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Background: Large and deep electronic health record (EHR) datasets have the potential to increase 
understanding of real-world patient journeys, and to identify subgroups of patients currently grouped with 
a common disease label but differing in outcomes and medical need. However, working with EHRs is still 
relatively new and challenging due to the heterogeneous nature of data. Increasing interest in machine 
learning (ML)-based EHR aggregation is mostly method-driven, i.e., building on available or newly 
developed methods. These methods, input requirements, and output are frequently difficult to interpret, 
especially without data science or statistical training. This endangers the ultimate aim of such analyses: 
generating actionable and clinically meaningful interpretation.
Methods: We conducted stratification and sub-phenotyping of cardiovascular patients from combination 
of NHS EHR datasets with encounters from March 2014 to August 2020 from Oxford University Hospital 
(OUH) and from February 2014 to March 2020 from Chelsea Hospital and Westminster Hospital 
(ChelWest). The dataset contained diagnoses, laboratory tests, medications, and procedures from 1,480 and 
918 patients from OUH and ChelWest respectively. Different clustering and preprocessing resulted in more 
than 100 clinical reports which would require significant time to be clinically interpreted.
Results: We have developed a new framework facilitating clinical evaluation and interpretation of 
unsupervised patient stratification. For each new step within this framework we present example methods—
pattern screening, meta clustering, surrogate modeling, and curation—which can be used at different stages 
within the analysis. Compared to a standard approach, we demonstrate the ability to condense results and 
optimize analysis time. For meta clustering, we show an example where the number of patient clusters 
are reduced from 72 to 3. With surrogate models, we quickly identified “blood sodium” as a stratification 
measure in heart failure patients, a likely identification of data bias as this is a routine measurement. By 
using cohort and feature curation, these and other irrelevant features were removed, increasing clinical 
meaningfulness. 
Conclusions: This study investigates approaches to perform patient stratification analysis at scale using 
large EHR datasets and multiple clustering methods for clinical research. We show examples on the 
effectiveness of the methods and hope to encourage further research in this field.
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Introduction

Research in the life sciences has come to rely heavily on 
large scale digital data acquisition and analysis (1). Indeed, 
digitalization in health care, and specifically documentation 
of electronic health records (EHRs), is developing into 
a standard practice for many health care providers. The 
increased availability of large clinical datasets, combined 
with recent advances in machine learning (ML) methods, 
have led to an increasing number of studies [reviewed in 
ref. (2)]. Although this trend started over a decade ago, 
the available data is becoming more and more relevant 
as datasets are (I) more complete, (II) extended more 
longitudinally, and (III) more horizontally integrated 
with increased linkage to other relevant datasets from the 
same patients like laboratory values, imaging, and other 
diagnostic procedures. These advances have underpinned 
the growing interest in the application of this large-scale 
real-world data not only for epidemiological purposes, but 
also to understand trajectories of patient subgroups within 
large but heterogenous diseases like heart failure (HF), 

chronic kidney disease, or stroke. As the trend towards more 
complete EHR dataset is accompanied by development 
of analysis methods (e.g., ML), this approach is becoming 
more likely to reveal relevant and actionable insights that 
have the power to benefit patients directly (e.g., through 
better care and precision medicine) and indirectly (e.g., by 
facilitating development of tailored drugs) (3-6).

One high impact area of research is patient stratification 
where, amongst others unsupervised learning methods, 
patients that share a similar clinical history (e.g., similar 
comorbidities) are clustered into sub-phenotypes to support 
disease understanding and facilitate more targeted treatment 
options (7-13). This has been applied to problems such 
as identifying subgroups of intensive care patients with 
common clinical needs (14,15) as well as finding subgroups of 
patients that have distinct responses to a fixed treatment (16). 
Generally, there are two core stages to the process (Figure 1). 
The first is the identification of patient subgroups using data-
driven methods. The second is the clinical evaluation and 
interpretation of these subgroups using statistical methods. 
New studies in this area often focus on the development and 
application of novel clustering methodologies (11,17,18); 
however exploration of methods to facilitate and accelerate 
the clinical evaluation are not considered to the same 
extent. This development results in an increasing number 
of methodological choices and often it is impossible to 
determine initially which approach will lead to the most 
insightful outcome. Consequently, multiple approaches are 
applied which results in an increased number of potentially 
relevant outcomes to be evaluated by clinical experts (see 
Figure 1). As dataset sizes and number of model experiments 
increase, there is a growing need for novel methods that 
specifically support interpreting results from complex studies, 
where many parallel approaches are applied. Note, within 
the context of this publication, an experiment is defined as 
applying a specific stratification algorithm on data of a patient 
cohort including specific preprocessing steps and algorithms 
parameters which results in a mapping of patients to different 
clusters. 

In this publication we present a new framework how 
to conduct large-scale, ML driven clinical analyses of 
unsupervised patient stratification and demonstrate example 
methods for each new step within the framework. At a high-
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level, these challenges break down into managing large 
volumes of evaluation results that need to be interpreted 
by clinicians, facilitating the extraction of insights in 
studies with large number of observations and support 
fast iterations of results to increase clinical relevance. 
The solution we propose (Figure 2) extends the clinical 
evaluation process with the addition of a key results 
identification stage (stage 2), an explainability stage (stage 3), 
and an optimisation loop (stage 5). Note, even though not 
every method presented is new, we focus in this publication 
on how the discovery process using ML methods and 
large scale EHR datasets can be improved by reducing 
the burden on clinical domain experts. We hope that this 
initiates further discussion within the community about the 
development of more appropriate methods. 

Methods

We present the conceptual approach and methodological 
details of our proposed new scalable clinical evaluation 
framework including methods for new stages. Additionally, 
we provide details of a use case study, along with the 
objectives of the study and the analytical approaches taken. 

Proposed scalable clinical interpretation approach

In this publication we propose to extend the current two-
step workflow (see Figure 1) by three additional stages with 

the objectives of (I) reducing the number of results a clinical 
researcher needs to investigate, (II) increasing explainability 
of individual results, and (III) to quickly iterate and optimize 
results. Importantly, we suggest that this extension makes the 
clinical interpretation scalable. Our proposed workflow is 
shown in Figure 2. Note, the original two stages presented in 
Figure 1 remain the same [model fitting (stage 1) and clinical 
evaluation (now stage 4)]. However, with the introduction 
of the Identification, Explainability and Optimisation stages 
the overall time required for a clinical researcher to review 
results will be reduced. 

Stage 2—Identification
The main objective of this stage is to reduce the number of 
available results generated in stage 1. As motivated in the 
introduction, for any patient stratification analysis, there 
exists an extensive number of potential experiments and 
often it is not possible to determine a priori which setting is 
most appropriate for analysis. Some of the analytical choices 
to be considered are:
 Data types: as modern EHR datasets become more 

complete, multiple data types such as diagnosis 
codes, laboratory values, oncology medication, or 
clinical reports become available. Even though 
ideally as much information as possible should be 
considered for the analysis, each data type might 
contain biases which could impact the stratification 
result;

Models

Stage 1 Stage 2
Model fitting Clinical evaluation

Cohort

Results Clinician’s output

Figure 1 General workflow of patient stratification where multiple models are fit based on a single patient cohort. The outcomes are 
validated by a domain expert in parallel for each model experiment, which is highly labour-intensive.
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 Data preprocessing: information in EHR data can 
be preprocessed in different forms, some of the 
choices to be made are: handling of continuous data 
types (e.g., laboratory values could be coded in a 
binary format, only indicating presence or absence 
of a laboratory test, or using the raw values), 
filtering of data elements (e.g., removing of data 
elements which are less then X% present in the 
dataset to remove noise), or hierarchy adjustment 
of data elements [e.g., the 10th revision of the 
International Statistical Classification of Diseases 
and Related Health Problems (ICD10) based 
diagnosis codes have a multiple hierarchy levels];

 Handling of temporal progression: EHR data 
ranges across multiple years, consequently different 
types of analysis are possible, e.g., considering only 
data recorded during a specific hospital admission 
or data across a specific time range; 

 Cluster methods: as mentioned in the introduction 
there is a large number of cluster methods available 
ranging from simple k-means clustering (19) to 
more complex deep learning based clustering (18), 
each with its advantages and disadvantages; 

 Expected numbers of clusters: for many clustering 
methods, the number of expected clusters k in a 

dataset needs to be defined. As this is normally not 
known a priori, often multiple numbers of clusters 
are evaluated. Alternatively some cluster methods 
have built-in mechanism to find the optimal 
number of clusters based on a predefined criteria 
(20).

A reduction in the number of experiments to be analyzed 
can be achieved through various approaches, such as: (I) 
automatic screening of all results and identification of 
commonalities, e.g., certain patients are always grouped 
together, or (II) automatic ranking with respect to the 
clinical objectives of the study and identification of the most 
relevant results. Two examples of such approaches are meta 
clustering and pattern screening, respectively. 
Meta clustering
To easily extract the common trends across multiple 
experiments, we can turn to approaches that consider the 
consensus across several different sets of results. Indeed, 
from a clinical perspective, it is particularly useful to 
have access to both qualitative and quantitative measures 
of the extent of agreement between different clustering 
algorithms. We adopted a procedure for combining results 
from multiple analyses using meta consensus clustering (21). 
A previous example of the application of meta clustering for 
patient sub-phenotyping can be found from Aure et al. (22). 

Stage 1

Cohort

Models Results

Key results

Cohort 
curation

Cluster 
curation

Feature 
curation

Clinician’s output

Model fitting
Stage 2

Identification
Stage 3

Stage 5 Optimisation (Optional)

Explainability
Stage 4

Clinical evaluation

Figure 2 Proposed clinical interpretation approach which allows a faster evaluation and iteration of ML-derived patient clusters to reduce 
the time burden on clinical researchers. By introducing the identification (stage 2), the explainability (stage 3), and optimisation stage (stage 5) 
the time required to evaluate a single set of results will be reduced dramatically in stage 4. ML, machine learning.
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In addition, we generated hierarchical clustering heatmaps, 
or dendrograms, which display the cluster assignments 
of all individual patients across the different experiments 
included in the meta consensus clustering analysis. These 
dendrograms can illustrate the degree of overlap in cluster 
assignments between distinct experiments.

Assuming n cluster analysis experiments were performed 
in stage 1 on a dataset with p patients, each individual 
patient xi , with i = {1,…,p}, is assigned to a cluster ci,j 
for experiment j with j = {1,…,n}. The data is converted 
to a binary dataframe where the individual patients 
are represented along the rows and clusters for each 
individual experiment were represented across the columns 
(Figure 3A). This data is then clustered by agglomerative 
hierarchical clustering (23) using the average linkage 
technique which works by iteratively pairing and merging 
clusters until all clusters have been merged into a set 
of meta clusters kc∗. We used the Hamming distance to 
quantify the degree of dissimilarity between patients in this 
cluster space. This generates a dendrogram representing a 
hierarchical structure of patient clusters that can be split at 
different levels of hierarchy to obtain different numbers of 

clusters (Figure 3B). 
Note, also for the meta clustering approach, the number 

of clusters k needs to be defined. To address this, meta 
clustering was performed for k = {n: n is an integer with 
1< n <13} clusters. Each set of meta clustering results 
was evaluated using the average silhouette index. Higher 
silhouette index values indicate better cluster separability, 
i.e., clustering quality (24). Consequently, the numbers of 
clusters resulting in the first and second (if available) local 
maxima of silhouette index values are automatically selected 
to produce the results. Note, the parameter depends on 
the dataset and specific application and are considered as 
an example. Here, we focused on smaller numbers of k 
to ensure that identified sub phenotypes have sufficient 
number of patients to be practical relevant and focus only 
on the best 2 results to effectively reduce results which 
require clinical evaluation. An alternative approach for this 
step was presented by Rose et al, which has an automatic 
determination of optimal number of clusters included (25).

The meta clustering process is described succinctly 
below.

(I) For n clustering experiments generate cluster label 

Experiment 1

P
at

ie
nt

s

Experiment 2

1

2

3

4

C4C3C3

Clusters Clusters

Reorder

C2C2 C1 C1

C*1 C*2 C*3

C2 C4 C2 C3 C3 C1

E1 E2 E2 E1 E2 E1 E2

C1

1

3

Dendrogram 
cluster cut

2

4

A B

Figure 3 Illustration of meta clustering approach, where two experiments E1 and E2 are combined by reordering the patients and cluster 
labels so that the similar patients are in proximity. The original set of experiments and clusters (A) are reordered so that the new meta 
clusters (B), denoted by an asterisk * and bounded by the purple dotted lines, are now found to be C*1: E1-C1, E2-C2, E2-C4; C*2: E1-C2, 
E2-C3; C*3: E1-C3, E2-C1. A dendrogram in purple above (B) demonstrates how the clusters are split at each level of hierarchy. The height 
of the blue dendrogram cluster cut line controls the number of clusters. Note that the patients are colour coded for clarity. 
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ci,j, where i is the patient and j is the experiment;
(II) Encode the cluster labels into a 2D binary matrix 

with the dimensions patient id and experiment 
cluster label (Figure 3A);

(III) Perform an ‘agglomerative hierarchical clustering’ 
algorithm with the ‘average linkage technique’ and 
assign new cluster labels c* for every patient i;

(IV) Rearrange patient ids and cluster labels within 
binary matrix to match cluster label E assignment 
(Figure 3B);

(V) (Optionally) add dendrogram on the x-axis to 
visualize the patient clusters (see section “Meta 
clustering HF experiments”);

(VI) Add dendrogram on the y-axis to visualize the 
agglomerative clustering on the experiment 
cluster labels ci,j (see section “Meta clustering HF 
experiments”).

Pattern screening
Usually clinicians follow an intuitive, experience-based 
approach when evaluating clinical cohorts and their 
properties; naturally this limits throughput. Therefore, 
we developed a pattern screening method for emulating 
a clinical review of experiment results. When evaluating 
results from multiple cluster analysis experiments, typically 
a reviewer will screen reports by applying a set of—
often implicit—concepts derived to determine which are 
of clinical interest. The pattern screening process takes 
these concepts and implements simple algorithms, such 
as identifying clusters with an increased mortality risk, to 
automatically rank the set of results. Depending on the 
clinical objective, a wide range of rules can be defined to 
reflect the different study objectives. Note it is critical to 
determine rules before analysis to prevent the introduction 
of selection bias.

As outlined in the “Use-case method” section, the 
objective of our example study is to identify patient clusters 
which differ with respect to outcomes such as mortality. 
Additionally, the identified patient clusters should be easily 
explainable (see section “Stage 3—Explainability”). These 
objectives were translated into the following rules:

(I) For all clusters m across the individual set of results 
n, compute the hazard ratio HRm,n using the “cluster 
vs. rest” Cox proportional hazard model with 
respect to mortality, recurrent stroke, bleeding 
events and re-hospitalisation (these are the relevant 
outcomes for the stroke and heart failure cohort—
see “Use-case method” section);

(II) Calculate the log rank P value, pv, from the Cox 

model and compute a result specific and outcome 
ranking score Rm,n=−log(pv); 

(III) Repeat step 1 & 2 with patient clusters identified 
via the surrogate model (see section “Stage 3—
Explainability”);

(IV) Evaluate ranking results by, e.g., visualisation or 
sorting of results (see section “Pattern screening”) 
and comparison between base and surrogate model 
scores.

Note that comparison of base and surrogate model 
scores provide one means to judge the performance of 
surrogate models; specifically, when the ranking scores 
of the surrogate models are worse compared to the base 
results. This indicates that the surrogate model was not able 
to define a similar patient cluster using simple criteria.

Stage 3—Explainability
With hundreds of different data points captured in modern 
EHR systems, it becomes increasingly challenging to 
capture the key characteristics for a specific patient cluster 
(see Figure 4) especially if classical enrichment analysis 
are performed. The purpose of this stage is to translate 
complex patient clusters, which might be generated by 
black-box deep learning models, into understandable (and 
ideally explainable) results using surrogate models, such as 
decision trees, which provide explainability by design (26). 
This is a very active research field within the data science 
and ML community and a full presentation of all possible 
approaches is beyond the scope of the paper. Therefore, the 
explainability method employed in our analysis is chiefly a 
decision tree that is trained on the input model features and 
the cluster labels of the black-box model, which is referred 
to here going forward as the surrogate model. This simple 
surrogate model is in line with the clinical question (in 
particular question III) of our example patient stratification 
study (see “Use-case method” section), but will depend on 
the specific application. 
Surrogate models
In general, there is a trade-off between model complexity and 
interpretability (27). Due to the increasing number of data 
points, there is a tendency to use more complex clustering 
models which makes rapid model interpretation difficult. 
Additionally, further methods might be required if consensus 
clustering approaches, e.g., meta clustering (28), are used. 
This challenge is addressed by using surrogate models, 
which are secondary white-box models trained to predict 
the outputs of the more complex model (29-31). Surrogate 
models give a more complete picture than enrichment 



Journal of Medical Artificial Intelligence, 2023 Page 7 of 25

© AME Publishing Company. J Med Artif Intell 2023;6:2 | https://dx.doi.org/10.21037/jmai-22-42

analysis alone (see Figure 4). While enrichment is useful for 
finding features that are significantly more prevalent in each 
cluster, surrogate models can be used to understand feature 
interactions and specific feature thresholds that determine 
patient cluster assignments. 

Using a surrogate model, the trained parameters can be 
used to interpret the extent to which individual features 
influenced the clustering process. In the case of patient 
stratification from EHR data, this means we can explain 
which medical features were most important in determining 
which cluster a patient should be assigned to. Though there 
are several methods available, we use primarily supervised 
decision trees in our surrogate model approach. Also, the 
ground truth prediction labels are defined as the one-
hot-encoded cluster labels from our black-box clustering 
algorithm. For each of these methods, we trained a model 
using 5-fold cross-validation. This approach involves 
randomly splitting the dataset into 5 groups of equal size 
and then iteratively selecting each of these 5 groups to 
be the validation set while the remaining 4 groups were 
used as the training set. Unlike most ML analyses, we did 
not use an additional test set to evaluate the final model 
performance as the models were intended for purely 
explanatory purposes. The performance of the surrogate 

model can be evaluated using standard metrics such as 
accuracy or F1-scores.

Stage 5—Optimisation
The purpose of this stage is to provide methods for iterative 
optimisation of patient stratification results. For example, 
a model may find a patient cluster with a very high risk of 
mortality—in line with the objective of the study—however, 
the cluster might be defined by non-clinically meaningful 
features. Alternatively, a cluster might be identified due to 
biases, e.g., a data recording bias between different hospital 
systems. Therefore, methods to remove or modify features 
and/or patients to validate potential insights and safeguard 
against data bias are crucial. This step relies on close 
interaction between clinical and data experts as e.g., the 
removal of a non-clinical feature might introduce bias. 

We propose here methods which can be applied at 
different stages of the stratification analysis, namely to 
cohort, feature, or cluster curation, to enhance the quality 
of the cluster analysis (see Figure 2). Note that this stage is 
highly dependent on domain expert knowledge. 

The process of curating either features or patient cohorts 
leads to changes in the model input data which necessitates 
the clustering process to be re-run prior to clinical 

Over-enriched Under-enriched Neither over-nor under-enriched

Enrichment analysis Surrogate

A

A B C

A AC

Feat 1

Feat 100
Feat 233

PresentAbsent

Feat 68

Feat 37

Feat N

Feat 2

B

C B

Figure 4 An illustration of two methods for interpreting patient stratification results. In this example, we assume the stratification analysis 
revealed 3 clusters A, B and C. A simple and direct approach is enrichment, where feature counts (and percent) for each cluster of patients 
is calculated. The OR between enrichment across clusters indicates the extent of over-enrichment (OR >1) or under-enrichment (OR <1) 
of a feature. With an increasing number of features in modern EHR datasets, direct enrichment analysis is impractical and alternative 
approaches, e.g., surrogate modelling, should be applied. A supervised decision tree finds criteria for cluster labels based on the important 
features in the model. Consequently, only the most important features are used which vastly simplifies the analysis. EHR, electronic health 
record; OR, odds ratio. 
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evaluation. Curating the clusters directly—i.e., before 
review and analysis—means the input data does not change 
and the clinical evaluation can be performed directly.
Cohort curation
The objective of cohort curation is to remove or add 
additional patients from the cohort of interest. This might 
sometimes be required as an initial cluster analysis could 
reveal patient clusters which are defined by a previously 
unknown data bias, e.g., a patient cluster contains only 
patients before a specific year due to a change in standard 
practices over time, such as the brain natriuretic peptide 
(BNP) test versus the later introduced N-terminal pro-
hormone BNP (NT-proBNP) test for HF. Naturally, such 
patient groupings typically have poor clinically utility in 
terms of providing meaningful stratification despite formally 
meeting the criteria for inclusion in the cohort. In this case 
it can be beneficial to further exclude some patients before 
clustering analysis is re-run, thereby avoiding the risk of 
diluting potentially relevant signals in the data. 
Feature curation
As real world EHR data tends to be messy and biased, 
there will be instances where clusters are defined based 
on clinically irrelevant or obvious features. The objective 
of feature curation is to either remove non-informative 
individual features or combine multiple non-clinically 
relevant features to a single clinical meaningful feature (see 
examples in Figure 5). This process strongly depends on 
domain expertise as deciding which feature is useful and not 
strongly depends on the objective of the analysis. Allowing 
the clinical researchers to quickly curate features and rerun 
the analysis will result in a clearer and more clinically 
relevant cluster definition. Note, that when feature curation 
is applied, the patient cohorts are unchanged, but the 
clustering analysis and subsequent clinical analysis are re-
evaluated using the curated feature list.

Cluster curation
There are several reasons for identified clusters to be 
removed or to be combined with other clusters. For example, 
if a cluster appears to suffer from bias (such as by data 
source), it can be removed or if two clusters appear to exhibit 
similar attributes then they can be combined. It is sometimes 
the case that clinical evaluation of clusters leads to two or 
more clusters being identified as having very similar survival 
or enrichment profiles. When this occurs, it can be useful to 
combine these clusters into a single cluster. Similarly, if there 
are multiple clusters that are not informative or relevant to 
a given clinical question then it can be useful to condense 
these less relevant clusters into a single cluster.

As cluster curation involves manually adjusting the 
cluster definitions after the cluster analysis, it is not 
required to re-run the clustering for this type of curation to 
be applied. Instead, just the clinical evaluation stage is re-
run with the expectation that the results from these analyses 
are easier to interpret due to the reduced number of clusters 
and therefore a smaller number of comparisons.

Use-case methods (dataset, clinical questions, and 
analytical analysis)

To illustrate the challenges with large scale patient 
stratification studies and the advantages of our proposed 
framework, we use results of a stratification study within 
the cardiovascular domain with a specific focus on stroke 
and HF patients. In the following section, the EHR dataset, 
clinical questions, cohorts, and analytical approaches will be 
described.

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The data 
were extracted, anonymized, and supplied by the Trust 
in accordance with internal information governance 

I489: Atrial fibrillation and atrial 
flutter, unspecified

Combine all I48 codes into  
I48: Atrial fibrillation and flutter

BNF0403 (INP): Antidepressant drugs
BNF0403 (TTA): Antidepressant drugs

Y982: Radiology of two body areas Do not include

Combine INP and TTA prescriptions

Pre-curation feature Post-curation feature

Figure 5 Feature curation examples where diagnoses codes I48 are generalized, procedures codes Y982 are excluded and BNF medication 
codes are combined where the prescription type, INP versus TTA, is not clinically relevant. BNF, British National Formulary; INP, 
inpatient; TTA, to take away.
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review, National Health Service (NHS) Trust information 
governance approval, and the General Data Protection 
Regulation (GDPR) procedures outlined under the 
Strategic Research Agreement (SRA) and relative Data 
Processing Agreements (DPAs) signed by the Trust and 
Arcturis Data Ltd.

Dataset
The dataset used for our analysis consisted of anonymized 
EHRs obtained from two NHS trusts, Oxford University 
Hospital (OUH) and Chelsea and Westminster Hospital 
(ChelWest). The total number of patients available in the 
study was 860,545, with records spanning from August 2010 
to March 2020.

The dataset contains 6 different types of clinical features: 
diagnosis codes (ICD-10 codes), procedure codes (OPCS-4 
codes), medication codes [British National Formulary (BNF) 
codes], laboratory values, demographic information, and 
administrative information. Laboratory values are mainly 
continuous, while diagnosis, procedure, and medication 
codes are binary or categorical features (indicating presence 
or absence). Administrative information contained data such 
as start and end date of admissions and admission type (e.g., 
inpatient or outpatient). Diagnosis codes could appear either 
as a primary diagnosis (in the case that the diagnosis was 
the primary reason for the hospital admission) or secondary 

diagnosis (in the case that the diagnosis was a comorbidity).

Clinical questions
The objectives of this patient stratification study are:

(I) Can we identify clinical meaningful sub-phenotypes 
of patients within patients who have a first diagnosis 
of ischemic stroke or an acute HF episode?

(II) Do these sub-phenotypes differ with respect to 
their clinical outcomes such as mortality rates?

(III) Are these sub-phenotypes practically relevant, 
meaning that they can be defined by using few 
inclusion and exclusion criteria with a high degree 
of clinical meaning to define the population?

Cohort and outcome definitions
Based on the clinical question above, relevant criteria were 
applied to the starting cohort 608,759 (OUH) and 251,786 
(ChelWest), which left 1,430 (OUH) and 1,062 (ChelWest) 
HF patients, and 1,480 (OUH) and 916 (ChelWest) stroke 
patients (Table 1). To obtain these sub-populations of 
patients with relevant medical profiles for our analysis, we 
defined the cohorts by an index date for each patient which 
is the first diagnosed acute event in their disease course. For 
the HF cohort, patients were included in the cohort if they 
had a HF event, which was defined as the occurrence of any 
of the following ICD-10 codes as a primary diagnosis: 

Table 1 Patient data breakdown from OUH and ChelWest for ischaemic stroke, and acute heart failure

Variables
Source cardiovascular dataset At heart failure event At stroke event

OUH ChelWest OUH ChelWest OUH ChelWest

Total patients (n=860,545) 608,759 251,786 1,430 1,062 1,480 916

Outcome mortality 38,039 21,028 516 505 448 389

Demographic

Age (years), mean [SD] 53.1 [20.0] 59.9 [20.2] 78.1 [13.5] 78.7 [11.6] 77.6 [12.8] 77.1 [12.9]

Female, n 328,760 133,535 688 533 769 469

Male, n 279,885 118,075 742 529 711 447

No. of clinical observations, mean [SD] 39.1 [27.5] 65.1 [40.7] 75.4 [33.7] 90.0 [38.9] 77.2 [19.0] 93.2 [37.5]

Time coverage (days), mean [SD] 675 [637] 762 [1,097] 506 [453] 605 [680] 462 [442] 560 [711]

No. of unique diagnosis codes 10,800 8,907 1,064 1,137 1,186 1,219

No. of unique procedure codes 6,793 4,758 173 229 225 211

No. of unique medication (BNF) codes 14,372 3,619 116 105 116 116

No. of unique laboratory values or vital signs 90 1,599 47 123 45 123

Numbers do not add up due to additional valid entries over male and female (“not known” and “not specified”). OUH, Oxford University 
Hospital; ChelWest, Chelsea and Westminster Hospital; SD, standard deviation; BNF, British National Formulary.
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 I50* Heart failure;
 I11.0 Hypertensive heart disease with (congestive) 

heart failure;
 I13.0 Hypertensive heart and renal disease with 

(congestive) heart failure; 
 I13.2 Hypertensive heart and renal disease with 

both (congestive) heart failure and renal failure. 
Patients were only included in the cohort if they had one 

of these events as well as at least 3 months of medical data 
available prior to the first admission where one of these 
diagnosis codes was recorded. We also excluded patients from 
the cohort based on several additional criteria, defined as: 
 Patients whose first admission (as defined above) was 

under 48 hours and had a HF related procedure code 
in the 30 days following the first admission (OPCS-4 
codes: K59*, K60*, K61*, K72*, K73*, K74*);

 Patients who had HF related ICD-10 codes 
recorded as a secondary diagnosis prior to their first 
admission (ICD-10 codes: I50*, I11.0, I13.0, I13.2);

 Patients who had been prescribed Eplerenone, 
Sacubitril with Valsartan or Spironolactone at 
a dose of either 25 or 50 mg prior to their first 
admission;

 Patients  with a recorded New York Heart 
Association classification or patients with a 
recorded ejection fraction under 40% prior to their 
first admission;

 For the stroke cohort, we included patients who 
met one of the two following criteria:
 Patients aged 18 or older who had an 

admission for ischaemic stroke as a primary 
ICD-10 code (I63* Cerebral infarction) and 
had at least 6 months of medical data available 
prior to the first admission where they had 
this event;

 Patients with a primary or secondary I63* 
Cerebral infarction ICD-10 code OR I69.3 
Sequelae of cerebral infarction ICD-10 code 
that occurred prior to the first record of an 
ischaemic stroke admission (as defined above).

The outcomes considered for these patients were 
mortality and for stroke patients recurrence of stroke and 
bleeding. Readmission for HF was also considered. The 
definitions for these end points are available in Appendix 1. 

The above cohort criteria quite significantly decrease 
the number of patients available for analysis, all cohorts 
are less than 0.5% of their original (Table 1). With respect 
to cohort features, a 1% filter was applied that ensured 

all patients had feature coverage greater than 1%, e.g., 
at least 1% of possible features were present for a given 
patient. The criteria (unsurprisingly) increase the percent 
of patients with an outcome of mortality, where the original 
cohorts had 6–8% mortality, the sub-cohorts ranged from 
30–47%. Note that the HF and stroke cohort demographics 
maintained an even sex balance, however the average patient 
age increased from 1950s to late 1970s. In these instances, 
the patient age is defined as the difference between 
birth date and date of event. The mean patient clinical 
observations increased in the sub-cohort populations as 
many patients with a low number of observations were 
filtered out. The time coverage is highly dispersed and 
skewed—many patients have single day coverage; hence the 
standard deviation is larger than the mean. However, we 
are focusing on “at-event” and data outside the event will 
be disregarded. The discrepancy between the number of 
unique laboratory values in OUH vs. ChelWest is simply a 
matter of tests available at given trust. Furthermore, there 
is only a subset of laboratory values that are relevant for the 
cardiovascular patient stratification study.

Statistical analysis 
Data pre-processing
The data preprocessing step consists of cleaning, quality 
checks, standardizing, time interval aggregating, and 
converting to a more useful data representation.
(I) Cleaning and quality checks
There are several sources of errors and irregularities in raw 
datasets, such as missing values, mismatched data, typos, 
superfluous formatting, and duplication. Quality checks 
are designed to catch these types of problems, in particular 
demographic data is checked that the age of the patient is 
greater than 18 and that no clinical observations occur after 
the date of death. Further, demographic and laboratory 
measurements are checked to be within physiological ranges 
and that the values are of correct type and not empty.
(II) Standardization
The cleaned data is then standardized across trusts. The 
standardization includes variations in naming convection, 
e .g . ,  ‘Amikacin’ ,  ‘AMIKACIN’,  ‘AMIK’,  ‘ARM’, 
‘AMIKCAIN LEVEL’, as well as by units, e.g., ‘g/L’ vs. 
‘mg/dL’ which must be scaled. Additionally, granular 
subcategories are standardized, such as the mapping of 
medications to a parent code, e.g., ‘Timolol’, ‘Pilocarpine 
Nitrate’, ‘Pilocarpine Hydrochloride’ to ‘Treatment 
of Glaucoma’. The structure of the raw data was also 
harmonized, for example, data columns that were spread 

https://cdn.amegroups.cn/static/public/JMAI-22-42-Supplementary.pdf
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across multiple columns were combined to a single column.
(III) Aggregation
As the raw EHR data consists of datapoints across time, it 
is necessary to aggregate and simplify the time intervals. 
For continuous variables, the observations within a time 
window are summarized using medians, median absolute 
deviation (MAD), count, minimum, maximum, and last 
observed value. For categorical variables, the observations 
are condensed to unique values or counts for each feature. 
Data was filtered by encounters for patients that contain the 
event of interest where the start and end dates are directly 
extracted from the EHR.
(IV) Filtering
Patients were filtered for sparsity. If a patient had a feature 
density of less than 1%, they were excluded from the cohort. 
Specifically, this was applied for patients with all possible 
laboratory test, medication, procedure, and diagnoses. 
(V) Data representation
Before clustering, the data is transformed into one of the 
following data representations: (I) one-hot-encoding (OHE), 
(II) ‘GloVe’ embedding, or (III) quantisation. The simplest 
data representation method is OHE where the presence 
or absence of a feature is denoted in a binary fashion as 
a 1 or 0. The more complex ‘GloVe’ embedding (32) is a 
common natural language processing (NLP) technique 
which learns a dense vector representation for words 
trained on the word-word co-occurrences in a document 
(or corpus). Quantisation is a method used for handling 
continuous values, such as found in laboratory tests. In 
short, quantisation puts the continuous values into bins, 
quantising the values within a bin to a single value. In 
particular, we used distribution aware quantisation (33), 
where the number of data points in each quantisation bin 
are consistent across all bins. Note, each data representation 
technique has advantages and disadvantages such how 
continuous values are considered or with respect to how 
dense the representation is. Often it is not clear, which data 
representation results in the best result, therefore multiple 
approaches are tested. 
Clustering methods
The cluster analysis was performed using the 4 cohorts 
defined in Table 1 (2 HF and 2 stroke cohorts with 
approx. 4,000 patients in total) with three different data 
representations. We ran experiments for two clustering 
methods described briefly below (6 experiments in total; 
3 different data representations and 2 clustering methods) 
per cohort. The first method is Deep Embedded Clustering 
(DEC). This technique was based on the work of Xie et 

al. and consists of an auto-encoder with an additional 
clustering layer (34). Similarly, a Modified Variational 
Autoencoder (MVA) was deployed. This method uses a 
modified Kullback-Leibler (KL)-divergence term in the 
loss function during training which encourages separation 
of the individual clusters within the embedding space (19). 
The optimum number of clusters k was determined using a 
bootstrapping approach. Briefly, the bootstrapping approach 
consists of reference models and subset models. The 
reference models are the trained unsupervised clustering 
models with all data for each cluster k={2,…,11}. The 
subset models are generated from ns =10 subsets where each 
division represents 75% of the data sampled at random. 
The optimum cluster k is defined as the cluster number 
with the highest agreements between subset and reference 
models. The agreement is defined using an average Jaccard 
index,

( ) , 1

1,
=

= ∑



sn R i

R i avg k i
s R i

C C
J C C

n C C  [1]

where CR and Ci is the cluster assignment of the reference 
model and of subset model i.
Classical clinical evaluation
(I) Enrichment methods
Enrichment analysis is a useful method for inferring feature 
importance from clustering results (35). In particular, 
enrichment tables can be generated which summarize the 
extent to which patients adhere to a subgroup relative to the 
rest of the cohort. For categorical features, we measure the 
total and frequency (percent) in each group. For continuous 
features, we measure the mean and standard deviation as 
well as median and interquartile range for each group. We 
further employ statistical analysis by calculating a P value 
(Fisher’s exact test or Chi-squared if all four counts if the 
contingency table had values greater than 10), and the odds 
ratio. Note that the odds ratio is simply calculated from a 
contingency table and is informative of the direction of the 
enrichment, i.e., odds ratio values greater than 1 are over-
enriched, and less than 1 are under-enriched. In the case of 
continuous feature enrichment, such as laboratory values, 
numerical features were evaluated using the Kruskal-Wallis 
test. Note that we defined a P value threshold (adjusted 
using the Benjamini Hochberg method) of <0.05 to 
determine significance.
(II) Kaplan-Meier and Cox
The survival analysis for each cluster was performed 
on the right-censored time to event data. The Kaplan-
Meier (KaplanMeierFitter) curves and Cox (CoxPHFitter) 
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proportional hazard values were calculated along with 
the 95% confidence intervals using Lifelines (36). The 
Cox models were adjusted for age and sex, the baseline 
hazard was calculated using Breslow’s method, and ties 
were handled using Efron’s method. No regularization was 
applied
(III) Software
The models were developed in Python (RRID:SCR_008394) 
using the standard open-source packages:  Pandas 
(RRID:SCR_018214), Numpy (RRID:SCR_008633), 
S c i k i t - L e a r n  ( R R I D : S C R _ 0 0 2 5 7 7 ) ,  M a t p l o t l i b 
(RRID:SCR_008624), and Tensorflow (RRID:SCR_016345). 
Additionally the statistics and survival analysis was performed 
using Lifelines (36).

Results

In the following four sections, results will be presented for 
the meta clustering, pattern screening, surrogate modelling, 
and curation process. These results are generated using the 
patient stratification methods outlined above. To demonstrate 
the power of this process, we illustrate with examples on 
a clinical study using a large-scale EHR dataset (using the 
cohorts defined in Table 1) which focuses on the identification 
of novel HF and stroke sub-phenotypes. Note, the focus of 
this section is not to examine clinical details of the results 
which have been identified, rather to investigate how the 
clinical evaluation process was impacted by the proposed 

methods. To avoid confusion, the individual experiments 
generated for the different scenarios were labelled 
numerically, and experiments reviewed in this section using 
meta clustering are labelled using letters A–K (Table 2). 

Meta clustering HF experiments

The benefit of meta clustering is illustrated by the HF use-
case with data obtained from OUH as described in the 
methods section. As outlined in the data pre-processing 
section and the clustering methods section, 2 clustering 
algorithms and 3 different possible pre-processing steps 
were used. For each algorithm and pre-processing step, 
the cluster number k was iterated between 2 to 11. In 
theory, this would imply the generation of up to 60 reports 
(2 cluster methods × 3 pre-processing steps × 10 cluster 
combinations). By using the bootstrapping approach 
defined in the Clustering Methods section, the number of 
clusters k was reduced to 1 or 2 per experiment resulting in 
total in 10 different sets of patient stratification results with 
72 clusters (Table 3). Applying the meta clustering approach 
on this set of initial results leads to 2 meta clustering reports 
automatically determined by the silhouette score with k=3 
and 5 (see Figure 6 and experiment A and B in Table 2).  
The different clusters are colour coded by the colour bars 
to the left and right of the dendrogram. The different 
cluster algorithms and pre-processing steps resulted in 
similar clustering results which could be identified by our 

Table 2 Experiments used for demonstration purposes in for meta clustering, pattern screening, surrogate modelling, and curation. Trust: data 
from either OUH and ChelWest. Investigated disease type either HF or stroke

Trust Disease Cluster Experiment name Used in

OUH HF 3 A Meta clustering

OUH HF 5 B Meta clustering

OUH HF 2 C Meta clustering + pattern screening

OUH Stroke 3 D Pattern screening

ChelWest Stroke 3 E Pattern screening

ChelWest Stroke 6 F Pattern screening

ChelWest HF 3 G Surrogate

OUH HF 6 H Feature & cohort curation (original)

OUH HF 3 I Feature & cohort curation

OUH Stroke 5 J Feature curation (original)

OUH Stroke 5 K Feature curation

OUH, Oxford University Hospital; ChelWest, Chelsea and Westminster Hospital; HF, heart failure.
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consensus approach as indicated by the dense purple patient 
clusters in the dendrograms. 

As an aside, another useful aspect of this approach is the 
ability to tune the number of clusters, whereby increasing the 
number of clusters, cluster groupings are further separated in 
a hierarchical manner. This is visible for the meta clustering 
results with k=3 clusters (Figure 6 right colour bar). The 
clusters 1 and 3 of k=3 are split into the clusters 3 and 4, and 

1 and 5 for k=5 respectively (Figure 6 left colour bar). 

Pattern screening

The value of the pattern screening method is illustrated 
on the stroke stratification example using results from 
both trusts OUH and ChelWest. Like the HF scenario, 
multiple encoding and cluster techniques were resulting 

Table 3 Overview of initially generated patient stratification results using different cluster algorithms, pre-processing steps, and numbers of 
clusters k before applying meta clustering. Type of pre-processing described in section “Data pre-processing”, which can be OHE or ‘Glove’ 
embedding

Algorithm Type of pre-processing Number of clusters k Number of experiments (total n=10)

DEC OHE 5 1

VAE OHE 5, 8 2

DEC GloVe 6, 9 2

VAE GloVe 8 1

DEC Glove with quantisation 7, 10 2

VAE Glove with quantisation 5, 9 2

OHE, one-hot encoding; DEC, deep embedded clustering; VAE, variational autoencoder.

Experiment clusters

Cluster 1

Cluster 2

Cluster 3

Cluster 4

Cluster 5
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Figure 6 Example of meta clustering results using the heart failure use case and data from OUH. On the x-axis, the experiment and clusters 
are listed, however the x-axis labels are removed for simplicity and the y-axis shows individual patients within the dataset. The meta-
clustering results are illustrated by the different colours next to the dendrogram—experiment A left side (k=5); and experiment B right side 
(k=3). The method identified similar cluster assignments reducing the number from 10 experiments (and 72 clusters) to 2 experiments with 
either 3 or 5 clusters. OUH, Oxford University Hospital.
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in 14 experiments: 7 cluster results for OUH and 7 for 
ChelWest. Additionally, meta clustering was applied to the 
results of OUH and ChelWest separately (experiment C–F). 
In total, there were finally 71 sets of results to be analysed. 
For each identified cluster, generated either by one of the 
cluster algorithms or meta clustering, a pattern screening 
score Rn,m was computed for the outcomes: mortality, 
bleeding, and recurrent stroke. In the following example, 
we focus on mortality as the main outcome of interest, with 
bleeding and recurrent stroke scores used to supplement 
the analysis. To visualize these scores, we provide a heatmap 
of the mortality score for each experiment, which are placed 
in a scatterplot with the bleeding and recurrent stroke scores 
on the y- and x-axis, respectively (Figure 7). The experiment 
indices are arbitrary and are not significant to the example. As 
outlined in the method section the pattern screening score was 
computed for base and surrogate models results to evaluate if a 
much simpler model with a few inclusion and exclusion criteria 
can replicate the performance of the base model.

In contrast of analysing all 71 cluster results individually, 
Figure 7 provides a quick overview which cluster is relevant 
with respect to the outcomes. In case of experiment 20, 
cluster 5, the mortality, bleeding and recurrent stroke score 
are similar high for the base and surrogate model, indicating 
that the surrogate model approach was able to identify a 
cluster with similar outcomes using a few inclusion and 
exclusion criteria which makes this cluster very interesting 
from a practical point of view. In contrast experiment 26, 

cluster 3, there a big performance drop can be observed for 
the bleeding score, while also the mortality score increases. 
This indicates that the surrogate model could not identify 
the same patients as in the base model. The patient cohort 
of experiment 20, cluster 5 of the base model is most likely 
defined on a more complex interaction of multiple inclusion 
criteria. 

It is also noteworthy that the meta clustering experiments, 
such as C and E perform relatively poorly across the board, 
indicating that consensus clustering, which does not take the 
outcomes into account, might not always result in the best 
results. 

Surrogate models of HF experiments

In some experiments surrogate models were able to 
produce simple, clinically interpretable decision trees which 
provided clear definitions for each cluster. This can be seen 
in the example from meta clustering experiment G (HF, 
ChelWest) shown in Figure 8. Whilst surrogate models 
replace the need to attempt to determine cluster definitions 
from complex, extensive enrichment tables, the simplified 
definitions provided by surrogate models can be understood 
in more depth by subsequent and focused review of the 
enrichment table. For example, the definition of cluster 1 
shown in Figure 8 could be further understood by reviewing 
the enrichment table which showed a higher prevalence in 
this cluster of co-morbidities such as respiratory and renal 
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Figure 7 Scatter plot of cluster specific pattern screening scores Rn,m of the stroke stratification experiment using data from OUH and 
ChelWest for the primary outcome mortality (heatmap), and the secondary outcomes bleeding (y-axis) and recurrent stroke (x-axis). Scores 
range from 0 to infinity which correlates with an increasing significant difference between the cluster and the remaining patients of the 
cohort. The scores are calculated for the base experiment (left), the surrogate model (right). The experiment number index (exp) and cluster 
number (k) are annotated for a few selected significant experiments. exp, experiment; OUH, Oxford University Hospital; ChelWest, Chelsea 
and Westminster Hospital.
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diseases which are associated with the procedure codes used 
in the surrogate models (Table 4).

The surrogate model’s predictive performance was 
variable in practice, however in some cases the surrogate 
model was able to predict the original clusters with a high 
degree of accuracy, even at a very low tree depth. For 
example, in meta clustering experiment G (HF, ChelWest) 
discussed above, the balanced accuracy of the surrogate 
model was 0.995 demonstrating successful prediction of 
the original clusters. Furthermore, both the original and 
surrogate model clusters showed significant differences 
for mortality between the clusters and therefore the 
clinical utility of the clusters had been preserved following 
application of the surrogate model (see Figure 9). 

Cohort, feature and cluster curation

Cohort curation was used in experiment H (HF, OUH) 
where the clustering had identified a cluster of patients 
who lacked any blood tests during the period considered  
(Figure 10 left). This cluster was deemed irrelevant by 
clinical review as it was unlikely these patients were in 
acute HF; typically, blood tests are required as part of 
routine care. Further investigation revealed these patients 
frequently appeared to be admitted for day case procedures 
such as cardiac magnetic resonance imaging (MRI), 
providing additional evidence against acute HF. This 
clustering analysis had therefore identified a previously not 
considered criteria which could be used to exclude patients 

from the cohort on the basis that they were highly unlikely 
to be in acute HF. A cohort curation was subsequently 
performed to remove these patients, thereby removing their 
influence on clustering, and the experiment was re-run 
(Figure 10 right). This process can be used to remove the 
undesirable influence of certain groups of patients identified 
through clustering as well as potentially adding new groups 
of patients. Importantly the removal of patients in this case 
was deemed clinically justifiable. Removal of patients could 
also occur based on evidence of bias producing irrelevant 
clusters. 

Figure 11 shows a sample of surrogate model without 
feature curation for experiment J (stroke, OUH). Some 
of the features used by the model to define clusters, and 
appearing in the enrichment tables, in this case were 
discovered to be clinically irrelevant and could be removed 
completely, such as “Y981: Radiology of one body area (or 
<20 min)”. Further, several novel features with improved 
clinical relevance were created, for example: “Novel: 
Computed tomography angiography of cerebral vessels” 
was defined as “U212: Computed tomography NEC” 
AND (“Z342: Aortic arch” OR “Z35: Cerebral artery” OR 
“Z361: Carotid artery NEC”). Figure 12 shows a sample of 
the surrogate model for the same experiment post feature 
curation (experiment K). All curated features are labeled 
as “Novel”, which are defined in Appendix 2. As visible in 
Figure 12, majority of features used within the surrogate 
model are curated features, demonstrating the ability to 
improve clinical relevance of features used to define clusters. 

samples =111 
Cluster C1

X404: Haemofiltration 
samples =876

samples =9 
Cluster C1

E852: Non-invasive ventilation NEC 
samples =1,062

Blood sodium (mmol/L) 
samples =951

samples =75 
Cluster C3

samples =867 
Cluster C2

Absent Present

Absent Present

Absent Present

Figure 8 Decision tree from experiment G (HF, data from ChelWest). NEC, not elsewhere classified; HF, heart failure; ChelWest, Chelsea 
and Westminster Hospital.
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Cluster curation can also be demonstrated in this 
experiment. In the original model for this experiment, 
there were 7 clusters generated where cluster 7 exhibited 
an increase in mortality, see Figure 13A,13B. However, the 
surrogate model failed to adequately capture and define 
this cluster (balanced accuracy 0.509). A cluster curation 
was therefore undertaken which compared patients within 
cluster 7 to the remaining cohort in attempt to simplify the 
surrogate model and obtain a definition for cluster 7, see 
Figure 13C,13D. This increased the ability of the surrogate 
model to discriminate cluster 7 (balanced accuracy 
0.659) from the remaining patients within the cohort. 
Unfortunately, the surrogate model predicted cluster 7 
no longer showed a significant difference in mortality 
compared to the rest of the population, see Figure 13E,13F. 
However, the cluster curation resulted in a simplified 
enrichment table when compared to the original experiment 
which could be used to define some features of cluster 7. 
These included enrichment for relevant co-morbidities such 
as atrial fibrillation, markers of stroke severity including 
gait/mobility issues and under enrichment for thrombolysis 
or thrombectomy (Table 5).

Discussion

The increasing availability of EHRs has the potential to 
change many aspects of healthcare and drug development. 
Indeed, ML analysis of EHR data has great potential to 
produce insights into real-world patient journeys and 
identify novel patient subgroups. However, we have 
identified three key barriers to practical application, namely: 
the identification of clinically relevant results in a sea of 
analytical outputs, the interpretation of complex black box 
models, and model parameter and feature optimization. We 
have demonstrated, based on two (HF and stroke) patient 
stratification analyses use cases with real-world UK-based 
EHR data, strategy for handling challenges in identifying 
patient clusters using meta clustering and pattern screening. 
Furthermore, we show how surrogate models can be used 
to explain patient phenotypes (as well as evaluating the 
performance of surrogates in the first place, see below), and 
illustrate how feature, cluster, and cohort curation can be 
applied to optimize model results. The output of the use 
cases demonstrates how to produce condensed, prioritised, 
interpretable, and clinically relevant results. Significantly, 
the proposed framework is independent of the used patient 

Table 4 Truncated enrichment table showing some relevant features, such as E852 non-invasive ventilation NEC, which is enriched in cluster 
C1; X404 haemofiltration procedures, which is under-enriched in cluster C2 and C3, but enriched in cluster C1

Feature
All patients, 

n (%)
Cluster 1  

(120 patients), n (%)
Cluster 2  

(874 patients), n (%)
Cluster 3  

(68 patients), n (%)

Diagnoses

E872: Acidosis 53 (5.0) 28 (23.3)* 22 (2.5)# 3 (4.4)

J440: Chronic obstructive pulmonary disease with acute 
lower respiratory infection

53 (5.0) 14 (11.7)* 36 (4.1) 3 (4.4)

J9600: Acute respiratory failure; Type I [hypoxic] 20 (1.9) 9 (7.5)* 8 (0.9)# 3 (4.4)

J969: Respiratory failure, unspecified 43 (4.0) 30 (25.0)* 13 (1.5)# 0

J9690: Respiratory failure, unspecified; Type I [hypoxic] 37 (3.5) 14 (11.7)* 23 (2.6)# 0

J9691: Respiratory failure unspecified; Type II [hypercapnic] 39 (3.7) 29 (24.2)* 10 (1.1)# 0

N179: Acute renal failure, unspecified 277 (26.1) 50 (41.7)* 214 (24.5) 13 (19.1)

N185: Chronic kidney disease, stage 5 18 (1.7) 8 (6.7)* 8 (0.9)# 2 (2.9)

Procedures

E852: Non-invasive ventilation NEC 111 (10.5) 111 (92.5)* 0# 0#

X404: Haemofiltration 20 (1.9) 20 (16.7)* 0# 0#

*, positive odds ratio; #, negative odds ratio. NEC, not elsewhere classified.
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Figure 10 Surrogate model decision tree from original experiment H (left) and curated experiment I (right) (HF, OUH) and after cohort 
and feature curation. HF, heart failure; OUH, Oxford University Hospital.
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stratification methods and does not put any constraints on 
the complexity of the stratification methods. 

As we have shown, meta clustering allows for the rapid 
and simultaneous use of a wide range of models of varying 
complexity. There is a wealth of clustering algorithms at 

the disposal of a technically savvy researcher, and we do not 
suggest the specific algorithms we applied above are fit for 
all situations. It is often best practice to start with simpler 
models and build complexity to suit the application. For 
example, though not used in this study, a common baseline 

Z391: Carotid artery NEC 
samples =227  

~Cluster 1

BNF0212: Lipid-regulating drugs 
samples =167  

~Cluster 9

Absent PresentAbsent

Absent

Present

Present
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BNF0209: Antiplatelet drugs 
samples =881  

(Not well defined)

U212: Computed tomography NEC 
samples =147  
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BNF 0209 Antiplatelet drugs 
samples =1,108

Y981: Radiology of one body area (or <20 minutes) 
samples =1,422

To deeper branches and leaf nodes

2,921: Head NEC  
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Figure 11 First 3 levels of a surrogate model decision tree from experiment J (stroke, OUH-uncurated). NEC, not elsewhere classified; 
BNF, British National Formulary; OUH, Oxford University Hospital.
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Figure 12 Decision from experiment K (stroke, OUH-curated). OUH, Oxford University Hospital. 
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clustering method is k-means clustering (37). Additionally, 
this method can be supplemented by dimensionality 
reduction by converting the data into a compressed space 
via classical principal component analysis (PCA) for fitting 
k-means. To build complexity, the models should suit the 
nature of the data; for example, sequential or time series 
data is well suited to modern transformers (38) or recurrent 
neural networks (RNNs)/long short-term memories 
(LSTMs) (39); image data have been classically handled 
using CNNs (40). In our case we have limited the number 
of models for demonstrative purposes, but we suggest that 

for further applications a wider selection of models can be 
used (not limited to deep learning). 

There are several limitations to meta clustering. As 
shown in the meta clustering example applied to the HF 
cohort, we were able to reduce the number of initial reports 
by ~80%. However, it was not possible in all instances to 
find clinical meaningful meta clusters, such as with the 
stroke cohort using OUH data (see Appendix 3). In this 
example, meta clustering was successfully applied to only a 
subset of results, namely from the DEC model. A further 
challenge of the proposed meta-clustering approach is the 
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Figure 13 Experiment J and K (OUH, Stroke) survival Kaplan-Meier (A) and Cox PH model HRs (B) for the patient stratification clusters 
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selection of the optimal number of meta-clusters. Further 
approaches to automate this should be investigated such 
as proposed in (25). In general, meta clustering evaluation 
requires that all individual results use the same patient 
cohorts. Performing meta clustering analysis across multiple 
datasets is not possible. A further limitation of this approach 
is that only similarities across cluster assignments are 
considered and not the clinical outcomes. Both limitations 
can be overcome by using pattern screening.

Pattern screening is a simple yet effective way to handle 
large sets of analytical outputs and model reports. Not only 
can this approach handle multiple results across different 
models, but it can also compare different datasets and 
multiple outcomes. In our use case, we have shown it is 
effective in rapidly pinpointing patient clusters with relevant 
outcome characteristics and simple inclusion and exclusion 
criteria (see clinical questions).

Pattern screening is also highly flexible, where any 
number of metrics or scoring functions can be applied. 
Note, that the pattern screening metrics we chose for the 
illustration are simplistic, and going forward, other metrics 
should be explored for instance metrics which consider the 
within cluster similarity. The flexibility of pattern screening 
is underscored by the fact it can be used independently 
or in conjunction with meta clustering. Furthermore, 

in contrast to meta clustering where multiple results are 
combined and single unique results might be lost, pattern 
screening focuses on each individual cluster result. This is 
an important feature as there can be cases where a perceived 
outlier may in truth be a novel insight. This can also be 
seen in Figure 7, where though both individual as well 
as meta clustering results were ranked. Clusters of meta 
clustering results seem to have lower pattern screening 
scores and therefore have less relevant clinical outcomes. 
This is sensible, as we are finding the consensus among a set 
of analyses, which independently of the clinical outcome. 
Additionally, meta clustering performed poorly in case of 
experiment C (see Appendix 3). 

Which specific method is used as surrogate model, 
depends strongly on the objectives of the study. We have 
used a simple decision tree, which matches the requirements 
of the third clinical question, meaning that a relevant cluster 
can be defined by a few clinical meaningful inclusion and 
exclusion criteria. This is particularly useful in the context 
of clinical trials, where each additional patient selection 
criteria can have a big impact on patient recruitment. 
Additionally, decision trees provide a very intuitive way 
for clinical experts to understand how specific clusters are 
defined and to evaluate if the used medical concepts are 
relevant or if part of the analysis should be repeated (see 

Table 5 Experiment K, C7 vs. Rest (OUH, stroke) selected enrichment table entries highlighting novel features

Feature
All patients,  

n (%)
Cluster 1 (1,055 patients),  

n (%)
Cluster 7 (407 patients),  

n (%)

Diagnoses

NOVEL F05 Delirium not induc alcohol or psychoact 73 (4.8) 40 (3.8)# 30 (7.4)

NOVEL I48 Atrial fibrillation flutter 522 (35.0) 327 (31.0)# 187 (45.9)*

NOVEL I67 Other cerebrovascular diseases 183 (12.0) 109 (10.3)# 73 (17.9)*

NOVEL J18 Pneumonia organism unspecified 100 (6.8) 55 (5.2)# 42 (10.3)*

NOVEL M15 19 Arthrosis 115 (7.8) 67 (6.4)# 46 (11.3)*

NOVEL M81 Osteoporosis without path fract 61 (4.1) 28 (2.7)# 32 (7.9)*

NOVEL R26 Abnormalities of gait and mobility 159 (11.0) 84 (8.0)# 75 (18.4)*

R296: Tendency to fall, not elsewhere classified 184 (12.0) 112 (10.6)# 71 (17.4)*

Procedures

NOVEL Computed tomography angiography cereb vessels 277 (19.0) 269 (25.5)* 1 (0.2)#

NOVEL Magnetic resonance angiography cereb vessels 27 (1.8) 25 (2.4)* 0#

NOVEL Magnetic resonance imaging head 115 (7.8) 90 (8.5) 21 (5.2)#

Numbers do not add up since small clusters were removed to safeguard participants’ privacy. *, positive odds ratio; #, negative odds ratio. 
OUH, Oxford University Hospital.

https://cdn.amegroups.cn/static/public/JMAI-22-42-Supplementary.pdf
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optimisation stage—feature curation). 
However, there are several drawbacks in using tree-based 

methods, chiefly among them are the inability to handle 
temporal data. In our example, all temporal feature data was 
aggregated before it was applied to the surrogate model. In 
future work, there is scope to develop surrogate models that 
can accommodate patient trajectories. This resulted partly in 
low accuracy values of the trained surrogate models and big 
difference between the pattern screening scores of the base 
and surrogate model for some cluster results (see Figure 7,  
experiment 26 k=3). However, if the study objective 
focuses, for instance, only on understanding which clinical 
parameters are relevant, there are several well-developed 
more advanced surrogate models , such as Ripper (41),  
Trepan (42), or RuleFit (43)—the details of which are 
beyond the scope of this study—which could result in an 
better overlap between base and surrogate model. 

It is worth noting that there is an inherent ‘cost of 
explainability’ when using surrogate models (27); a black 
box model may achieve a higher level of accuracy than a 
white box or surrogate white box model, but in the field 
of medicine and clinical research, explainability is valued 
highly, and it is practical to trade accuracy for explainability. 
This is not necessarily a problem, but it must be understood 
and considered throughout the model development and 
interpretation process. 

Of the optimisation steps discussed in this study, feature, 
cluster, and cohort curation undoubtably requires the most 
input from a domain expert. The creation of some novel 
features and the removal of others features can be intuitive 
in some cases for a clinical researcher and in other cases it 
is important to consider why irrelevant features may have 
been selected and what signal they represent from the 
data. An iterative approach to feature curation was used 
with different thresholds for combining and removing 
features to find a balance between searching for unbiased 
data driven insights versus ensuring clinical relevance of 
results. The choice of features to use is not trivial. On 
the one hand, it is critical to avoid confounding variables, 
which can cause an association to appear that doesn’t exist. 
Many times this happens when an important variable is not 
controlled for—sometimes called a forking confounder—
which distorts the association (44). This can be achieved 
by adding all the features and “regressing out confounding 
effects from each input variable” before model training, or 
they can be controlled post hoc (45). Yet there is a danger of 
blindly using every covariate available, which comes in the 
form of colliding confounders (46,47). A famous example 

of a colliding confounder is the obesity paradox in HF; in 
short, it has been found that patients stratified by mild to 
moderate obesity were associated with a decreased mortality 
risk (48). Unsurprisingly, there is little evidence to suggest 
obesity has any real protective properties with respect to 
cardiovascular outcomes, and in fact has a negative impact 
on patient survival. To handle these types of biases requires 
domain knowledge, and these examples highlight the need 
for careful feature selection. 

Curation is a somewhat subjective process. Based on 
training and experience, clinical researchers can identify 
meaning—or lack thereof—in EHR signals. This, for 
example, applies to the relevance of features for individual 
patients (e.g., discarding a laboratory assessment as not 
relevant for a specific patient), but also for definitions of a 
patient cohort. Such definitions should ideally be simple to 
apply and concentrate on medically meaningful concepts 
that relate to the condition or outcome of interest. These 
concepts are difficult to implement in an unbiased way and 
usually requires expert input. Our approach to curation 
at different levels of analysis (cohort, feature, and cluster) 
therefore aimed to make it easy to obtain this input from 
clinical experts by reducing definition criteria and make 
their meaning explicit.

Cohort curation has some overlap with data quality 
analysis and cleaning. Plainly, any spurious patient data 
should be omitted, e.g., male patients in a gestational 
diabetes cohort or female patients in a prostate cancer 
cohort. However, cohort curation should also ensure that 
the patients represent the target population. This implies 
that there should ideally be a balance between sexes (if not 
a sex dependent disease), as well as a distribution of patient 
ages that correspond to the target population. It is also 
important that underrepresented ethnicities are not lost. 
And in some cases, these populations should be enriched, 
especially if they represent an outsized burden for a disease 
area. In the context of clinical trials, this has been clearly 
outlined in a 2022 USA Food and Drug Administration 
(FDA) draft guidance for industry (49).

Conclusions

The primary objective of presented framework presented 
is to facilitate the identification of clinical meaningful 
subpopulations within a larger sample based on patient 
characteristics in their EHRs. The utility of defining patient 
clusters with clinically relevant features is underscored by 
the need to find suitable data driven clinical trial criteria. 
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A natural potential application of the methods outlined 
in this study would be to use an understanding of patient 
subgroups to guide selection for clinical trials, allowing 
for patients of different profiles to be recruited based on 
prior diagnoses, blood test results or medical procedures. 
Moreover, the subgroups produced by the clustering 
algorithm can support targeted recruitment of patients 
for clinical trials who are likely to be enriched with the 
desired outcome such as mortality, recurrence of disease or 
secondary conditions.

In addition to clinical trial optimisation, this scalable 
clinical interpretation approach can be applied to fundamental 
research of a disease area. By pin-pointing sub-phenotypes, 
we can better understand disease progression for a richer 
variety of patients. And in the future, with more widespread 
genomic and transcriptomic testing matched to full patient 
EHRs, we can drastically increase our understanding of 
disease and improve therapy selection (50,51).

We have shown in depth the strength of the framework 
through a use case and have highlighted the key techniques 
developed. However, we have found that there are several 
limitations inherent to the process, which include limits in 
the data itself, the use and misuse of the process. Despite 
recent advances, it is still common to find EHR datasets 
which are incomplete, with missing documentation for 
patients from general practitioners, imaging diagnostic, or 
surgeries. Furthermore, limitations may arise impacting 
longitudinal aspects, e.g., data only being available for a 
certain period making it unfeasible to observe both health, 
start, and advanced stages for many chronic diseases in the 
same patient. Moreover, the breadth and quality of the data 
will naturally affect the feasibility of the proposed scalable 
clinical interpretation models. 

Additionally, though more of a caveat than a limitation, 
we do not propose a replacement for human analysis, rather 
a method for optimised human-in-the-loop analysis. A 
corollary of this is the necessity of a domain expert to define 
the models and metrics. For example, our current approach 
uses a silhouette score that automatically determines 
the optimal number of meta cluster k. However, this 
formulation may not be well suited to answer any given 
clinical questions as it only considers the average width of a 
cluster and its distance to the nearest neighbouring cluster. 
Metrics such as these still require both clinical and technical 
expertise for this approach to be successful.

In summary, we have developed a framework to analysis 
patient stratification results at scale and presented example 
methods with to support the clinical evaluation process. 

Some of them emulate parts of an ‘intuitive’ approach a 
clinical researcher may choose to take when reviewing EHR 
analyses. These methods not only increase clinical meaning 
and facilitate throughput of the analyses, but they also 
provide a common language for data scientists and clinicians 
to support collaboration in an interactive approach. With 
this work, we hope to encourage the community to further 
investigate methods to facilitate clinical evaluation of EHR 
analysis and we expect the methods presented here, and future 
improvement based on this, to substantially increase learnings 
and help unlock the potential of real-world data in improving 
clinical practice and focusing drug development efforts.
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Appendix 1: Outcome definition

In a similar manner to the definition of mortality, the specific definitions of the outcomes: recurrence of stroke, bleeding 
events, and readmission for heart failure are provided.

Recurrence of stroke

Presence of repeat hospitalisation for ischaemic stroke (as defined below) following index hospitalisation for ischaemic stroke.
Admission to an inpatient unit or emergency department with any of the following primary ICD10 codes:
 I63* Cerebral infarction.

Excluding:
Any admissions with the admission code:
 81-Transfer of any admitted PATIENT from other Hospital Provider other than in an emergency (NHS Data 

Dictionary).

Bleeding events

Any of the following primary ICD10 codes:
 K25.0 Acute gastric ulcer with haemorrhage;
 K25.2 Acute gastric ulcer with both haemorrhage and perforation;
 K25.4 Chronic or unspecified gastric ulcer with hemorrhage;
 K25.6 Chronic or unspecified gastric ulcer with both hemorrhage and perforation;
 K26.0 Acute duodenal ulcer with hemorrhage;
 K26.2 Acute duodenal ulcer with both hemorrhage and perforation; 
 K26.4 Chronic or unspecified duodenal ulcer with hemorrhage;
 K26.6 Chronic or unspecified duodenal ulcer with both hemorrhage and perforation;
 K27.0 Acute peptic ulcer, site unspecified, with hemorrhage;
 K27.2 Acute peptic ulcer, site unspecified, with both hemorrhage and perforation;
 K27.4 Chronic or unspecified peptic ulcer, site unspecified, with hemorrhage;
 K27.6 Chronic or unspecified peptic ulcer, site unspecified, with both hemorrhage and perforation;
 K28.0 Acute gastrojejunal ulcer with hemorrhage;
 K28.2 Acute gastrojejunal ulcer with both hemorrhage and perforation;
 K28.4 Chronic or unspecified gastrojejunal ulcer with hemorrhage;
 K28.6 Chronic or unspecified gastrojejunal ulcer with both hemorrhage and perforation;
 K92.0 Hematemesis;
 I60* Subarachnoid hemorrhage;
 S06.6 Traumatic subarachnoid hemorrhage;
 I62.0 Nontraumatic subdural hemorrhage;
 S06.5 Traumatic subdural hemorrhage;
 I61* Intracerebral hemorrhage;
 I62.1 Nontraumatic extradural hemorrhage;
 I62.9 Nontraumatic intracranial hemorrhage, unspecified;
 K92.1 Melena;
 I85.0 Oesophageal varices with bleeding; 
 I98.3 Oesophageal varices with bleeding in diseases classified elsewhere. 

Supplementary



© AME Publishing Company. https://dx.doi.org/10.21037/jmai-22-42

OR
Administration of any of the following medications:
 Dried prothrombin complex; 
 Fresh frozen plasma;
 Idarucizumab;

OR
Administration of any of the following procedures (OPCS4):
 G20.1 Fibreoptic endoscopic coagulation of bleeding lesion of oesophagus;
 G46.2 Fibreoptic endoscopic coagulation of bleeding lesion of upper gastrointestinal tract;
 X33.2 Intravenous blood transfusion of packed cells.

Readmission for heart failure 

Inpatient admission or emergency department admissions 2+ days in length which meet the following criteria:
 A primary ICD10 code for HF defined as:

 I50* Heart failure;
 I11.0 Hypertensive heart disease with heart failure;
 I13.0 Hypertensive heart and renal disease with (congestive) heart failure;
 I13.2 Hypertensive heart and renal disease with both (congestive) heart failure and renal failure.

OR
 A secondary ICD10 code for HF as (defined above) AND IV Furosemide administered within admission or within 1 

day following admission 

Excluding
 Any admission that is less than 48 hours during which one of the following procedures is performed:  

 Cardioverter defibrillator introduced through the vein (OPCS-4: K59*);
 Other cardiac defibrillator (OPCS-4: K72*);
 Cardiac pacemaker system introduced through vein (OPCS-4: K60*);
 Other cardiac pacemaker system (OPCS-4: K61*); 
 Other cardiac pacemaker system introduced through vein (OPCS-4: K73*); 
 Cardiac pacemaker system (OPCS-4: K74*).
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Appendix 2: Novel feature definitions

The specific novel feature definitions that are discussed in this paper are provided here. Each line is connected by an ‘AND’ 
or ‘OR’ statement, which can be further connected by an indentation of the same logic.

Computed tomography angiography of cerebral vessels

U212: Computed tomography NEC

AND

(

Z342: Aortic arch

OR

Z35: Cerebral artery OR Z361: Carotid artery NEC

)

Speech disturbances not elsewhere specified

All R47 subcodes combined

Rehabilitation

Z501: Other physical therapy
OR
Z505: Speech therapy
OR
Z507: Occupational therapy and vocational rehabilitation, not elsewhere classified

Hemiplegia

All G81 subcodes combined.

Magnetic resonance angiography of cerebral vessels

U211: Magnetic resonance imaging NEC

AND

(

Z342: Aortic arch

OR

Z35: Cerebral artery OR Z361: Carotid artery NEC

)
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Appendix 3: Example of poor performance of meta clustering (Figure S1)

Experiment C, Oxford University Hospital (OUH) Stroke with k=5 is an example of a meta clustering analysis that did not 
perform well. In contrast to the example in Figure 6 where we see good separation with distinct blocks of patients in the 
dendrogram, there is no clear consensus of which clustering the patients should belong. Note that the Kaplan Meier and Cox 
plots are provided purely for illustrative purposes, meta clustering does not optimise the separation of outcomes.

Figure S1 Experiment C, an example of poor performance of meta clustering (left) with a dendrogram heatmap and (right) survival analysis. 
Here the patient groups do not show significantly different outcomes.


