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Introduction

Obstructive sleep apnoea syndrome (OSAS) is  an 
increasingly common disorder, characterized by repeated 
upper airway collapse during sleep, resulting in oxygen 
desaturation and disrupted sleep (1). Patients with OSAS 
show snoring, witnessed apnoeas, waking up with a choking 
sensation, and excessive sleepiness. Non-restorative 

sleep, difficulty initiating or maintaining sleep, fatigue or 
tiredness, and morning headache are common in patients 
with OSAS (1). 

The collapse of the upper airway results in intermittent 
hypoxia, intrathoracic pressure swings, sympathetic surges, 
and sleep fragmentation. Therefore, OSAS is related to a 
range of diseases including hypertension (2), coronary heart 
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disease and heart failure (3), cerebrovascular disease (4),  
cognitive deficit (5), and metabolic syndrome (6). Early 
diagnosis of OSAS is essential. 

The apnoea-hypopnea index (AHI) is used to describe the 
number of apnoeas and hypopneas per hour of sleep. OSAS 
is defined as an AHI of 5 or more events per hour. The 
severity of OSAS can also be categorized by AHI. Patients 
with an AHI of 5–15 events/h, 16–30 events/h, or more than 
30 events/h are considered to have mild, moderate, or severe 
OSAS, respectively. OSAS has become a huge burden on 
medical care, and the number of patients is still on the rise. A 
recent systematic review reported that the overall population 
prevalence ranged from 9% to 38% at ≥5 events/h AHI 
while at 15 events/h AHI, the prevalence in the general adult 
population ranged from 6% to 17% (7). The prevalence 
appears to be increasing. A study from the United Kingdom 
demonstrated a significant increase in the rates of OSAS 
over the last 20 years (8).

With an increasing prevalence of OSAS and an overall 
growth in the number of surgical procedures, patients 
with potential OSAS presenting for surgery will grow 
substantially. OSAS brings great challenges to anesthesia 
management, especially unanticipated OSAS. OSAS is an 
independent risk factor for difficult intubation and mask 
ventilation, which is related to most severe anesthesia-related 
complications including death or hypoxic brain injury (9). A 
meta-analysis including 13 studies confirmed that patients 
with OSAS may have a higher incidence of postoperative 
complications. OSAS was associated with increased 
incidence of desaturation, respiratory failure, cardiac events, 
and intensive care unit admission as well (10). The severity 
of obstructive sleep apnoea (OSA) defined by AHI has 
not been shown to correlate with risk for postoperative 
complications (11,12). The Society of Anesthesia and Sleep 
Medicine (SASM) Guidelines on Preoperative Screening and 
Assessment of Adult Patients With Obstructive Sleep Apnoea 
emphasized that adult patients at risk for OSA should be 
identified before surgery (13). Patients with OSAS required 
a specific protocol including anesthesia methods, choice of 
medications, monitoring, and appropriate preoperative or 
postoperative strategy to reduce complications.

The gold standard for diagnosing OSAS is in-laboratory 
polysomnography (PSG) to measure the frequency of 
obstructed breathing events during sleep. There is a 
significant cost to evaluate all suspected patients with PSG 
because medical personnel are required for continuous 
sleep monitoring. Furthermore, in-lab testing is not 
always easy to get in some areas (14). Unattended portable 

monitoring (PM) can be an alternative to PSG. However, 
PM is not appropriate for the diagnosis of OSA in patients 
with significant comorbid medical conditions and patients 
suspected of having comorbid sleep disorders. In addition, 
PM is not appropriate for the general screening of 
asymptomatic populations (15). As a result, it is necessary 
to explore simple approaches for screening OSAS in a 
massive population to achieve early diagnosis and early 
treatment to reduce potential harm and complications. 
The SASM guidelines also recommended screening for 
surgical patients with suspected OSAS in the preoperative 
period (13). There are many different screening approaches 
including questionnaires and clinical models, but there is 
a large heterogeneity within each screening tool (16). If 
appropriately used, AI may streamline clinical operations, 
and introduce greater precision into the screening for OSAS.

Artificial intelligence (AI) refers to the ability of 
computer systems to perform tasks historically executed 
only by humans. Recent AI research has leveraged machine 
learning (ML) methods. ML is described as ‘giving 
computers the ability to learn without being explicitly 
programmed’. ML can be supervised, unsupervised, or 
reinforcement learning. Most studies on OSAS screening 
rely on supervised learning. In supervised learning, the 
computer is provided a labeled dataset as input such as 
patient demographics, and a hypothesis as output that best 
fits the labeled dataset such as diagnoses to identify links 
between those two in the dataset (17).

The development of AI in medicine has grown rapidly 
in the last few decades, especially in sleep medicine. They 
provide a wide range of techniques, from neural networks 
that can analyse imaging to sophisticated predictive 
models. The PSG includes massive physiological data such 
as electroencephalography (EEG), electro-oculography 
(EOG), electromyogram (EMG), electrocardiograph 
(ECG), and recordings of airflow, respiratory effort, 
oxygen saturation (SaO2) (18), which is particularly 
suitable for analysis using AI techniques. AI methods offer 
the opportunity to assist sleep staging as well as scoring 
associated events automatically to enhance sleep laboratory 
efficiency (19).

AI has also been introduced to screen for OSAS and 
holds great promise to optimize the OSAS diagnosis and 
treatment process. This review will focus specifically 
on AI used in the screening for OSAS. Based on 
the anthropometric characteristics and some simple 
physiological signals, the prediction model can be proposed 
for objective screening for OSAS. Patients with OSAS 
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always have an anatomic abnormality, which can be screened 
out by patients’ facial images and 3D scanning. ML can 
analyze data collected by ubiquitous wearable devices so 
they may hold promise to be a convenient and inexpensive 
adjunct to clinical evaluation. We present the following 
article in accordance with the Narrative Review reporting 
checklist (available at https://jmai.amegroups.com/article/
view/10.21037/jmai-22-79/rc).

Methods

A literature search was performed using the PubMed, 
Cochrane, Scopus and Web of Science databases between 
January 1993 and July 2022. The search strategy was shown 
in Table 1. The following keywords were used in the search: 
(“Obstructive Sleep Apnoea Syndrome” OR “OSAS” OR 
“OSA”) AND (“Artificial intelligence” OR “AI”) AND 
(“screen” OR “prediction”); (“Obstructive Sleep Apnoea 
Syndrome” OR “OSAS” OR “OSA”) AND (“deep learning” 
OR “machine learning”) AND (“screen” OR “prediction”); 
(“Obstructive Sleep Apnoea Syndrome” OR “OSAS” OR 
“OSA”) AND “intelligent devices” AND (“screen” OR 
“prediction”); (“Obstructive Sleep Apnoea Syndrome” 
OR “OSAS” OR “OSA”) AND “intelligent devices” AND 

(“screen” OR “prediction”); (“Obstructive Sleep Apnoea 
Syndrome” OR “OSAS” OR “OSA”) AND “wearable 
devices” AND (“screen” OR “prediction”). The detailed 
search strategy was shown in Table 2. All publication 
types in English were included. The titles and abstracts 
of all literatures were screened for relevance. Relevant 
information was extracted by two reviewers independently.

Content and findings

Screening model based on the clinical features

Numerous studies were devoted to exploring whether AI 
could offer the opportunity to analyse sleep-associated 
events automatically and extract additional insights from 
PSG data. Although fully automated analysis of PSG will 
be possible in the near future, it doesn’t seem to be easy 
to prescribe PSG for all suspected patients. Selecting the 
appropriate patients for PSG was determined by evaluating 
the risk factors of patients. This process used to be 
subjective, whether AI could offer the opportunity to make 
this decision more objective and accurate by data mining.

Obesity (especially with body mass index >35 kg/m2) is a 
major risk factor for OSAS, and the risk for OSA increases 
with obesity increasing (20). In addition, men appear to 

Table 1 The search strategy summary

Items Specification

Date of search 2022.8.1

Databases and other sources searched PubMed, Cochrane, Scopus and Web of Science

Search terms used See Table 2

Timeframe 1993.1–2022.7

Inclusion and exclusion criteria Inclusion: English article

Selection process Relevant information was extracted by two reviewers independently

Table 2 Detailed search strategy

Search strategy Database

Systematic search: Keywords: (“Obstructive Sleep Apnoea Syndrome” OR “OSAS” OR “OSA”) AND (“Artificial 
intelligence” OR “AI”) AND (“screen” OR “prediction”); (“Obstructive Sleep Apnoea Syndrome” OR “OSAS” 
OR “OSA”) AND (“deep learning” OR “machine learning”) AND (“screen” OR “prediction”); (“Obstructive 
Sleep Apnoea Syndrome” OR “OSAS” OR “OSA”) AND “intelligent devices” AND (“screen” OR “prediction”); 
(“Obstructive Sleep Apnoea Syndrome” OR “OSAS” OR “OSA”) AND “intelligent devices” AND (“screen” OR 
“prediction”); (“Obstructive Sleep Apnoea Syndrome” OR “OSAS” OR “OSA”) AND “wearable devices” AND 
(“screen” OR “prediction”)

PubMed, Cochrane, 
Scopus, and Web of 
Science

OSAS, obstructive sleep apnoea syndrome; AI, artificial intelligence; OSA, obstructive sleep apnoea.

https://jmai.amegroups.com/article/view/10.21037/jmai-22-79/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-22-79/rc
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be more likely to suffer from OSAS than women (21). 
Other risk factors include waist circumference, waist-to-
height ratio (22), family history, and retrognathia (20). 
Determining the significant predictors of OSAS severity 
such as body mass index (BMI) and sex to establish a 
prediction model by ML approaches may help screen for 
OSAS. Examples of the screening models described later 
are outlined in Table 3.

Two decades ago, scholars from Canada proposed that 
using 23 clinical variables to train the prediction model 
based on the generalized regression neural network 
(GRNN) could accurately classify patients with OSAS (23).  
The accuracy of the trained GRNN was up to 91.3%. A large 
retrospective study in 10,391 patients used only five easily 
available clinical features (age, sex, BMI, neck circumference, 
and waist circumference) to develop the age and sex 
independent model by various ML methods including 
logistic regression (LR), k-nearest neighbor (KNN), naive 
Bayes (NB), random forest (RF), and support vector machine 
(SVM) (24). All models exhibited superior performance, 
among which, RF models showed best with an area under the 
curve (AUC) between 88.73–97.88% in both mild-moderate 
OSAS and moderate-severe OSAS which was defined as 
AHI ≥15 events/h and AHI ≥30 events/h, respectively (24). 
A previous study proposed a data mining-driven SVM model 
with only 2 features (waist circumference and age) with an 
AUC of 82% when AHI cutoff ≥5 events/h (25). When AHI 
cutoff ≥15 and ≥30 events/h, the proposed model included 
features of minutes of sleep onset latency (SOL) <30 min 
which is rare in other researches. Despite the high accuracy, 
clinicians should be cautious about the results, as the models 
were not prospectively verified in other populations. In 
addition, the clinical features included in the model were 
body variables rather than craniofacial factors, and the latter 
were associated with OSAS closely.

Given that the clinical variables included in the 
prediction model are simple and readily available without 
specific medical instruments, the proposed model after 
prospective validation can be embedded in the mobile app 
for screening in large populations (29).

Several studies have combined some physiological 
signals such as ECG, blood pressure (BP), and blood 
oxygen monitoring with clinical features to train the model. 
Theoretically, the combined model should have better 
performance for screening, but the reality is not always 
satisfactory.

Papini and colleagues presented using ECG-based 
features (heart rate variability features and ECG-derived 

activity counts) with their algorithm to detect OSA-related 
events and screening OSAS severities with an AUC ≥0.86, 
Cohen’s kappa ≥0.53 (26). A study obtained three readily 
available features including waist circumference, mean 
BP at the end of PSG, and the difference in systolic BP 
between the end and start of PSG by stepwise regression 
analysis to train the explainable fuzzy neural network 
(EFNN). The proposed model showed unsatisfactory 
performance for OSAHS diagnosis at an AHI ≥5 events/h 
while for patients’ moderate-to-severe OSAS, the EFNN 
model could be a competitive prediction tool (27). Behar 
and colleagues combined SaO2 signals during sleep periods 
and demographic information to train an LR classifier and 
achieved an AUC of 0.94 (28).

The risk factors such as BMI, age, sex, and waist 
circumference are good predictors for OSAS and were 
widely used in prediction models based on a ML algorithm. 
The different algorithm has been trained but none of 
them appeared to be superior to the other, which may be 
related to different populations and different dataset used. 
In some studies, the combined use of physiological signals 
and anthropometric characteristic did not show better 
performance than anthropometric data alone which may 
result from the inappropriate physiological signals used. It 
seems that SaO2 signals are better predictors than ECG or 
BP. Future studies can focus on what kind of combination 
can achieve the best prediction ability.

Facial images and 3D scans

Craniofacial structure and upper airway abnormalities, 
such as skeletal abnormalities or enlarged upper airway soft 
tissues increase the likelihood of OSAS by compromising 
pharyngeal airway space (30). Obesity is also a widely 
recognized risk factor for OSAS (31). AI can help screen 
for OSAS by detecting these abnormalities through 
patients’ facial images. Facial images can provide not 
only a composite measure of craniofacial skeletal and soft 
tissue risk factors (obesity) but also information about 
underlying skeletal and upper airway soft structure (32). 
Facial recognition for the prediction of OSAS is non-
invasive, convenient, and intelligent, worth studying, and 
has a great prospect. A summary of the characteristics of the 
relevant studies is outlined in Table 4. ML is widely used, 
which refers to the study and development of systems that 
can learn from and make predictions without the need to be 
programmed (38).

Lee and colleagues (33) developed clinical prediction 
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Table 4 Characteristics of studies related to facial images

Author/year Country Population Design Diagnostic method n
Reference 
standard

Model 
Performance 

AUC Se (%) Sp (%)

Lee RW/2009, 
(33)

Australia Caucasians 
(95.6%)

P Frontal and profile 
photographs of the 
head and neck

180 AHI ≥10 events/h LR 0.82 86 59.1

CART 0.84 70.2 87.9

Sutherland 
K/2016, (34)

Australia Asian P Frontal and profile 
facial photographs

200 AHI ≥10 events/h LR 0.76 88.6 28.3

CART 0.81 NA NA

Espinoza-Cuadros 
F/2015, (35)

Spain N/A P Frontal and profile 
facial photographs

285 AHI ≥10 events/h SVR 0.67 71.8 62.1

Rong Y/2019, 
(36)

China N/A P Photos of 
orthotopic and 
oblique in the 
natural state

400 AHI ≥5 events/h SVM and PCA 
technology, and 

image recognition 
technology

NA 74 88

AHI ≥30 events/h NA 80 91

Monna F/2022, 
(37)

France Caucasians P 3D maxillofacial 
scan

280 AHI ≥15 events/h XGBoost 0.7 74 60

n, sample size; AUC, area under the receiver operating characteristics curve; Se, sensitivity; Sp, specificity; NA, not applicable; P, 
prospective cohort study; AHI, apnoea-hypopnea index; LR, logistic regression; CART, Classification and Regression Tree; SVR, support 
vector regression; SVM, support vector machine; PCA, principal component analysis; XGBoost, eXtreme Gradient Boosting.

models based on the frontal and profile photographs of 
the head and neck for the identification of OSAS using 
LR and Classification and Regression Tree (CART). Both 
methods of modeling showed good predictive ability with 
AUC >80%. Combined with clinical features such as 
witnessed apnoeas may further improve prediction. Despite 
the outstanding performance, researchers were required 
to manually mark lots of bony and cartilaginous landmarks 
with white tape before obtaining the photographs. 
Nonetheless, it was a novel attempt to suggest that facial 
images seemed to play a role in predicting OSAS. Caucasian 
OSAS patients show more obesity while Chinese OSAS 
patients have a more craniofacial bony restriction with 
the same OSAS severity (39). The same team then made 
another effort in Asians (34). As before, bone markers need 
to be manually marked prior to taking pictures. Based on 
the landmarks, a specific software can calculate craniofacial 
linear distances, angles, areas, and volumes to build 
prediction models. LR and CART were also used to develop 
the predictive models. CART analysis identified cricomental 
space area, mandibular width, mandibular plane angle, and 
neck soft tissue area as predictors for OSAS and got better 
performance with an AUC of 0.81.

Although the above models have achieved good 
accuracy, they are still not automatic enough. Considering 
that they required manual labeling, they are not suitable 

for mass screening. Espinoza-Cuadros and colleagues 
used an automatic landmarking method based on the 
Active Appearance Model (AAM) to extract a set of 
local craniofacial features related to OSAS including 
cervicomental contour area, face width, and Tragion-
Ramus-Stomion Angle (35). The support vector regression 
(SVR) was then applied to estimate the AHI. Additional 
tests using estimated AHI value to classify patients with 
OSA (truth AHI ≥10 events/h) and without OSAS (truth 
AHI <10 events/h) were performed based on regression 
with SVR and the AUC of the model was 0.67. Combined 
with the clinical variables including age, height, weight, 
BMI, and cervical perimeter, the AUC reached 0.73 (35). 
This study simplified method of facial feature extraction, 
making it possible to screen for OSAS on a large scale by 
facial images. 

Rong recently reported using SVM and principal 
component analysis (PCA) technology as well as image 
recognition technology to establish an algorithm based on 
the orthotopic and oblique photos in 400 patients, which 
achieved good effect, especially in patients with severe 
OSAS without manual labeling (36). This gives us a hint 
that facial images can not only help screen potential patients 
but can also be used to determine the severity.

Deep learning is potentially a powerful tool. It enables 
computational models that are composed of multiple 
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processing layers to learn representations of data with 
multiple levels of abstraction (40). Deep convolutional nets 
have dramatically improved facial image recognition. Lots 
of studies have applied deep learning to learning tasks of 
medical images and exhibited outstanding performance 
with an AUC over 0.95 in other diseases (41,42). Future 
researches can attempt to use deep learning techniques to 
train screening models for OSAS by facial images.

3D scans seem to be a good tool for characterizing 
maxillofacial structure. 3D photography allows the 
assessment of facial characteristics as an alternative to 
MRI (43). ML and deep learning models can be used to 
identify OSA patients. Recently, a study was conducted 
on Caucasian men to explore the predictive ability of 3D 
maxillofacial scans in OSAS. The 3D scans were processed 
by geometric morphometrics and 13 different supervised 
algorithms, varying from simple to more advanced, were 
trained and tested, with the AUC ranging from 0.62–0.70, 
among which, linear discriminant analysis (LDA), adaptive 
boosting (Adaboost), extra trees classifier, XGBoost were 
the most efficient. Combined with some clinical features 
associated with OSAS, the performance of the predictive 
model was slightly boosted based on the XGBoost 
algorithm, and the AUC reached 0.75, with a sensitivity 
of 80% and a specificity of 56% (37). In addition, the 
geometric morphometrics can reveal the difference of 
craniomaxillofacial features between patients with OSAS 
and non-OSAS population. Patients with OSAS have 
relatively shorter, thicker necks and stronger retrognathism 
as well than those in the non-OSA population.

It appears that 3D scans do not achieve the same 
predictive ability as 2D images, and the results are 
questionable due to the limited sample size and the lack 
of external validation as well. In addition, 3D scanning is 
more complex than 2D facial images. In the above trial, 
the entire lasted about 10 min and only 267 participants’ 
3D scannings can be further analyzed of the 1,251 patients 
originally screened (37). As a result, as 3D scannings 
are time-consuming and 3D scanning machines are 
expensive, they have the potential to explore the abnormal 
craniomaxillofacial features in patients with OSAS rather 
than a large-scale screening device. In contrast, patients’ 
facial images appear to be a better tool for screening 
because of the easy accessibility of 2D facial images with 
ubiquitous mobile phones and deep learning algorithm. 
Future researches can attempt to train deep learning models 
for screening OSAS based on the 2D images, but it needs 
an enormous demand for data. In addition, whether adding 

the different positions of images could improve accuracy 
and which areas of patients’ facial images are more helpful 
for screening are directions worth exploring as well.

Non-invasive wearable devices

PSG is  a  mult i-sensor method,  recording lots  of 
physiological signals such as airflow, blood oxygen, 
respiratory effort, and electrical activity of the heart, brain, 
eyes, and skeletal muscles. As a result, some wearable 
devices with single or several sensors which vary in their 
range of physiological signals collected may have an 
effect on screening. The introduction of AI may allow 
the optimization of algorithms to improve the accuracy of 
prediction. Examples of non-invasive wearable devices are 
outlined in Table 5.

At present, some simple devices have been developed 
and launched on the market, and their effectiveness has 
been confirmed through clinical trials. Xu and colleagues 
developed a wearable intelligent sleep monitor (WISM) 
(CloudCare Healthcare Ltd., Chengdu, China) which 
can continuously monitor some simple signs (SaO2, heart 
rate, and body movement signals) and analyse oxygen 
desaturation index (ODI) based on its own AI algorithm. 
Patients just needed to paste it on the palm, to be precise, 
the thenar major muscles (44). In 196 patients, the AUC 
was 0.95 with AHI ≥5 events/h or AHI ≥15 events/h. 
Using an AHI ≥15 events/h as the diagnostic criterion, the 
sensitivity and specificity are 92% and 89%, respectively. 
This wearable device might screen for OSA in a large 
population.

Recent studies have demonstrated that using single-lead 
ECG signals to train deep neural networks could extract 
the cardio-pulmonary features related to OSAS (49,50), 
which makes it possible to screen OSAS by widely-used 
wrist-worn Smartbands. Recently, a study explored whether 
wrist-worn Smartbands including Fitbit Charge4TM and 
Fitbit AltaHRTM in the consumer market could play a 
role in screening OSAS (45). Both of the devices were 
equipped with a triaxial accelerometer sensor and a 
photoplethysmographic sensor, which can collect patients’ 
sleep parameters and heart rate, respectively. A multi-layer 
perceptron (MLP) classifier was trained to predict whether 
patients’ AHI ≥5 events/h and the conclusion was drawn 
that the performance of the MLP classifier was comparable 
to the STOP-Bang Questionnaire which was widely used 
in the screening of OSAS. Considering the data collected 
by Wrist-Worn Smartbands was objective and convenient, 
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Table 5 Examples of non-invasive wearable devices

Author/year Design
Wearable 
device

Collected data n Reference standard Model
Performance 

AUC Se (%) Sp (%) Other

Xu Y/2022, 
(44)

P WISM Oxygen 
saturation, HR, 
body movement 
signals

196 AHI ≥5 events/h NA 0.95 93 77

AHI ≥15 events/h 0.95 92 89

Benedetti 
D/2022, (45)

P Wrist-Worn 
Smartbands

HR; sleep 
parameters

78 AHI ≥5 events/h MLP NA 76.67 66.67 PPV: 
88.46%

Hu X/2022, 
(46)

R Snoring  
records

Snoring Snore detection 
dataset >4,600 min

NA ARF NA NA NA

Cho 
SW/2022, 
(47)

P Smartphone Snoring 423 AHI ≥5 events/h RF 0.90 90.8 64.7 ACC: 
88.2%

AHI ≥15 events/h 0.89 87.3 70.6 ACC: 
82.3%

AHI ≥30 events/h 0.90 83 80.3 ACC: 
81.7%

Wei Y/2018, 
(48)

P Wearable 
device based 
on bone 
conduction 
microphone

Snoring 10 Patients have been 
diagnosed by PSG

HMM NA NA NA

n, sample size; AUC, area under the receiver operating characteristics curve; Se, sensitivity; Sp, specificity; P, prospective cohort study; 
R, retrospective; WISM, wearable intelligent sleep monitor; HR, heart rate; AHI, apnoea-hypopnea index; NA, not applicable; PSG, 
polysomnography; MLP, multi-layer perceptron; ARF, auditory receptive field; RF, random forest; HMM, hidden Markov model; PPV, 
positive predictive value; ACC, accuracy.

they have the potential to serve a population-scale 
screening for OSAS. In children and adolescents, Fitbit 
Ultra (51), Fitbit Charge 2™ (52), and other commercial 
Wrist-Worn Smartbands (53) failed to provide clinically 
comparable results to PSG and should be used with caution. 
Considering that they were not originally designed to 
screen for OSAS, the built-in accelerometer, as well as the 
algorithm, need to be updated to get a better prediction 
effect.

Snoring, which is one of the most common symptoms of 
OSAS carries a lot of physiological information about the 
upper airway and sleep (54), so researchers are devoted to 
studying its value in predicting OSAS for decades. A past 
study has demonstrated that Maximal frequency (Fmax) and 
average snoring sound intensity level (SSIL) of snoring are 
related to AHI and severity of OSAS (55). Azarbarzin and 
colleagues reported that snoring sound segments extracted 
such as average power and zero crossing rate have the 
potential to identify OSAS patients, with an accuracy of 
96.4% (56).

Voice recording equipment is easy to get access, making 
it possible that snore detection by portable devices could 
be a promising tool for screening OSAS. Different from 
the conventional snore detection approaches in the 
previously described literature, the introduction of AI could 
provide more robustness and accuracy. There are different 
classification approaches for snoring analysis such as higher-
order-spectra (HOS) (57), Gaussian mixture model (58), 
SVM (59), and artificial neural network (60). A recent 
study proposed a novel end-to-end deep learning model 
based on snoring recorded from wearable devices. This 
model combines detection information at various levels of 
feature maps and auditory receptive field (ARF) modules to 
mimic the characteristics of the responses of the auditory 
system to sound frequencies. The model was evaluated in 
a snore detection dataset with more than 4,600 min and 
outperformed other traditional approaches (46). However, 
this model has not been validated in patients, and its ability 
to screen for OSAS remains unknown.

Sometimes a specific microphone is not even needed, 
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the built-in microphone of the smartphone can achieve 
the screening effect. A study carried in 423 patients used 
an RF algorithm to create an accurate OSAS prediction 
model with smartphone-recorded breathing sounds 
without denoised during sleep. For an AHI threshold of 5, 
15, and 30 events/h, the AUC were 0.90, 0.89, and 0.90, 
respectively (47).

A based on bone conduction microphone was used 
in collecting snoring. Compared to the air conduction 
microphone, it is less susceptible to ambient noise and rolls 
over during sleeping. A study on a small sample of patients 
has confirmed the feasibility of this kind of device. Hidden 
Markov models (HMMs) were employed to train the model 
by extracting Mel-Frequency Cepstral Coefficients (MFCC) 
vectors as features of the sounds (48). It can detect apnoea 
or hypopnea part without external influence, which may 
optimize the accuracy of screening by snoring detection.

Ongoing studies are exploring various simplified 
technologies for screening OSAS to determine the possible 
population, reducing the dependence on PSG. Wearable 
devices provide the opportunity to collect different types 
of data non-invasively and continuously for long-term 
sleeping. Future studies can explore the combination 
of several approaches such as heart rate and snoring to 
improve the screening accuracy of the model.

Conclusion and future perspective

AI has the potential to screen patients with OSAS on a mass 
scale. It enables population-level screening using automated 
analysis of large volumes of data including anthropometric 
data alone or combined with some simple physiological 
signals which are easy to get, patients’ facial images and 3D 
scanning, and some intelligent wearable devices as well. 
While these screening tools cannot achieve the diagnosis, 
they can screen out suitable people for subsequent PSG to 
reduce the medical burden. Furthermore, these intelligent 
screening tools allow anesthesiologists to identify OSAS 
in patients who are scheduled for surgery during routine 
preoperative visits so that anesthesiologists can optimize 
preoperative preparation and work out a specific anesthesia 
plan to reduce complications. Considering the current 
performance and the availability of data, the prediction 
models based on anthropometric data combined with 
some simple physiological signals have more potential to 
become a feasible screening tool preoperatively. Although 
all the models mentioned above have achieved relatively 
good performance, it is still unknown whether they can 

be extended to large-scale populations in the community 
as they haven’t been prospectively verified in large-scale 
populations. Furthermore, a multimodal model can be 
designed based on clinical features, facial images, and some 
single-sensor wearable devices which can be integrated into 
a simple medical device, or even a smartphone app for mass 
screening.
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