs further studies to evaluate the clinical 
usage of such models, and the current review has set the 
scene for the potential, which computer vision could offer 
to achieve this goal.

Limitations

This review excluded studies which have been presented in 
computer vision competitions, which may underrepresent 
some of the effective techniques out in the industry, 
therefore, the list of the models listed here is not exclusive.

The presented studies in this review have reported a 
large variation of performance metrics, which made meta-
analysis challenging and it is limited to only 8 studies.

Conclusions

Implications for practice

This review has shed light on an important rising field in 
cardiovascular imaging, deep learning and computer vision. 
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The tremendous advancement in coronary atherosclerosis 
imaging has already affected our practice with the use 
of non-invasive CT-FFR to make clinical decisions, 
and will soon change many other decisions we make in 
cardiovascular medicine. Although this is an exciting era 
of technology and precision medicine, clinical scrutiny and 
systematic review of the evidence is essential and should be 
periodic, in order to make the best possible decision for our 
patients.

Implications for research

There is a high demand for more research using novel deep 
learning applications on large datasets, in well-designed 
environments with robust study protocols, to achieve 
meaningful software applications, which are trustworthy 
and reliable to use on our patients.
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Supplementary

Table S1 List of all studies with their corresponding risk of bias assessments

Study, year Patient selection Index test Reference test Index test results blinded Reference test results blinded

Carson, 2020 ? − + − ?

Hoshino, 2020 + + + ? ?

Son, 2020 + − + − +

Eberhard, 2020 + + + ? ?

Wang, 2020 ? + + ? ?

Hong, 2019 + − + − ?

Podgorsak, 2020 + + + ? ?

Min, 2020 ? − + − ?

Wang, 2019 + + + ? +

Lee, 2019 + + + ? +

Hamaya, 2020 + + + ? ?

Yabushita, 2021 + − + − +

Hong, 2020 + − + − +

He, 2020 + − + − ?

Gessert, 2019 + − + − ?

Kang, 2015 + + + − +

Rodrigues, 2016 + + + − ?

Wolterink, 2016 + − + − ?

Al’Aref, 2020 + + + + +

Araki, 2016 + − + − ?

Tesche, 2021 + + + − ?

Chen, 2020 + + + + +

Du, 2021 + − + − ?

Zhang, 2020 + − + − ?

Lin, 2020 + + + − ?

Xu, 2017 + − + − ?

Yong, 2017 + − + − ?

Kolluru, 2018 + − + − ?

Huo, 2019 + − + − ?

Han, 2020 + + + ? ?

Kawaguchi, 2018 + − + − ?

Han, 2020 + + + + +

van den Oever, 2020 + − + − +

Shu, 2022 + − + − +

Candemir, 2020 + − + − ?

Zhang, 2018 + − + − ?

Miyoshi, 2020 + + + ? +

Kumamaru, 2020 + + + ? ?

Zreik, 2020 + − + − ?

Dey, 2018 + + + + +

Table S1 (continued)
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Table S1 (continued)

Study, year Patient selection Index test Reference test Index test results blinded Reference test results blinded

Sampedro-Gómez, 2020 + + + + +

Šprem, 2018 + − + − ?

van Velzen, 2020 + − + − ?

Fischer, 2020 + − + − ?

Zreik, 2019 + − + − ?

Wu, 2020 + − + − ?

Hae, 2018 + − + − ?

Lessmann, 2018 + − + − ?

Stuckey, 2018 + − + − +

Lee JG, 2020 + − + − ?

van Rosendael, 2018 + + + − ?

Commandeur, 2019 + − + − +

Kawasaki, 2020 + − + − +

Yang, 2019 + − + − ?

Lee PC, 2019 + − + − ?

Zhang, 2019 + + + ? ?

Al’Aref, 2020 + − + − ?

Wang, 2020 + − + − ?

Benz, 2020 + + + + +

Muscogiuri, 2020 + − + − ?

Kigka, 2019 + − + − ?

Jun, 2019 + − + − ?

Gharaibeh, 2019 + − + − ?

Głowacki, 2020 + − + − ?

Su, 2017 + − + − ?

Oh, 2018 + − ? − -

Liu, 2019 + − + − ?

Zreik, 2018 + − + − +

Abdolmanafi, 2019 + − + − ?

Commandeur, 2020 + + + + +

Masuda, 2019 + + + ? ?

Gangl, 2019 + − + − ?

Itu, 2016 + + + ? ?

Oikonomou, 2019 + + + ? ?

Datong, 2019 + − + − ?

Liu, 2019 + − + − ?

Wang, 2019 + + + + +

Kolossváry, 2019 + + + + +

Johnson, 2019 + + + ? ?

van Hamersvelt, 2019 + + + ? ?

Cho, 2019 + − + − ?

+, no risk of bias; −, equivocal risk; ?, high risk of bias.


