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Background: Glaucoma is a group of chronic diseases that cause progressive damage to the optic nerve, 
resulting in irreversible and potentially debilitating visual loss. A unified, comprehensive and quantitative 
decision-making methodology is necessary to support clinicians and patients when conducting effective 
computer-aided glaucoma clinical diagnosis, monitoring, treatment and quality of life (QoL) assessment.
Methods: We set out the functional requirements for a patient-centric computerized glaucoma treatment and 
care ecosystem with a 5- to 20-year time horizon. We evaluate three approaches used for glaucoma diagnosis, 
treatment and establishment of QoL targets: firstly, the Biomedical Model based on biophysical testing; secondly, 
conventional QoL assessment approach based on various patient-reported outcome (PRO) questionnaires; and 
thirdly, Outcomes models to evaluate healthcare based on analysis of Quality Adjusted Life Years (QALYs). 
Results: We identify many critical issues related to handling and analysis of glaucoma patient health 
data (technical, regulatory, security and privacy), as well as those related to the assessment of biological, 
psychological, and socioeconomic wellbeing, risk management, the ability to live independently, with 
adaptation to different cultures, languages and local healthcare delivery patterns. We address health planners, 
glaucoma research bodies and healthtech investors. We propose a blueprint for computerized actions 
required to improve treatment outcomes and to reduce costs while simultaneously providing individualized 
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Introduction

We outline functional requirements for a glaucoma medical 
treatment and quality of life (QoL) digital healthcare 
ecosystem using artificial intelligence (AI). Digital business 
ecosystems are critical platforms to attain sustainable 
benefits for participants and stakeholders. Management, 
innovation, knowledge and technology ecosystems are large, 
complex, closely interconnected global business networks of 
complementary computerized organizations and consumers, 
which produce and support specialized products and services.

The principal goal of sustainable healthcare ecosystems 
is to raise the quality of health outcomes and to solve 
unmet needs—by improving the efficiency of healthcare 
services, the effectiveness of resource usage, and patient 
satisfaction (1-3). An ecosystem’s stakeholders jointly create 
outputs that recognize goals and enhance activities of 
individual participants, influencing behaviors of partners, 
competitors and customers. The operational dynamics of 
ecosystems have strategic implications for practitioners, 
platform managers, technology architects, policymakers, 
entrepreneurs and clients (4-10). The concept of ecosystems 
has been applied productively to digital healthcare (11-17).

An effective glaucoma healthcare ecosystem must follow 
and support numerous individual patients, each for many 
years. It should assist health professionals to improve 
glaucoma diagnosis, to optimize effectiveness of each 
individual’s treatment while reducing possible side effects, 
and it should facilitate productive lives for patients and their 
families. Detection and management of comorbidities must 
be included, all in the framework of optimal use of limited 
financial resources on a population basis.

The coronavirus disease 2019 (COVID-19) pandemic 
has highlighted current healthcare structural deficiencies 
and the need for cost-effective, standardized protocols to 

manage glaucoma and ocular hypertension. It has increased 
interest from payers for effective remote monitoring and 
management.

Glaucoma is a group of chronic diseases that cause 
progressive damage to the optic nerve, resulting in 
irreversible and potentially debilitating visual loss. Gradual 
changes in midperipheral vision often delay patient 
awareness of disease until significant damage has occurred. 
While for most patients, visual loss can be slowed or halted, 
early detection is key to avoid disability. Reduction of 
intraocular pressure (IOP) is the major modifiable treatment 
strategy to slow progressive glaucomatous damage. Effective 
glaucoma management identifies the disease early, with 
lifelong IOP-lowering and monitoring (18-20).

The Global Burden of Disease Study 2017 (21) identified 
visual impairment as one of the top three principal causes 
of years of life lived with disabilities. The World Health 
Organization (WHO) estimated that worldwide more than 
2 billion individuals have some type of visual impairment, 
at least half of them preventable (22). Because vision is a 
dominant sense throughout life, visual disability greatly 
impacts individuals. The socioeconomic effects of direct 
medical, non-medical and various indirect costs impact 
employment, QoL and care needs of those visually disabled, 
their families, caregivers, health systems and society (22-24).

We suggest a 5- to 20-year time horizon to develop 
and implement a smart glaucoma healthcare ecosystem. 
To do so, we evaluate three approaches used for glaucoma 
diagnosis, treatment and establishment of QoL targets—
firstly, the Biomedical model based on biophysical testing; 
secondly, conventional QoL assessment approach based on 
various patient-reported outcome (PRO) questionnaires; and 
thirdly, Outcomes models to evaluate healthcare based on 
analysis of Quality Adjusted Life Years (QALYs). Effective 
computer-aided glaucoma clinical diagnosis, monitoring, 

support to millions of glaucoma patients globally.
Conclusions: Such patient-centric methodology must be based on interdisciplinary integration and 
mutual assistance from these three complementary approaches, as well as on their ongoing simultaneous 
improvements. To implement an effective healthcare decision support platform globally, all these challenges 
must be resolved. All this can be achieved in a consistent, cost-effective, high-quality manner.
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treatment and QoL assessment can only be achieved with 
a unified, comprehensive and quantitative decision-making 
methodology. Such patient-centric methodology must be 
based on interdisciplinary integration and mutual assistance 
from these three complementary approaches, as well as 
their substantial, simultaneous and ongoing improvements.

We identify many critical issues related to handling 
and analysis of glaucoma patient health data (technical, 
regulatory, security and privacy), as well as those related 
to the assessment of biological, psychological, and 
socioeconomic wellbeing, risk management, the ability to 
live independently, with adaptation to cultural and language 
differences and local healthcare delivery patterns. To 
implement an effective healthcare decision support platform 
globally, all these challenges must be resolved.

We address health planners, glaucoma research bodies 
and healthtech investors. We propose a blueprint for 
computerized actions required to improve treatment and to 
support millions of glaucoma patients all over the world, in 
a consistent, cost-effective, high-quality manner.

The need for a new glaucoma healthcare ecosystem

Conventional glaucoma management is based on IOP-
reduction with intermittent monitoring of damage 
endpoints, such as visual field sensitivities and optic nerve 
head changes. Treatment and diagnostic methods have 
become entrenched. New medications and microsurgeries 
are sometimes less effective, even though they might have 
increased safety profiles (25-30).

Current treatment strategies often rely on topical IOP-
lowering drops, despite demonstrated poor adherence 
and perseverance, with little likelihood for improvement 
even with patient education. Such suboptimal treatment 
strategies compound the challenges posed by the very high 
proportion of the global glaucoma population undiagnosed 
both in developed and developing countries. According to 
the latest data, in North America, 62% of glaucoma cases 
are undiagnosed, in Europe, 68%, in Asia, 84%, and in 
Africa, 94%; these patients are not being treated to prevent 
irreversible blindness (31). This has immediate consequences, 
as disease progression undermines QoL (32-56).

The novel field of healthcare ecosystems is being built 
on the boundary of several well-established professional 
practices, among which the most prominent and sizable 
are medicine and IT-System Integration (SI). The global 
healthcare services market size is expected to grow from 
$6.87 trillion in 2021 to $10.41 trillion in 2026, at a 

compound annual growth rate (CAGR) of 8–10% (57). 
Revenue in the IT Services market is projected to grow from 
$1.1 trillion in 2022 to $1.6 trillion by 2027 with a CAGR of 
7% (58), of which AI is among the fastest growing segments 
that promise to domineer IT services within 10 years,  
valued at $60 billion in 2021, reaching $422 billion by 2028 
with CAGR of 39% (59).

To date, the success rate of mid-size to large IT-SI and 
AI healthcare projects has been modest for valid objective 
and subjective reasons, whose analysis lies outside the scope 
of our paper (60-66). Success rates for IT-SI and AI projects 
in other large-scale industrial segments, like financial 
or government, are not better than that of healthcare. 
According to Standish Group’s Annual CHAOS report 
based on analysis of 50,000 projects globally and supported 
by many industry sources, 66% of technology projects end 
in partial or total failure (67,68).

Large software development projects are conceptually 
risky, with the majority fail ing to deliver desired 
outcomes. The main goal of the Functional Requirements 
Specifications (FRS) is to balance the needs of stakeholders 
to manage such existential risks. Being on the boundary of 
several disciplines, patient-centric computerized glaucoma 
treatment and care ecosystems necessitate effort by all 
stakeholders to understand the critical challenges to its 
successful development that lie outside of their comfort 
knowledge zone. The main challenges in fusing medical and 
IT-SI/AI approaches while obtaining tangible results are to 
build mutual trust and understanding between two different 
professional disciplines, each with its well-established 
terminology, ontology, classifications and expectations for 
project outcomes.

As in other industrial sectors, every IT-SI and AI 
healthcare project usually starts with the development of 
FRS, to formalize outcome agreements between project 
stakeholders. Each year a vast number of requirement 
specifications have been produced by software developers 
globally. Large SI projects failure is usually due to 
shortcomings in these critical documents, mostly from a 
bias in several SIs that dominate this industrial segment, 
as well as limited input from their clients in FRS creation  
(69-71).

We hope to start a pre-competitive strategically 
successful requirement-gathering process that will 
develop a more formal FRS for an effective, efficient, 
integrated patient-centric glaucoma healthcare ecosystem. 
Requirements for an effective software platform are listed 
in Table 1. Addressing these requirements will identify our 
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project’s scope, cost and chance of success.
A critical document, FRS quantifies for stakeholders 

system implementation, delineates the character and 
accuracy of assumptions and constraints, benefits and 
sustainability, and outlines how to control risks to enhance 
deployment and operations. This ‘evergreen’ (78) document 
would need to crystallize broad agreement between clients 
and developers, supported by health innovation, medical 
and regulatory communities in many countries, on how 
to implement, continuously to improve and to extend a 
glaucoma holistic ecosystem. While FRS provides a sound 
basis for the project, it does not circumscribe how the 
healthcare ecosystem should be implemented, nor constrain 
its developers to any specific design or technology.

As this approach requires substantial development 
outside existing health support and biomedical research 
structures, with regulatory approvals in many countries, the 
FRS needs to crystallize broad agreement with support from 
the health innovation community for a new patient-focused 
glaucoma diagnosis, treatment and holistic interaction 
healthcare ecosystem. While innovation is inherently risky, 
if seen as a large digital platform and an AI methodology-
development exercise, it could provide clinicians embracing 
this new healthcare ecosystem flexibility and freedom 
to question established dogmas. In the post-COVID-19 
healthcare services and socioeconomic environment there 
would seem to be no viable alternative to such a radical 
change.

Glaucoma patients’ requirements for a computerized 
healthcare ecosystem

Glaucoma is a group of chronic neurodegenerative diseases, 
mostly affecting the older population. Most glaucoma 

patients are above 40 years old (79-81) while prevalence 
increases considerably after age 60; with the aging 
population worldwide, it is expected to continue to increase. 
The glaucomas are the second most common cause of 
blindness worldwide: in 2020 there were 79.6 million 
individuals globally with glaucoma, estimated to increase to 
111.8 million in 2040, of whom 13% will become bilaterally 
blind (82).

With medical treatment, the mean time between the 
appearance of the first visual changes and blindness might 
be 30–40 years for younger patients (80). However, there 
is considerable variability, as some individuals worsen in 
just a few years (83-85). Monitoring and treatment services 
provided to individuals with glaucoma before they reach 
advanced stages of this disease are important to prevent 
irreversible blindness. When the considerable negative 
impact of blindness on individuals, their families and 
communities is taken into account, ongoing monitoring 
and treatment are cost-effective (86), providing they are 
supported by a potent, consistently efficient healthcare 
ecosystem.

Recently, there has been an acceleration in the use of 
telemedicine to deliver healthcare. Remote healthcare 
services improve access, decrease costs, are convenient for 
patients (especially those less mobile or living distantly), and 
also improve patient satisfaction (87). Over 70% of patients 
preferred virtual visits if given a choice (88). Direct-to-
patient (DTP) care delivery is one of the most effective, 
safest and popular forms of telehealth. It has the potential 
to provide interactions with patients that are not currently 
accessing healthcare regularly; it can be successfully 
implemented in ways that limit costs and improve care. 
The remote ordering and automated delivery by the DTP 
drug supply chain allow patients to access medications 

Table 1 Typical input requirements for a sustainable healthcare ecosystem platform (72-77)

Description of services that the software must offer

Demonstration of the platform’s added value and economic benefits to its principal stakeholders (critical for evaluation of any ecosystem’s 
sustainability)

Applicable regulatory frameworks (functional, socioeconomic, security, privacy)

Required properties of inputs and outputs

Features, functions and components of the system and its subsystems needed to satisfy its numerous users

Work and data flows

System’s behavior in real life, including critical user interfaces

Risk profiles
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without going to the clinic or pharmacy in person. This 
is essential to protect patients during epidemics (89). For 
example, centralized procurement of IOP-lowering drugs 
can decrease each patient’s cost, which improves medication 
adherence (90-97).

Teleophthalmology might not be suited yet for a detailed 
examination of vision, intraocular structures and surgery (98),  
although evolving new technologies are moving in this 
direction in all medical disciplines. Safadi et al. (99) 
recommend that teleglaucoma should be used to follow 
up routine cases with instructions about treatment. As 
contemporary office-based measurements are already 
insufficient to discover diurnal pressure changes and 
spikes, as well as to demonstrate effects of medications 
and adherence, patient-directed self-tonometry could be 
performed throughout the day, becoming an important part 
of the delivery of care to glaucoma patients (99). As periodic 
measurements of central and peripheral vision are critical 
in glaucoma management, telehealth methods of peripheral 
and central vision assessment, as well as integrated clinical 
systems to store, monitor and analyze changes in vision over 
time, need to be further developed and implemented (100).  
Although challenging, telehealth methods need to 
incorporate equivalents to structural tests such as optical 
coherence tomography (OCT) and disc photos, as well as 
gonioscopy. Such demanding tests could also be effectively 
and cost-efficiently accommodated in specialized local 
glaucoma testing centers.

Introduction of a glaucoma medical treatment and 
QoL digital ecosystem and wide use of new telehealth 
practices requires retraining and redeployment of clinical 
staff for new tasks. It needs creative rethinking on how 
best to examine patients and to support their ongoing 
treatment, health and comfort decisions. Testing of IOP 
and visual field, and examining optic nerve head changes 
are particularly challenging—without them, it is difficult to 
assess glaucomatous progression, which drives clinicians to 
make treatment decisions.

Such a radical and rapid realignment of glaucoma 
treatment services is impossible to achieve just by 
improving the status quo, however significantly. It requires 
pragmatic digitization of the whole glaucoma care process, 
changes in financing and administration, and necessitates 
proactive involvement of  patients .  The AI‑based 
methodological approach described in this article could 
result in the implementation of an effective, efficient and 
optimized platform in support of the required fundamental 
changes that are needed in glaucoma testing, treatment and 

patient support.

Demand for personalized care

Neurodegenerat ive  processes  are  mul t i f ac tor ia l 
(environmental and genetic), driven by stressor accumulation 
and failure of biologic resiliency. They might be sporadic or 
rapid, appearing as random and unique for each patient.

All neurodegenerative diseases are complex, with 
significant and increasing impact on patients. Lack of 
curative therapies notwithstanding (101,102), many 
glaucoma patients can save their vision with appropriate 
IOP reduction. Successful glaucoma patients’ treatment 
and support require personalized care with individualized 
therapeutic targets to safeguard their QoL.

Biomedical testing targets for glaucoma patients must 
be individualized based on factors like glaucoma type, 
its course, severity at diagnosis, life expectancy, risks to 
vision, as well as risks and benefits of various treatment 
strategies (33,44,81,103,104). For a patient with an 
incurable condition, long-term treatment priorities and risk 
profiles are different from those with an acute disease, as 
the clinician cannot base management just on biomedical 
testing results. Targets need to account for each individual’s 
essential QoL, socioeconomic situation and personalized 
visual needs, along with limited societal financial resources 
and long-term risks.

Overly aggressive treatment targets might lead to 
overtreatment with more side effects and waste of resources, 
while insufficient targets risk undertreatment with visual 
loss. Hence the need for a precise treatment and ongoing 
support balance for each individual (105). As glaucoma 
progresses and/or an individual’s circumstances change, 
testing, treatment and QoL targets need to be revised 
jointly by the clinician with the patient. Flexibility is vital.

Need for AI in glaucoma diagnosis, monitoring and 
treatment

A personalized glaucoma diagnosis and treatment ecosystem 
is complex, with many dynamic functions and variables. 
Effective global implementation is only possible with a 
powerful computerized AI-based decision-making system 
that acknowledges glaucoma’s chronicity, maximizes the 
therapeutic ratio (effectiveness versus costs), and focuses on 
patient QoL rather than the disease alone. Such a healthcare 
ecosystem will need to adapt to different languages, cultures 
and healthcare systems. Exponential data accumulation 
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and the limits to human cognition make an AI system 
indispensable (106-108) (see section “Economic foundations of 
a glaucoma healthcare ecosystem”).

Only computerization of this ecosystem enables long-
term personalized medical treatment and ongoing QoL 
support. AI systems have high implementation costs, 
substantial scaling challenges and potentially lower 
solution accuracy. They overparameterize small datasets 
and/or produce fragile models that degrade rapidly at 
the in-field deployment phase. AI algorithms rapidly age 
in operation and maintenance; they must be constantly 
updated (109-111).

Cloud computing networks have the processing capacity 
to handle complex methodological approaches, algorithmic 
or AI, as long as they are logical, quantifiable and well 
formalized. They will likely be able to support this immense 
computational challenge.

Compared with the current human expert-driven 
approach, effective computerization requires a far more 
systematic and analytic patient treatment methodology. 
Clinicians are fallible and inconsistent: medical diagnosis 
and treatment require simultaneous consideration of 
multiple interlocking factors, often in a busy clinical 
environment with numerous stressors. Such complex 
decisions can be oversimplified, with many aspects of 
patient care overlooked. A coherent methodological 
approach to treat chronic glaucoma patients should be 
able to provide a viable foundation to digitize this complex 
and interconnected workflow of biomedical testing, 
patient treatment and QoL assessment. Such a massive 
algorithmic problem will need new computational and AI 
approaches.

The need for a coherent workflow-based methodology

To resolve this contradiction, a coherent workflow-based 
methodology charted with the proactive participation and 
biomedical guidance of leading glaucoma academic and 
clinical experts would greatly facilitate development of 
a patient-centric diagnosis, medical treatment and QoL 
healthcare ecosystem supported by AI. Such methodology 
should also be capable of being dynamically updated by 
computers based on new knowledge, as well as on feedback 
from clinical experts and patients collected by the smart 
system itself; all while it functions and continues to evolve. 
Hopefully, the system would be capable to preserve and 
build on the experience and legacy of the retiring baby-
boomer generation of clinicians and health experts by 

facilitating their knowledge transfer to younger specialists.
We do not believe that such medical treatment and 

QoL support system should replace clinicians, as some AI 
software developers might claim (106,107,112-114). We 
envision it to support human glaucoma experts, mainly 
physicians but perhaps also an optometrist or a clinician 
assistant, especially in developing countries, where there 
are not enough clinical ophthalmologists. Regrettably, 
under the current socioeconomic conditions, badly needed 
glaucoma experts are even less likely to appear soon enough 
for numerous patients that require qualified help. It is very 
costly and takes many years to educate a glaucoma specialist 
(115-117). Regrettably, the training of new glaucoma 
clinicians is not matching the swift increase in glaucoma 
patients worldwide; especially in already underserved 
developing countries (118-122).

Balancing stakeholder needs

In defining a comprehensive AI glaucoma medical treatment 
and QoL ecosystem, we aim to balance the objectives 
of the three most important treatment participants and 
stakeholders—physicians, patients and health services.

Physicians’ and other health practitioners’ principal 
goal is an effective diagnosis and less risky course of 
treatment for patients with various types of glaucomas, at 
various stages of progression of their chronic disease. An 
efficient glaucoma healthcare ecosystem must help health 
practitioners in their step-by-step dealing with very complex 
sets of various glaucomas, their ever-changing testing and 
treatments using brand and generic medications, surgeries 
and implants; and with the exponentially increasing 
specialized academic and clinical information flow. The 
healthcare ecosystem should address a significant shortage 
of clinical glaucoma experts, especially in the developing 
countries but also in the developed economies; also 
dealing with the increasing devolution of clinical glaucoma 
treatment to optometrists, i.e., in Africa, the Caribbean 
region, Canada. The system should ideally detect visual and 
ophthalmic comorbidities that develop while the patient 
is being monitored; be sufficiently sensitive and specific to 
detect glaucoma at initial assessment and for subsequent 
glaucoma progression over a long period (30–40 years); and 
be conveyed intuitively and clearly.

Patients mostly rely on their physicians to guide them 
in managing their treatment based on very complex and 
ever‑changing biomedical information that even many MDs 
could not always fully decipher and entirely comprehend. 
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Many patients, when informed by their clinician at the 
outset of their diagnosis on the impact of glaucoma, are 
frightened about a possible loss of their vision; however, 
their early motivation to manage daily adherence to IOP 
self-treatment often allays their concerns. In the absence 
of a practical ability to control treatment outcomes and 
of the credible information on likely risks for possible 
treatment strategies, most patients largely aim to maintain 
their long-term QoL. QoL is by far the main factor that 
patients want to address, especially as it typically concerns 
not just them personally but also their families and other 
personal contacts and business colleagues. By formulating 
precise questionnaires based on the unique circumstances 
of each patient, the integrated patient‑centric glaucoma 
healthcare ecosystem should address the medical and QoL 
requirements of mostly elderly chronic glaucoma patients, 
concerns of their families and primary caregivers, while 
taking into account potential conflicts and side effects 
of treating other chronic diseases that they might have. 
Based on the patient’s situation, personal choices and likely 
risk profile, it should be able to generate individualized 
forecasts of disease progression and provide a trustworthy 
“second opinion”. It could be especially valuable in times of 
important and stressful decisions, such as consenting to eye 
surgery.

The Health system’s objective is to maintain patients’ 
health and QoL, to prevent visual disability for the 
individual, with all associated direct and indirect costs for 
the family and society while also keeping in check expensive 
treatment options and further expanding costs of long-term 
chronic treatment.

This paper identifies the principal biomedical, QoL 
and health status outcome requirements necessary for 
development of a patient‑centric integrated ecosystem.

Key points

(I)	 We outline functional requirements and principal 
elements of the underlying methodology for a 
patient‑centric computerized glaucoma diagnosis, 
medical treatment and QoL ecosystem as a platform 
to attain sustainable benefits for glaucoma patients 
and other stakeholders. We aim to balance the needs 
of physicians, patients and health services.

(II)	 With exponential data accumulation and human 
limitations to make healthcare decisions, the use of 
AI systems is vital.

(III)	 To be effective and global, the AI-based approach 

requires substantial development efforts beyond the 
capabilities of existing health support and biomedical 
research structures. For a glaucoma treatment, this 
would optimize effectiveness with incurred costs, 
while maintaining focus on the biomedical status of 
this chronic disease and the patient’s QoL.

(IV)	 To minimize visual deterioration, to support patients 
holistically and to maximize their QoL, treatment 
targets need to be individualized. This arises from 
joint physician-patient development of a personalized 
management plan. Such a dynamic, multi-faceted 
challenge needs a digitized AI-based ecosystem.

(V)	 It is necessary to utilize global cloud-computing 
process ing capacity  to handle the mult iple 
complexities of the proposed platform. A coherent 
methodology would underpin all development and 
operating processes.

Methods

Approaches to medical treatment, to long-term care and to 
optimizing QoL for glaucoma patients are fragmented and 
sporadic worldwide but especially in the developing world. 
It is further aggravated by the shortage of qualified health 
and support specialists, along with overworked expert 
ophthalmologists, reduced funding of health and social 
support systems, devolution of treatment to optometrists, 
inconsistencies in medical treatment and substantial 
increases in patients’ misdiagnosis and overtreatment. 
Implementation of an overarching management structure is 
increasingly crucial (33,39,45,53,54,56,104,123-129).

Methodological foundation for a new computerized 
approach

The more glaucoma affects a patient, the more significant 
impact it has on this patient’s QoL and daily functioning 
(130-135). However, unlike the medical care (that in 
developed countries is usually covered by public or private 
insurance), QoL needs of patients in all countries are rarely 
addressed by their physicians, other health professionals 
or social workers. Considerable QoL costs encountered by 
patients are not typically funded by government budgets. 
While many patients live for 30–40 years with deteriorating 
vision, often with other chronic diseases, the effect of 
glaucoma on patients’ work, driving, family involvement 
and their psychological state is neither monitored nor 
managed.
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A perfunctory reproduction of the existing body of 
biomedical and QoL knowledge and clinical practice would 
be insufficient to develop an effective methodological 
foundation for a new computerized approach that covers 
the patient’s medical treatment and QoL care. However, 
it would be unproductive to dismiss a large body of 
objective historical knowledge in research publications and 
human practice. An effective and powerful methodology 
for developing a patient‑centric computerized glaucoma 
diagnosis, medical treatment and QoL ecosystem should 
combine both legacy scientific and clinical information with 
the new knowledge especially formulated and developed for 
digital applications.

Incorporation of the legacy scientific and clinical 
information is a critical challenge to develop any medical, 
financial, or general science AI platform. This problem 
is exacerbated by the exponentially shrinking half-life of 
medical knowledge (currently measured in weeks, and 
soon in days or even hours), with most legacy information 
becoming rapidly obsolete (136-139). Obsolete knowledge 
cannot be used to train AI systems, yet valuable older 
scientific information and clinical ‘know-how’ must be 
included. This mammoth task requires development of 
specialized AI systems that could contain the signal-to-
noise ratio of peta-, exa- or even zettabyte knowledge 
banks within ‘reasonable’ limits for human comprehension. 
Such a goal is beyond human abilities or even current 
supercomputers. Although no such AI systems are being 
currently commercially developed, the need for them is 
self-apparent; they will possibly be researched as a part 
of quantum computing, along with other challenges that 
future developments of FRS should expose. It reinforces the 
necessity to plan ahead for complex ecosystem platforms 
as covered in our article. Because such specialized AI 
systems have to be built to manage all aspects of innovative 
knowledge, the principles of their development fall outside 
of our scope.

Many patients would like to have a rolling 5–10 years 
forecast of their ability to work, drive a car, their need for 
personal care and the likelihood of major surgeries. Such a 
forecast should be based on biomedical testing results, actual 
data on the patient’s adherence to management and other 
objective and subjective criteria, personal circumstances and 
priorities. This forecast would also be helpful for clinicians 
to guide glaucoma management decisions.

Glaucoma patients often have to plan their finances 
and allocate required resources ahead of their treatments, 
to sustain their QoL needs. Barring some unforeseen 

sudden deterioration of a patient’s vision, a well‑organized 
computerized medical treatment and QoL support 
healthcare ecosystem should be able to produce and 
periodically update personalized mid‑ and long‑term 
forecasts useful to patients and their health practitioners. 
To ensure appropriate health and social cost coverage 
along with necessary treatment and support resources, 
government budget authorities and private insurers must 
also accurately estimate such needs.

Currently, this is all but a pipe-dream, as glaucoma 
patients usually see their ophthalmologists briefly 2–4 times 
a year; even if a clinician attempts to predict a patient’s 
visual deterioration, there are no resources for them to 
derive dependable QoL forecasts. As they don’t have either 
time or knowledge on how to tackle patient’s QoL issues, 
it is not routinely addressed. Health systems, social services 
and insurers do not possess the required reliable treatment 
and QoL data either.

Therefore, to ensure the effectiveness and efficiency of 
their treatment and QoL support, smart computerization of 
the overall system to deal with glaucoma patients is all but 
inevitable. To be effective and efficient, it must be built on 
a new and solid methodological foundation that is focused 
on treating and supporting individual patients over an 
extended period, rather than just treating the symptoms of 
this debilitating and incurable disease; which is a far more 
complex digitization and decision analytic challenge.

Achieving patient-centric computerized glaucoma 
treatment and support

Guided by clinical, QoL and health system experts, an AI-
enabled glaucoma diagnosis and treatment ecosystem could 
save its participants valuable time and resources, ensuring its 
viability, caring character and cost-effectiveness. However, 
in the last several years, there has been observed a huge gap 
between the AI research and AI implementation, with most 
media announcements ‘being illusory’ and only one in ten 
AI companies achieving actual traction in any meaningful 
way (112,140-142).

Numerous systematic examinations of the design, 
reporting standards, risk of bias and claims of various 
AI medical studies have consistently found under-
specification; poor standards of reporting; missing critical 
data; lack of external validation by testing numerous real-
world datasets collected from other institutions that well 
represent all target demographics and disease states; and 
lack of transparency that prevents the clinical community 
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from determining their reproducibility and deviations 
from existing reporting standards. Limited availability of 
code and the use of obscure retrospective datasets with 
embedded biases or misrepresented data; a small sample 
size of clinicians to assess AI algorithmic performance; and 
overhyped, profit-driven, and not always in patients’ best 
interest conclusions of many such reports could result in 
serious diagnostic or predictive inaccuracy (143-148).

With the help of Moore’s law, conventional programming 
algorithms could be scaled up by the use of faster computer 
systems and more proficient software languages. For some 
objective and subjective reasons that are being currently 
explored, this is not necessarily the case when developing AI 
platforms (109,110,149). Even though currently the speed 
of AI computation doubles every three months outpacing 
Moore’s Law (150), some technology observers believe that 
it is just a short-term fluke; i.e., see (151,152).

In the last 20 years, publications on AI feasibility in 
healthcare have grown exponentially, reaching 9 thousand 
academic articles in 2019. However, only a tiny proportion 
of them has been devoted to actual clinical deployment, with 
independently verified success stories at the operational/
maintenance phase all but lacking (111).

In the multifaceted clinical environment, AI systems, 
however powerful, could not possibly consider the many 
subtle and ambiguous but critical situational factors. Nor 
could they take into account all unwritten social norms and 
values that humans usually adhere to. This might result in 
dangerous unintended consequences. Hence, the bottom 
line is that the key assumption of every buyer of a medical 
system, which includes AI components, should always be 
that unless proven otherwise theoretically or experimentally, 
no AI proof-of-concept model could be safely and timely 
scaled up and validated for deployment to regulated clinical 
practice systems.

According to Kelly et al. (142), key challenges for the 
translation of lab AI systems to healthcare practice include 
those intrinsic to the science of machine learning, logistical 
difficulties in implementation, and consideration of the 
barriers to adoption, as well as sociocultural or pathway 
changes. Thus, Huang et al. (112) have attributed the failure 
of most commercial AI systems in clinical settings to such 
systems not taking into account the complete diagnosis, 
as being too complex to process. Instead, their developers 
usually focus on one or two specific subtasks that their 
preferred AI engines could competently handle.

Faggella et al. (140) notice the lack of explainability of 
AI medical diagnosis. Kelly et al. (142) state that the vast 

majority of AI studies have been retrospective, i.e., they use 
historically labeled data to train and test various proof-of-
concept algorithms. In contrast, as the retrospective analysis 
performance is likely to be weakened when encountering 
real-world data, only the use of prospective studies could 
address the challenge of successfully translating AI results 
to clinical practice. Prospective studies, in which patients 
are typically followed for many years, better represent the 
clinical paradigm; however, good prospective health studies 
are decidedly rare and expensive to conduct. 

Recognizing these intricate challenges, various guidelines 
address some of the problems of introducing AI to medical 
practice—such as preselected retrospective datasets, clean 
and well-annotated, with small sample sizes and high signal-
to-noise ratios. Such constraints are required for a rapid and 
effective AI model training and validation step that usually 
looks good in the laboratory as a coveted ‘proof-of-concept’. 
Lab datasets might characterize the disease, but usually 
poorly represent clinical conditions, administrative matters, 
the overall state of a patient’s health and QoL and possible 
societal impacts (153). Often they lack adequate reporting 
and are ambiguous.

To address critically important scalability, SPIRIT-AI and 
CONSORT-AI, are two comprehensive guidelines recently 
published by an international multi-stakeholder group 
to ensure quality of clinical trials for AI health solutions 
(154,155). Another proposed quality standard, MINIMAR 
(MINimum Information for Medical AI Reporting), 
describes the minimum information necessary to understand 
intended predictions, target populations, hidden biases and 
the ability to generalize emerging AI technologies (148). 
Oakden-Rayner and Palmer have proposed the use of 
summary receiver operating characteristic curve analysis, a 
technique commonly used in the meta-analysis of diagnostic 
test accuracy studies, as a methodologically robust method 
to compare human performance against AI models in 
medical studies (156).

The US Food and Drug Administration (FDA) is 
advancing a regulatory framework to develop safe and 
effective medical devices that take into account the iterative 
nature of AI learning algorithms. This new regulation 
(157,158) should allow medical software to improve its 
performance using real-world AI algorithm learning while 
ensuring that changes meet the FDA standards for safety 
and effectiveness throughout the product’s lifecycle.

Real-life patient registration and care datasets that 
cover in‑field and operational/maintenance phases are 
typically patient-centric rather than focused just on the 
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disease itself. They are coarse, with a low signal-to-noise 
ratio for information on a particular disease or sub-diseases 
that might be useful to AI model processing; they degrade 
rapidly and must be constantly updated, which might cause 
misidentification of unrelated processes if their probability 
scores are higher than for the disease of primary interest. 
This is yet another argument for the need for explainability 
of AI medical diagnosis (111).

Currently we don’t have a clearly defined gold standard 
to determine the presence and severity of glaucoma, which 
undermines the training of AI algorithms (159). Significant 
improvements in AI performance require substantive 
advances in diagnostic methodologies, more robust and 
clinically objective definitions of the disease, and improved 
methods to extract knowledge from learned results.

Health system databases have been set up for reasons 
other than training AI algorithms. In addition to managing 
patient history of diseases, admissions, family situations, 
insurance coverage and the like, their secondary function 
has been to help insurers pool epidemiological data, support 
actuarial predictions and reveal broad socioeconomic and 
geographical patterns of disease with incurred health costs. 
These secondary functions often do not work well for 
critical non-AI applications either. It would be problematic 
to utilize these existing bulky patient health data sets, with 
all their errors and biases, for a subtle and complex process 
of in‑field and operational/maintenance phase training AI 
algorithms (160).

To achieve our goals, we need new comprehensive ‘end-
to-end’ methods to ensure that when collecting new data 
required to support AI training at in‑field and operational/
maintenance phases, or when using data from existing 
data banks, their structural integrity and significance to 
patient’s health and QoL have been preserved. We also 
require broad development of large data infrastructure 
to create sustainable change (111,160), as simply adding 
AI applications to a fragmented system would likely fail. 
While cost implications are significant, there is no viable 
alternative.

Health system databases are fragmented among medical 
clinics, hospitals, health establishments and jurisdictions, 
severely constraining ability to provide effective services to 
patients across organizations (160). They are usually poorly 
defined, structured and maintained, incomplete, inaccurate, 
with biases and data shifting over time. Health registration 
datasets might be multilingual, cover a range of ages, 
socioeconomic statuses, jurisdictional regulatory constraints 
along with security and privacy characteristics. They are 

loosely linked to other health, pharmaceutical, imaging, 
financial, insurance and government data collections, which 
are invariably siloed. They typically impede subsequent 
learning processes by even the most powerful AI engines.

Well-thought-out guidelines stipulate peer-reviewed 
randomized trials as the gold standard to compare 
effectiveness of AI systems with clinicians and with 
clinicians supported by AI platforms. SPIRIT-AI and 
CONSORT-AI require that an AI clinical report should 
include information on the provenance, quality and 
representativeness of input data, the format of output data, 
an indication of how they contribute to decision making, as 
well as a description of the algorithm (its version, evolution, 
underlying assumptions, risks of bias, employed human-AI 
interface and user training requirements).

Quality randomized AI studies are rare. Needed to allow 
trust in the AI system and to evaluate its usefulness, such 
trials might also provide evidence that AI engine accuracy 
does not necessarily represent clinical efficacy; as compared 
with a clinician, a higher AI system accuracy might not 
result in better patient outcomes (142,161-164). Better 
outcomes are of most interest to patients (142); unless 
they feel they are reasonably serviced by a physician. This 
situation is different if they were seeking more effective 
treatment or a second opinion when faced with a critical 
decision, such as the need for major surgery, or when their 
access to an alternative top human expert is limited, as is the 
case for most patients worldwide.

Most current AI/deep learning research systems 
outperform human experts only in specific sub-tasks, such 
as in diagnostic imaging, test results (e.g., visual tests), as 
well as electrodiagnosis (e.g., electrocardiography) (165), 
or on the initial identification of the disease. Experimental 
handling of such subtasks under artificially constructed 
research conditions is then hyped for their ‘superpower’ in 
medical applications. The outperformance of a particular 
AI algorithm in a narrowly defined unauthentic task usually 
results from much of real-life patient information being 
omitted by the computerized system developers.

Due to well-known AI scalability challenges (166-170), 
AI algorithm that only handle subtasks could not be easily 
scaled up into commercial medical products. We need 
strong methodological foundations for AI engines used for 
medical applications based on comprehensive knowledge of 
practical clinical treatment and patient’s QoL rather than 
solely on the theory of AI computing (112-114,171,172).

Huang et al. (112) have identified some of the critical 
factors necessary to ensure practicability and effectiveness 
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of AI medical diagnostic application that could be 
implemented in the clinical setting, such as:
	 Patient’s reliance on the medical expert’s clinical 

knowledge.
	 Substantial effects of comorbidity.
	 Stratification of different therapeutic procedures, as 

many diseases have various subtypes and stages.
	 Implementation of flexible process workflow 

according to each patient’s situation.
	 Integration of comprehensive, interrelated 

and often contradictory knowledge of diverse 
components that describe unique health, QoL and 
socioeconomic conditions of every patient.

	 The AI application must reflect long‑term benefits 
for patients.

We need large size and well-annotated datasets of medical 
records required for training deep learning engines for 
proper diagnosis in clinical conditions (173-177). Park and 
Kressel (113) have independently derived clinical validation 
criteria that are mostly based on the AI technology 
considerations.

A powerful biomedical testing and diagnostic ecosystem 
must effectively support the input and real-time analysis of 
dozens of tests and historic data that include thousands of 
critical parameters:
	 Seamlessly fuse various kinds of complex patient 

assessments (biomedical, QoL, socioeconomic).
	 Efficiently extract essential information from the 

patient’s health record.
	 Ask the patient for the up-to-date additional and 

missing information, i.e., by dynamically selecting 
and administering appropriate new biomedical 
tests and QoL questionnaires based on the patient’s 
responses.

	 Structure critical information for the physician and 
the patient and communicate the results to them.

	 Manage and analyze health system data.
	 Relay and archive physician orders and referrals to 

the patient, other clinicians, nurses, test technicians, 
optometrists, drug stores and insurance providers.

Most of the above-listed criteria are directly applicable 
to glaucoma stakeholders and need to be actively integrated 
into the Functional Requirements for the patient‑centric 
computerized glaucoma treatment and care ecosystem.

Methodological requirements of a digitized clinical system

Commercial AI medical applications that have been 

developed to extract essential information from patient health 
records are mostly incapable of clinical implementation, as 
they overlook some clinical tasks or do not provide tangible 
benefits for patients. There are numerous technological 
challenges, like overfitting, when the AI algorithm fits all 
data points on the training set rather than identifying and 
predicting the general trend characteristic of the overall 
process (178,179). As a result, most AI systems fail to 
obtain approval from the US FDA or China Food and 
Drug Administration (CFDA), while approved commercial 
products are not qualified to handle clinical diagnoses, even 
though governments are eager to use AI to improve their 
national healthcare (107,112-114,172,173).

New approaches must address complex real-life needs 
identified by clinicians, glaucoma patients and healthcare 
administrators, with AI being one of several key enablers of 
comprehensive and intelligent digital solutions. This goal 
could be ensured by capturing essential clinical, QoL and 
health system administrative tasks to guide the lifecycle 
of the AI-supported system, including adoption and 
implementation. 

AI engines are particular in understanding the substance 
of a clinical quest. Unlike human experts, they might 
understand what we said but not what we meant, as they 
are unable to re-phrase our questions. AI programmers do 
not build in the required redundancy in the engine query 
process, on the assumption that human contributors could 
always mentally visualize and articulate what they already 
know or wish to achieve. Mostly, this is not the case.

Ongoing treatment and support of a glaucoma patient 
is quite complex. This necessitates substantial advances 
in the AI/deep learning approaches. For medical and 
QoL-supporting implementation, a scientifically sound 
AI‑focused methodology is needed, even if it differs from 
the current paradigm. Skeptical clinicians would more likely 
trust an advisory system if it followed a familiar decision 
tree. An AI engine should be able to elucidate reasons and 
quantify risks of alternative approaches. The methodology 
of testing and treatment run by an AI engine must be 
individualized for each patient.

Building blocks for a digitized healthcare ecosystem

The five critical building blocks of our integrated approach 
are (Figure 1):
	 Integrated computer-aided glaucoma support block: 

achieving integrated, patient-centric, computer-
aided glaucoma medical treatment, ongoing QoL 
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support, and big data decision-analytic modeling 
required to optimize health system’s resources in 
the current healthcare services and socioeconomic 
environment.

	 Biomedical model block: advancing conventional 
B i o m e d i c a l  M o d e l  i n  s u p p o r t  o f  s m a r t 
computerization of glaucoma treatment.

	 QoL assessment block: use of interactive QoL 
assessment questionnaires for glaucoma patients.

	 Healthcare cost‑effectiveness block: use of QALY 
for evaluating efficiency and cost‑effectiveness 
of the healthcare and for administering of social 
support services for glaucoma patients.

	 Chronic  d iseases  se l f -management  block: 
supporting chronic pat ients  in addressing 
glaucoma as a chronic disease; while ascertaining 
contributions of patient’s other chronic diseases.

Recently introduced powerful computer- and AI-based 
methodologies could support the multifaceted functionality 

of these building blocks while fusing and balancing 
numerous complex and often contradictory requirements 
derived from their interplay and analysis. These building 
blocks are at various levels of maturity, which depend on 
the quality of their underlying processes and the numerous 
applicable constraints—biomedical, socioeconomic, 
regulatory and technological. Broadly outlined here 
advancement criteria for these complicated building blocks 
are necessary to optimize effective integrated computer-
aided decisions necessary for glaucoma management.

Selection criteria for an AI engine

Only a very limited number of AI engines assessed for 
health applications have been found suitable for clinical 
practice. In the 1970s to 1980s, the development of 
expert systems was an original principal method of 
AI implementation in medical diagnostics. Rules for 
decisions were derived through an explicit representation 
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Figure 1 Critical building blocks and enabling commercial and proprietary engines of the integrated approach to define functional 
requirements and develop an underlying methodology for a patient centric computerized glaucoma diagnosis, medical treatment and QoL 
ecosystem (see text). AI, artificial intelligence; QA, quality assurance; QALY, quality adjusted life years; QoL, quality of life; SaaS, software 
as a service.
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of established knowledge, conventions and relationships 
articulated by medical experts.

While each particular rule might express coherent 
reality, a group of integrated expert rules invariably exposes 
inconsistencies and gaps in the underlying treatment 
methodology and inadequacy of its knowledge base. More 
importantly, the initial development and growth of expert 
systems was ‘expert labor intensive’ and hence expensive. 
First-generation expert systems were inflexible and not 
suited for complex problems; hence their popularity has 
waned (107,180).

With mass digitization of health information, machine 
learning algorithms have been developed that attempt 
to uncover hidden relationships. With more powerful 
computers, machine learning systems could automatically 
extract rules or decision trees directly from a large 
number of example cases, selected and ‘data annotated’ 
by experts or by AI systems controlled by experts. Using 
compute-intensive interactive and iterative data mining 
and intelligent data analysis techniques, such a system can 
expose underlying principles or knowledge in the form 
of prevalent patterns and rules; in particular as disease 
processes evolve.

Machine learning algorithms can often outperform 
expert-driven analytical approaches. As they do not require 
explicit human programming, they are less expert‑biased 
and more cost‑effective. However, as such models expose 
hidden statistical correlations rather than biomedical 
causations, their decisions might be less apparent to 
clinicians (181-185).

Some modern machine learning algorithms have 
effective decision-analytic means to reveal the essence of a 
patient’s syndrome while handling incomplete descriptions, 
exceptions, uncertain or noisy data and medical errors. 
They are able to select the appropriate minimum number 
of diagnostic tests, which speeds up the decision-analytic 
process and reduces costs. The resulting rules could be 
hierarchically organized and validated by medical experts 
for their accuracy and knowledge consistency (186).

Medical knowledge extracted by machine learning 
systems could be used for biomedical diagnosis, long-
term monitoring (especially important when treating 
chronic diseases), disease forecasting, and patient 
management. Slow, abrupt or recurrent changes in the 
patient’s chronological data stream could support clinicians, 
individualizing treatment decisions.

Cloud computing with its ubiquitously available 
inexpensive data and graphics processing units enables even 

more sophisticated and compute-intensive types of AI for 
health diagnosis. Modern AI methods learn inference from 
the data by using supervised learning from annotated case 
studies. All patients recorded in such a collection must be 
represented by a set of biomedical, personal and QoL data, 
with annotations identifying their glaucoma diagnoses.

Supervised learning algorithms associate various patients’ 
diagnoses with their corresponding annotations, providing 
more clinically relevant results. After the learning stage, 
such associations could be recognized in other databases 
of similar case studies, which the AI algorithm could now 
annotate accordingly. It could also further refine and 
improve its own precision and recall when processing 
additional databases and records (187).

At present, the most powerful form of machine learning 
involves various neural network models of deep learning, 
which can uncover levels of features or variables that 
predict diagnostic outcomes. Hence, they can expose 
complex nonlinear patterns in large volumes of clinical 
data. Currently, the most popular deep learning algorithm 
in medical applications is Convolutional Neural Network 
(CNN), which could proficiently assist disease diagnosis 
in health screening programs, where image recognition, 
analysis and interpretation are central.

However, the reasoning of deep learning algorithms 
such as CNN is difficult to understand. Interpretability and 
explainability of algorithm decision-making are essential 
because all these AI technologies might be capable of 
augmenting and enhancing human processing, cognition 
and work, rather than replacing them (107,140,180,188). 
Without algorithm explainability, clinicians might 
ignore AI advice, especially if it has implications for their 
professional liability (140,142,189,190). Explainability 
of medical diagnosis is also required by various health-
related regulatory frameworks—the US Health Insurance 
Portability and Accountability Act (HIPAA), the FDA, 
Medical Device Regulation (MDR), General Data 
Protection Regulation (GDPR) in the European Union, 
American Medical Association’s (AMA) June 2018 Policy 
on Augmented intelligence in health care. Clinicians have 
to minimize threats of medical malpractice lawsuits, even 
if these systems could deliver better diagnoses statistically 
than doctors themselves (140,190).

The reliability and transparency of medical diagnosis 
could be substantially improved by multistrategy learning, 
which enhances the power and flexibility of AI solutions. 
Theoretically, it is possible to integrate and combine into 
a single computer model the outputs of several AI learning 
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strategies, each using a different method to derive a medical 
diagnosis (186,191-196). However, combined models for 
medical diagnostics that could use poorly structured and 
segmentized in-field health databases are currently scant, 
aside from a few proof-of-concept studies that have rarely 
been successful (111).

More likely to improve accuracy and performance of 
AI health engines are continual learning (CL) or adaptive/
incremental learning models that operate with ongoing 
retraining. These types of AI engines gradually increase 
output accuracy and minimize test numbers, by constantly 
learning and adapting as new information arrives. The AI 
engine could select a new algorithm to improve performance 
under the new conditions. One key complexity in this 
approach is that each candidate algorithm must have been 
trained and validated for the changing data set. The entire 
process must be tightly monitored and well managed (197).

Medical diagnosis requires a credible representation 
of the complex, interconnected workflow of biomedical 
testing, patient treatment and QoL assessment. An 
increasingly deep understanding of biomedical data 
underpins the search for critical signals in the high-level 
noise generated by vast heterogeneous data (179). After 
initial training with historical data at the validation step, 
workflow representation could be combined and constantly 
augmented by the use of deep learning algorithms. 
Continued data flow facilitates further development and 
improvement of the system.

Compared with conventional machine learning 
methods, this approach could improve interpretability of 
medical treatment, the trust of clinicians in AI-generated 
recommendations, and the confidence of funding agencies. 
By removing marginal fictitious associations that might 
cause monumental prediction failures, this approach might 
be more constructive. Although such an approach would 
increase the complexity of AI engine development, recent 
research suggests it could be viable for application in 
medical diagnosis (198-201).

With the extensive R&D effort, it should be possible 
to define and implement a potent global health data 
infrastructure. A researched and well-defined powerful 
infrastructure could also ensure a proper structuring of 
patient data.

By their applications, AI platforms split into two major 
categories. The first category analyzes structured data, such 
as images and test results, by clustering patients’ traits or 
inferring the probability of disease outcomes. The second 
category uses natural language processing (NLP) methods, 

which ‘mine’ disease-relevant keywords from unstructured 
clinical notes and academic sources to enrich medical data. 
Keywords are examined and validated for their effects 
on the classification of normal and abnormal cases. The 
resulting structured output can be analyzed by the first 
category engines to support clinical decision making—by 
enriching initially structured data (165). Both categories 
could be quite useful for supporting glaucoma diagnosis and 
treatment.

Figure 2 illustrates the historic evolution of AI engine 
types suitable for medical diagnostic applications.

Panch et al. have defined health data infrastructure as 
the hardware and software necessary to securely aggregate, 
store, process and transmit healthcare data. In the 21st-
century health data infrastructure is a strategic necessity, 
typically underwritten by governments in expanding a 
nation’s essential wealth (160). Substantial infrastructure 
costs of AI healthcare solutions require large investments 
to develop and support operation of a patient-centric 
diagnosis, medical treatment and QoL ecosystem. Mid-
size healthcare delivery organizations would be unable to 
underwrite and implement such multifaceted intelligent 
systems. In the current socioeconomic environment, only a 
limited number of very large, globally dominating high-tech 
corporations are able to rapidly establish comprehensive and 
powerful standardized solutions that would make obsolete 
and redundant similar systems of their smaller competitors.

Key points

(I)	 A smart computerized system to manage glaucoma 
patients holistically and over a long period must be 
built on a new and solid methodological foundation 
that is AI-supported. We outline broad criteria 
necessary to optimize the efficacy of the resulting 
integrated computer-aided decision-making system.

(II)	 Conventional in-field and operational/maintenance 
AI algorithm training is unable to use existing health 
data sets of chronic patients owing to inbuilt biases 
and errors. To be effective, we need to start anew. 
Further development of such a novel system could 
improve current AI-learning algorithms, enabling 
them to meet our needs better.

(III)	 A well-defined infrastructure could guide the proper 
structuring of each patient’s data and ensure granular 
analysis of selected patients’ segments. A computerized 
medical treatment and QoL support ecosystem 
should support the multifaceted functionality of the 
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five critical building blocks of our defined integrated 
approach. It should also produce and periodically 
update personalized mid- to long-term forecasts 
useful to glaucoma patients, their health practitioners, 
government budget authorities and private insurers.

(IV)	 Implementat ion  of  such  a  sys tem must  be 
scientifically sound, especially if it differs radically 
from current prevailing AI technology approaches. 
AI-run testing and treatment methodologies must be 
individualized for each patient, including their stage 
of the disease. Although no current proof-of-concept 
AI training algorithms can meet these complex 
challenges, with extensive R&D we should be able 
to define and later implement a potent global health 
data infrastructure.

(V)	 We identify many interdependent issues (including 
health/analytical, ability to live independently, 
psychological, risk, technical, regulatory, security and 
privacy) necessary to resolve to create an effective 
healthcare decision support platform on a large scale 
and outline selection criteria for an AI engine. We also 
establish AI engine types likely suitable for medical 
diagnostic applications. Large investments are needed 
to develop a relevant AI healthcare solution.

(VI)	 The key assumption of every buyer of a medical 
system, which includes AI components, should 
always be that, unless proven otherwise theoretically 
or experimentally, no AI proof-of-concept model 
could be safely and timely scaled up and validated 
for deployment to the regulated clinical practice 

systems.
(VII)	 Figure 1. “Critical building blocks and enabling 

commercial and proprietary engines…” presents a 
condensed block diagram of the integrated approach 
to define functional requirements for a patient-
centric computerized glaucoma diagnosis, medical 
treatment and QoL ecosystem.

Results

Glaucoma as a chronic disease

In the 1990s health treatment paradigms shifted from 
acute to chronic care. This has substantial implications 
for the definition of functional requirements and for 
the development of underlying methodologies for a 
patient‑centric computerized glaucoma diagnosis, medical 
treatment and the QoL ecosystem.

Characteristics of chronic diseases
Slowly progressing and often ‘silent’ chronic diseases in 
concert with problems of older age have become leading 
causes of morbidity and mortality, responsible for the largest 
share of global healthcare expenditures (13,179,202-207). 
In the USA in 2019, 90% of the nation’s 3.3 trillion dollars 
in annual healthcare expenditures were for management 
of chronic diseases and mental health conditions; in the 
European Union, 70% to 80% of all healthcare costs are for 
people with chronic conditions (179,208-210).

Modern medicine has addressed acute diseases, cured 
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within a short time, with patients’ involvement mostly 
passive and reactive to their treatment directed by 
physicians. From the healthcare system’s cost point of 
view, acute cure needs to be achieved in minimal time 
and cost, especially including any hospital stay (211-214). 
Such a quick-fix approach is usually feasible and desired by 
patients, clinicians and health authorities (215,216).

Conversely, managing a chronic disease lasts for years, 
with recovery unlikely and deterioration probable; while 
the increasing global life expectancy poses rising challenges 
(13,208). Health deterioration ranges from slow to sudden, 
with no quick fixes.

Biological systems are non-linear (217-219). Driven by 

stressors and failed resilience, a neurodegenerative process 
might change rapidly, appearing as random and unique 
for each patient (202,220,221). Hence, chronic disease 
treatment requires individualized care for each person’s 
unique biology, and addressing underlying causes rather 
than just symptoms (179).

This is especially so for glaucomas, neurodegenerative 
diseases akin to Alzheimer’s and Parkinson’s. Glaucoma 
pathogenesis is complex and multifactorial, with genetic, 
IOP, vascular, neurodegenerative processes and perhaps 
chronic inflammation all contributing (222-235). Long-term 
rate of glaucoma progression are influenced by a patient’s 
engagement with healthcare, as earlier diagnosis and more 
aggressive treatment reduce the rate of progression (Figure 3).

Any effective healthcare ecosystem needs quantitative 
digital modeling of chronic disease progression for each 
type of glaucoma, as this would enable individual patient 
forecasts (104,236,237). For example, van Gestel et al. 
(45,238) have developed a model of glaucomatous disease 
progression based on decreases in the visual field’s linear 
mean deviation. The Discrete Event Simulation (DES) 
technique that they use calculates a slope of the mean 
deviation’s decline, which depends on the patient’s risk 
of rapid deterioration and the IOP value. This technique 
can be used to analyze and forecast the deterioration of 
glaucomatous processes (Figure 3).

Based on a random draw from the distribution of the 
annual loss of mean deviation in untreated patients, the van 
Gestel et al. model forecasts the time to blindness if the 
patient is not treated. With treatment, IOP lowering might 
reduce the deterioration and extend the time to blindness. 
If patients stop taking their medication, their IOP increases, 
which leads to a decline in the mean deviation.

Glaucoma progression is not consistent over the long 
term as suggested in Figure 3. Often patients experience 
stable disease for long periods with bouts of sudden 
deterioration (Figure 4). Compared with more gradual 
vision deterioration (Figure 3), such rapid degradation 
falls are unpredictable and more difficult to treat, as they 
require complex treatment strategies. The causes for such 
falls are multifactorial, often relating to co-morbid ocular 
or systemic health issues, as well as psychosocial influences, 
i.e., stressful events or periods of missed drops. A recent 
cross-sectional study of 239 participants from four clinics in 
Australia with suspected or established primary open-angle 
glaucoma suggests genetic causes for IOP spikes (239). For 
some types of glaucomas, like exfoliation with its strong 
genetic pre-disposition, sudden disease progression is more 

Initial (1st) vision deterioration forecast2nd vision deterioration forecast after event A3rd vision deterioration forecast after event B

n th vision deterioration 
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Figure 4 Effect of sudden events that lead to the rapid degradation 
of glaucoma patient’s vision. At times it might take as many as 
8–12 jumps to reach functional impairment. The time-scale on this 
‘sudden events’ chart is shorter than that on the ‘gradually aging’ 
chart in Figure 3.
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Figure 3 Effect of patient’s engagement with healthcare on long-
term glaucomatous progression. QoL, quality of life.
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common.
Meaningful rates of the visual field change vary, 

depending on many internal or external events (Figure 4). 
Optic disc changes, inadequate IOP control, advanced 
field damage, exfoliation, increased age and morbidity in 
the fellow eye have different relative weights when driving 
glaucomatous progression. To determine this rate for 
each type of glaucoma and for every patient, a minimum 
number of visual field examinations per year are required. 
Examinations number, type [i.e., standard automated 
perimetry (SAP) or other perimetric techniques], the 
strategy that estimates visual thresholds, and quality (which 
mostly depends on eye test technicians being well trained 
and motivated) might all be determined using statistical 
modeling techniques (86,240-244).

A powerful modeling technique such as the one 
developed by van Gestel et al. (45,238) can be extended to 
cover sudden ‘jumpy’ changes characteristic of rapid disease 
progression for some glaucoma patients. DES models 
are somewhat more intricate and analytically demanding, 
compared with more conventional computation and AI 
models previously used to describe long‑term glaucomatous 
progression. Hence DES models might better characterize 
effective multi-step treatment strategies for both types of 
glaucomatous progression presented in Figures 3,4.

In DES models, time progression is event-based, with 
the model jumping from one event to the next. An event 
in this context is anything that happens at a discrete 
moment in time—a model can encompass various types 
of events. Examples are life events, treatment decisions, 
the occurrence of comorbidities, changes in the patient’s 
behavior, environmental exposure or sudden glaucomatous 
deterioration. Each event that could lead to the debilitating 
damage of the patient’s visual nerve might necessitate 
complete reevaluation of disease forecast and treatment. 
The resulting new order of disease phases might differ 
from that produced by the previous forecast. We address in 
more detail the computational challenges inherent to DES 
models in section “QALY decision analytic modeling in an 
academic environment” below.

Challenges to treating the patient not the disease
The nature of patient-centric monitoring and support for 
chronic diseases differs from that for acute disease. Many 
acute diseases are managed in hospitals, while chronic 
patients are treated for years in community clinics, often 
with multidisciplinary inputs from various allied health 
professionals complementing clinical experts.

Acute disease treatment is driven by biomedical testing. 
For chronic diseases there are additional challenges, like the 
need for more effective, individualized glaucoma treatments 
that proactively address life‑long patient objectives, 
maximize QoL, minimize costs and counterbalance long-
term risks, such as overtreatment and overmedication. 
This is especially important for older glaucoma patients, 
who often suffer from physical and psychological problems 
caused by several chronic diseases. To slow down health 
deterioration and to manage the treatment risk, each 
chronic patient needs ‘holistic’ care, not separate treatment 
for each condition. This is not what usually happens today.

In developed countries, medical treatment costs are 
underwritten by taxpayers or by private insurers, with 
patients increasingly paying a larger percentage of their care 
themselves (13). Medical personnel are not compensated to 
provide an all-embracing holistic service to tackle multiple 
comorbidities, to navigate the challenges imposed on 
everyday life and to reconcile sometimes contradictory daily 
needs (179). Increasingly, telemedicine might become a 
billable service for all health systems. This might improve 
accessibility with reduced costs. Qualified services delivered 
by telemedicine might be especially important to developing 
countries (245-247).

Chronic diseases typically affect all aspects of a patient’s 
life, often requiring multiple forms of health monitoring, 
self-testing and drug self-administration, use of mobile 
apps, health support and implantable devices, resolving 
mobility and transport issues, with ramifications for family, 
finances, housing, education, employment and retail 
activities (204). Holistic treatment of a patient with multiple 
chronic comorbidities is a principal strategy to slow health 
deterioration, to manage risks of conflicting treatments 
and to achieve each patient’s unique QoL objectives 
(202,204,248). Changes in the number of chronic disorders 
by age group in the UK population (248) are quite revealing 
(Figure 5). The age-related character of glaucoma (Figure 6) 
correlates with the presence of other chronic disorders that 
a patient might experience. In countries with less advanced 
health treatment and social support systems than in the 
UK, the increase in the number of chronic disorders might 
be greater for earlier age groups, with the percentage of 
afflicted patients even higher.

Chronic patients’ treatment and risk management are 
complicated, as each clinician treats a specific disease 
without taking into account any others. Glaucoma 
patients often take systemic medications for other chronic 
conditions, such as statins, calcium channel blockers or 
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diuretics, which might increase glaucoma risk (52). Applied 
simultaneously, various medications and surgeries might 
damage vital organs and might impair mobility or cause 
psychological problems. For instance, falls and risk of 
falling are of concern in elderly patients with multiple 
comorbidities and simultaneous use of numerous drugs; 
glaucomatous visual loss increases such risk (249-252).

Thus, in the UK, according to Oliver et al. (204): “Older 
people with multiple conditions are likely to be on multiple 
medications: around 20 per cent of people over 70 are taking at 
least five medications and 16 per cent are taking 10 or more. 
While some of this will be appropriate, concern has been expressed 
that older people are too often being ‘medicalised’ […] and over-
treated with medication whose risks outweigh the benefits. 

Not only does ageing lead to altered pharmacodynamics and 
kinetics, and increasing difficulties with concordance, but also 
to considerable drug-drug and drug-disease interaction. For 
example, a range of medicines can precipitate acute delirium in 
frail older people.”

Clinicians need to prescribe with full consideration of 
interactions between drugs, ageing and disease, and the 
older person’s ability to adhere to medication regimes, as 
well as prioritising the person’s own goals for treatment.

In some clinical studies, over 90% of participants had 
one or more chronic conditions in addition to the one being 
studied (248,253), such as the Medical Outcomes Study 
(MOS) that recruited patients who with one of six chronic 
disease states (253-255). “The NHS [The National Health 
Service in the UK] has designed hospital medical specialties 
around single organ diseases. Primary care consultations and 
payment systems do not lend themselves to treating patients 
with multiple and complex conditions.” (204). Similarly, 
MD training narrow-focuses on singular specializations. 
According to Sagner et al. (202), “Minimal interactions among 
specialists and limited information to the general practitioner and 
patient lead to a fragmented health approach, non-concerted and 
sometimes ineffective interventions, a scattered follow-up and a 
suboptimal cost-effectiveness ratio.”

The average glaucoma patient has three other chronic 
diseases for which they take 4–5 additional medications. A 
50-year-old person in a developed country with a first-rate 
health system, who is newly diagnosed with primary open-
angle glaucoma (POAG) and treated chronically to reduce 
IOP, has a 20% probability of a second chronic disease 
rising over the years to more than 80%. The probability 
of having simultaneously six chronic diseases at the end of 
this life-long journey increases to more than 20% (256)! 
For numerous elderly people who do not follow prescribed 
treatment or who have limited access to state-of-the-
art healthcare, the above percentages will be even less 
favorable.

For a particular glaucoma patient, additional factors 
might raise these probabilities further. Side effects of 
long-term treatments might result in more complications, 
affecting other organs and functions. Impaired mobility 
accelerates health decline.

Worldwide public health service financial constraints 
illustrate the need to balance treatments of the several 
chronic illnesses, to reduce side effects and to guide patients 
who seek better QoL. Practicing ophthalmologists usually 
don’t have time to service general medical needs, other 
chronic conditions, side effects and QoL issues. There is a 
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shortage of glaucoma clinicians to meet needs globally; but 
especially in developing countries. To support glaucoma 
patients and experts, we need an effective, patient-centric, 
integrated self-management module within the computer-
aided system.

Self-management model to help patients with chronic 
conditions
Without a radical innovation for each disease, cure of a 
chronic disease is impossible. While slow deterioration 
is likely, rapid decline is also possible (208). Successful 
treatment requires personalized therapeutic targets for 
each patient that cannot be based solely on the results of a 
patient’s biomedical testing.

The strategic goal of guided self-management is to 
improve both health status and lifestyle of patients with 
multiple chronic conditions. Ideally it could be achieved 
through individual responsibility and tools for living 
well despite illness. Evolving self-management practices 
might benefit chronic patients physically and mentally, 
their business activities, personal behavior and QoL, 
thus improving healthcare outcomes and containing  
costs (208,257).

Self-management aims to empower patients by 
building knowledge and skills to maintain independence 
and to minimize disease impact on their lifestyle. It 
means to engage chronic patients in treatment decisions, 
problem-solving and proper administration of medication 
(180,202,208,252,258-264). Developing self‑management 
plans depends on the various chronic diseases affecting a 
particular patient, as well as the stage of these diseases. It is 
a dynamic process adapted to a patient’s changing state of 
health using effective computer-based tools.

Clinician and patient collaboratively derive agreed 
quantitative personal goals for health and QoL, as well 
as risk assessment profiles for various kinds of medical 
treatments. Personalized QoL goals can help select a 
patient’s therapeutic biomedical targets. Active patient 
participation to develop self-management plans is 
imperative: they are best positioned to observe and 
communicate the impact of their lifestyle decisions, accept 
or reject recommended treatments and follow healthy 
lifestyles (179,202,204,205,208).

Chronic patients’ healthcare delivery policies, practices 
and costings are based on their ability to develop and 
maintain skills, tenacity, diligence and dexterity required 
to administer self-treatment, self-monitoring and self-
assessment, with the support of family and periodic visits to 

their clinician (205,208). Families, friends and employers 
need to provide support for their life activities. Such support 
could be enabled by technology, such as online personal 
health records, mobile applications, voice input devices, 
emerging self-driving cars, medical, domestic and business 
robots. The general community could help by creating a 
friendly environment for affected individuals at work, in 
public spaces, on the street and with appropriate public 
transport. Novel teleglaucoma care might add inexpensive 
and effective ways to implement ongoing biomedical testing 
and monitoring run by patient’s physicians (208,257,265).

According to Deloitte 2019 Global health care  
outlook (13): “Standing at the epicenter of the new health care 
value system will likely be informed and empowered consumers—
change agents and active caretakers of their health who have high 
expectations of their health care ecosystem. These consumers will 
likely be “pulling” solutions rather than being “pushed” services, 
flipping the current health care delivery model from business-
to-consumer (B2C) to consumer-to-business (C2B). In response, 
stakeholders are expected to use innovative technologies and 
personalized programs to engage with consumers and improve the 
patient experience. Data interoperability, security, and ownership 
should move to the forefront as consumers join other stakeholders 
in accessing, analyzing, and sharing information. In addition, 
disruptive trends in health care delivery and mobility may 
radically alter everything from the site of care to who delivers care 
and how. […] patient behavior, [is] one of the key components of 
disease management amid an increasing prevalence of chronic 
conditions.”

Regretfully, beyond the motivational hype, reports of 
successful implementation of self‑management programs 
are at present rare to nonexistent. It is well documented 
in the specialized literature that private discussions 
between patient and caregiver, as well as group tutoring, 
are insufficient to provide patients with the necessary 
understanding and skills to manage their disease and 
minimize complications; nor do conventional approaches 
ensure essential behavior changes. Even the positive 
impact of improved patients’ medical knowledge on self‐
management has been questioned. Management of several 
simultaneous chronic diseases by elderly patient becomes 
too complex, even demotivating (208).

This ‘policy-practice mismatch’ is a major obstacle 
preventing health professionals and patients from 
proactive implementation of self-management. With self-
management not translated from idea to practice, it runs the 
risk of ‘blaming and shaming’ chronic patients for failing 
to manage their health status and lifestyle. Any resulting 
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additional stress has negative effects (266,267).
Many patients are unable, unwilling, or cannot afford to 

participate actively in their own treatment (180,202,208). 
There is an alarming lack of glaucoma awareness among 
patients and health professionals worldwide. While 
numerous glaucoma patients would accept any treatment 
decided by their health care providers, many would  
not (208,258-264).

Scores of patient information trials and campaigns have 
proven to be ineffective, unless they include extensive, 
individualized, expensive multiyear and face-to-face patient 
counseling with glaucoma experts that consider a patient’s 
specific needs. To be at least moderately successful, such 
counseling must change patients’ health behavior with 
disease education; even then, this only succeeds for a 
few well-educated, committed patients and not for long 
(13,202,205,208,258-264,268-271). Reports on various 
educational measures for glaucoma patients do not show 
a substantial impact on long-term behavior or on health 
outcomes, unless counseling and education are but a starting 
point in a long-term patient’s support program (208,272).

Advancing treatment of elderly patients, with many 
chronic diseases, is expensive in developed countries, and 
economically unsustainable in the developing world even 
before COVID-19 [“A system on the verge of bankruptcy. […] 
a disastrous course” (203)]. Aging and growing populations, 
greater prevalence of chronic diseases, rising labor costs, 
and exponential advances in costly digital technologies 
increased global healthcare spending at an annual rate 
of 5.4% in 2018–2022, a near doubling from 2.9% in 
2013–2017 (13,273). Chronic diseases are a major cause 
of a family’s poverty and they hinder countries’ economic 
development (202,274).

Technological approaches to self-manage glaucoma as 
a chronic illness
We introduced five critical building blocks for the 
integrated approach to defining a healthcare ecosystem 
(Figure 1). The Chronic diseases self-management block 
enables new, more effective approaches compared to 
conventional patient information and education techniques. 
The key research and development challenge is that the 
methodological foundation for the self-management block 
is less advanced than for all other system’s blocks.

New technologies integrated into the self-management 
block (such as telehealth, technology enablers for AI’s ability 
to reason and learn new concepts, online personal health 
records and mobile applications) could effectively facilitate 

essential but occasional collaborative interaction of several 
clinical experts with each patient. This complex long-term 
process would establish mutually agreed and personalized 
quantitative therapeutic targets for each patient.

Healthcare ecosystem platform administration must support 
the collaboration and networking of health and non-health 
sectors; public (local, national and global), non-governmental 
organization (NGO), and private organizations; as well as 
clinicians, academics, and patients. Such a complex system also 
requires the introduction of new and interdependent general, 
health, QoL and financial legislation.

While it is difficult to predict the exact nature of various 
dynamic user interfaces (visual? voice? command neural?) 
and service delivery channels that might evolve over even 
10 years, the necessity for their development to administer 
healthcare ecosystems is clear. By providing a diagram 
of critical building blocks and enabling commercial and 
proprietary engines of the platform, and by outlining its 
features and functions, we enable future stakeholders of 
such systems to define decision-making mechanisms and 
their exact sharing among stakeholders for each module and 
the overall healthcare system. This will allow forthcoming 
system integrators to develop novel user-friendly interfaces 
that would satisfy the evolving platform management, 
information and cost-sharing needs of all ecosystem 
stakeholders.

By balancing patients’ health status and QoL values and 
preferences with state-of-the-art biomedical knowledge 
against the health system’s treatment limitations and costs, 
a healthcare ecosystem could proactively engage chronic 
patients and their families in individualized treatment 
decisions, problem-solving and proper administration of 
medication. Personalized QoL goals could lead to selection 
of a patient’s therapeutic biomedical targets. Clinical 
experts would guide and control a proactive computerized 
AI system, permanently engaged in ongoing diagnosis, 
continuum of care and patient support.

Smart computerized systems could implement a new 
long‑term medical treatment and QoL support through 
personalized knowledge building. Such a dynamic process 
should be highly adaptable to the patient’s current state 
of health coupled with insurance and lifestyle challenges, 
and provide on-demand transactional delivery of relevant 
information. The input data for such a model could be 
obtained from the patient’s short- and long-term visual 
goals or quality of life metrics, such as proposed or reviewed 
in numerous publications related to glaucoma and other 
neurodegenerative diseases (36,275-278). Being efficient 
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and cost-effective, it would impact patients’ long-term 
behavior. By coordinating multiple health appointments, 
prescriptions and procedures, such systems could effectively 
support each patient in managing glaucoma.

The Chronic diseases self-management block should 
provide each patient with timely information to build 
appropriate healing skills. It should alert physicians and the 
patient when a medication is prescribed that conflicts with 
other chronic illnesses. It could avoid oversupplying patients 
with medical data they perceive to be irrelevant. Such a goal 
is impossible with conventional patient information and 
education approaches.

AI support for glaucoma patients’ daily lifecare 
requirements
For chronic diseases, sophisticated self-management tools 
help maintaining lifestyle. Computerized AI methods could 
ensure consistent ongoing support for vital daily routines.

Lifestyle factors that adversely affect IOP include:
	 Obstructive sleep apnea syndrome and supine/

head-down position during nightly sleep (279-282).
	 Excessive coffee consumption, especially in men (283) 

and in patients with the highest genetic susceptibility 
to elevated IOP (284).

	 Various fitness exercises and professional sports. 
Thus, head-down yoga might increase the IOP by 
two-fold (285-287).

	 Swimming with goggles and weightlifting (288-290).
	 Tight neckties, excessive water drinking, exposure 

to pesticides (291-294).
	 Playing a wind instrument might increase the IOP 

due to Valsalva breath-holding (295,296).
	 Extensive nearsighted tasks, working overtime and 

staying up late, typical for the current Internet and 
Smartphone age, transiently raises IOP both in 
normal individuals and in glaucoma patients (297,298).

	 IOP is usually higher in winter (299).
	 Airborne particules might trigger ocular hypertension 

through ocular surface inflammation, as suggested in 
animal models (300,301). Both internal and external 
factors have been proven to affect the IOP.

Although there is supportive evidence that some 
products, supplements, life habits and lifestyles might be 
beneficial, indications generally are variable, precarious, and 
not well-characterized. They include:
	 Vegetables and fruits (302);
	 More W-3 fat (129,303);
	 Saffron (304);

	 Vitamin C (305);
	 Nicotinamide—vitamin B3 (306);
	 Magnesium (307);
	 Ubiquinol (Coenzyme Q10 or CoQ10) (308,309);
	 Normal sleep circadian rhythms (310);
	 Relaxation music (311,312);
	 Meditation (313,314);
	 Aerobic exercises (315).
While others appear to be harmful, such as:
	 Tobacco (316);
	 High-salt intake (317);
	 Obesity (318,319).
	 IOP might be elevated by some medications, i.e., 

mydriatics, antipsychotics, antihistamines and 
steroids (320,321). With more detailed information 
included in drug documentation, continuously 
tracked by AI systems, stronger adherence might 
be achieved, while possible side effects avoided.

A healthcare ecosystem should record and control crucial 
activities directly correlated with glaucoma risk, thereby 
guiding patients’ choices in everyday life. Patients should be 
treated holistically rather than by addressing each chronic 
disease separately. An AI system’s assistance to each patient 
and to all attending clinicians could simplify multi-factorial, 
comprehensive and complicated decision-making required 
to maintain QoL. By providing condition-related health-
promoting suggestions to each individual, it would reduce 
the potential for discord between various chronic disease 
treatments prescribed for the same patient.

Managing dry eye syndromes
From glaucoma patients’ perspectives, dry eye is one 
of many chronic drop-related side effects that impacts 
significantly on QoL. We have selected dry eye as an 
example of a common co-occurring condition that future 
developers of Patient-centric Computerized Glaucoma 
Treatment and Care Ecosystems must take into account 
at the system’s design level. Other drop side effects, 
each important for sub-segments of glaucoma patients, 
necessitate dynamic customization of such systems for 
individual patient.

Glaucoma patients often experience impaired ocular 
surface with long-term treatment from the active compounds 
in eye drops and preservatives, and due to individual 
sensitivities. Signs and symptoms of ocular surface disease 
are observed in 15–50% of glaucoma patients, substantially 
higher than in the general population (322-326).

Low-grade, chronic inflammation often follows topical 
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glaucoma medications, resulting in various clinical disorders 
(322,324,327). Such medications might cause or exacerbate 
ocular surface diseases such as dry eye, meibomian gland 
dysfunction and chronic allergy, thereby further diminishing 
QoL, adherence, and surgical outcomes.

Several studies correlate ocular surface impairment 
with benzalkonium chloride (BAK), the most frequently 
used preservative in eye drops (322,323). BAK and other 
preservatives cause various inflammatory, toxic and physical 
damage effects on the ocular surface. An impaired tear 
film causes dry eye symptoms and corneal damage from 
exposure and cytotoxic inflammatory mediators. Tear film 
alterations might stimulate biological changes in the ocular 
surface, leading to neurogenic inflammation and further 
tear film impairment, creating a ‘vicious circle’ (328).

Non-preserved drops might improve the ocular surface 
(322,329). Most tear substitutes are preservative-free or 
BAK-free.

It is preferable to use preservative-free eye drops to 
prevent ocular surface diseases than to add supplementary 
eye drops to treat another chronic eye disease, a side effects 
of administered medication. Removal of an aggravating 
factor might be insufficient for treating drop-induced 
dry eye syndrome. Specific dry eye therapies that address 
inflammatory reactions are preservative-free tear substitutes, 
osmoprotectants, topical cyclosporine, or punctual plugs; 
each carrying its own risks (328).

Not all patients are sensitive to active compounds and 
preservatives and not all side effects from anti-glaucoma 
medications are induced by preservatives. In some patients, 
preservatives disrupt epithelial cell barriers, increasing drug 
penetration. Some patients find the larger preserved bottles 
easier to handle than the typically smaller preservative-
free ones. Larger bottle prescriptions might be more cost-
effective and easier to store. Preservative-free multidose 
bottles might combine both advantages. Not all public or 
private insurance bodies cover preservative-free medications 
with their shorter shelf life, a significant financial barrier for 
their use.

Glaucoma patient’s risk of developing dry eye syndrome 
depends on active compounds in eye drops, potential 
effects of preservatives and the state of the patient’s ocular 
surface. Simple clinical tests help to detect ocular surface 
diseases, such as eyelid margin redness, positive corneal and 
conjunctival fluorescein staining and rapid tear film break-
up time.

When QoL, adherence, surgical outcomes and overall 
glaucoma care might be affected, a clinician should consider 

treatment alternatives, such as preservative-free products, 
minimizing preserved eye drops, fixed combinations, 
recognition and treatment of the ocular surface with 
unpreserved tear substitutes, addressing meibomian gland 
dysfunction (e.g., better eyelid hygiene) and considering 
laser trabeculoplasty or surgery to decrease the number of 
eye drops.

Effective treatment of glaucoma while minimizing dry 
eye symptoms is complex, challenging and time-consuming. 
Optimization of  various medical  and nonmedical 
management strategies for millions of individual glaucoma 
patients can be achieved with support from a powerful 
patient‑centric digital ecosystem. Figure 1 shows a dry eye 
syndrome managing engine as a part of the chronic disease 
self‑management block.

Key points
(I)	 The paradigm shift from acute to chronic care 

has substantial implications for the definition 
of functional requirements and for developing 
underlying methodologies for a patient‑centric 
computerized glaucoma diagnosis, medical treatment 
and QoL ecosystem.

(II)	 Treatment of glaucoma patients requires personalized 
care with the establishment of individualized 
therapeutic targets to minimize deterioration and, 
especially, to prevent rapid visual field decline. 
Elderly glaucoma patients often suffer from severe 
physical and/or psychological problems caused by 
several co-existing chronic diseases. To minimize 
health deterioration and to manage treatment risks, 
each chronic patient needs a ‘whole care’ approach 
rather than treatment of each disease separately.

(III)	 Chronic diseases often affect many aspects of a 
patient’s life, requiring various forms of health 
monitoring, home‑based self‑testing and drug 
self‑administration, use of mobile apps, health 
support and implantable devices. Such diseases 
impact a patient’s mobility, transport, family, social 
networks, financial resources, housing, education 
and employment opportunities. The chronic diseases 
self-management block enables the introduction of 
new, proactive and effective approaches by individual 
chronic patients compared to the conventional 
patient information and education.

(IV)	 New technologies integrated within the self-
management block could effectively and cost-
efficiently facilitate the collaborative interaction 
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of several clinical experts with the patient. They 
could establish mutually agreed and personalized 
quantitative therapeutic targets; and proactively 
engage chronic patients and their carers into 
individualized treatment decisions, problem-solving 
and optimal administration of medication. Through 
personalized knowledge building, based on expert 
observations and know-how, as well as by correlating 
the massive amount of biomedical and QoL data 
and functional outcomes of glaucomatous vision 
loss, smart computerized systems could quantify 
how visual endpoints tested in worldwide glaucoma 
clinics affect specific functional losses, including 
driving, reading, or various physical activities, 
vital for all chronic patients but especially elderly. 
Intelligent systems could also implement new kinds 
of long-term medical treatments and ongoing QoL 
support that are highly adaptable to suddenly change 
the states of health of patients with multiple chronic 
diseases.

(V)	 Worldwide financial constraints on public health 
services exposed the need to simultaneously balance 
treatments for several chronic illnesses that are 
characteristic for glaucoma patients, to reduce 
their side effects, and to guide the patients who 
seek better management of their QoL. Only an 
effective integrated self-management block within 
the computer-aided system could accomplish such a 
complex optimization task.

(VI)	 To be effective, a healthcare ecosystem needs 
quantitative digital modeling of chronic disease 
progression, responsive to each patient’s real-time 
treatment outcome data, taking into account specific 
features of a patient’s glaucoma type that might 
influence prognosis. It should record and control crucial 
patient activities directly correlated with glaucomatous 
risks, thus guiding patients’ choices in everyday life.

(VII)	 It is challenging and time-consuming to treat glaucoma 
effectively while minimizing dry eye symptoms. 
Optimization of various management strategies to 
contain these two conditions individually is best 
achieved by a powerful healthcare ecosystem. A dry eye 
syndrome managing engine should be an integral part 
of the chronic diseases self-management block.

Conventional Biomedical Model in glaucoma treatment

Even with its limited application to chronic disease 

treatment, the Biomedical Model is  an important 
component of the glaucoma healthcare ecosystem. Smart 
computerization of glaucoma treatment requires advance in 
this model.

Despite success, the conventional biomedical approach 
lacks diagnostic precision, contains errors, fails to improve 
patients’ QoL, and does not address day-to-day challenges 
living with the disease and its treatment, including side 
effects (35,53-55,227,330-340). The full range of biological 
complexity characteristic of glaucoma could be analyzed 
with novel computational AI tools. Each patient’s online 
personal health record could be used as the granular 
basis for such analysis. Actionable information could be 
communicated back to each patient and their healthcare 
providers based on ongoing decision-analytic output; this 
might improve adherence to treatment (13,202,205), in 
particular for glaucoma patients (258-264,268-272).

New approaches for the Biomedical Model
Essential digitization of biomedical test outputs data could 
benefit glaucoma patients by supporting management 
decisions with AI tools (341,342). Ongoing biomedical 
monitoring and maintenance of normal values are not as 
well developed for key health metrics required for chronic 
outpatients as they are for acute, hospital-based medical 
conditions (202).

We need to improve and automate biomedical testing 
in support of glaucoma computer-aided diagnosis and 
treatment decision-making. For this, we need a complex 
and interconnected workflow of biomedical testing, patient 
treatment, QoL assessment and socioeconomic conditions 
that could enable a comprehensive quantitative glaucoma 
treatment decision methodology. Various quantitative 
glaucoma treatment decision methods and guidelines for 
glaucoma treatment (45,54,238,343-348) could enable 
implementation of an all-encompassing treatment decision 
system.

The diagnosis stratification layer of the Biomedical 
Model block (Figure 1) should reflect most worldwide state-
of-the-art, credible glaucoma treatment decision methods 
and guidelines. The block’s AI engine should be able to rank 
and select treatment methods and guidelines most applicable 
to a particular patient. A patient’s treatment course must 
align with the local medical laws and regulations, as well as 
pharmaceutical legislation and guidelines.

Development of a computerized healthcare decision 
support platform requires resolving many challenging 
health/analytical, technical, regulatory, security and 
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privacy issues necessary for its implementation globally. 
The platform would be able to output a medical treatment 
strategy and forecast critical milestones in the health state of 
the particular patient. Periodically updated, such biomedical 
forecasts could help glaucoma patients to predict how any 
deteriorating state of their vision might affect their future 
lifestyle, self-reliance and the financial well-being of their 
family.

An intel l igent  glaucoma management decis ion 
system should also be able to monitor and provide 
recommendations for other eye illnesses that they might 
develop, as well as treatment side effects and risk factors. 
The Biomedical Model should determine and take into 
account a patient’s biological age and lifespan, which 
could be predicted by available machine learning methods, 
especially for those with chronic diseases (170,349-355).

Based on test data that includes critical parameters, 
the Biomedical Model block of the healthcare ecosystem 
should be able to analyze a glaucoma patient’s multivariate 
progression to the comprehensive treatment model. Such 
a powerful biomedical testing and diagnostic ecosystem 
needs an advanced AI/deep learning analytic platform. The 
application of AI could provide reliable means to forecast 
glaucoma progression, devise rehabilitative strategies, 
outline lifestyle and financial choices and recommend 
improvements for the patient’s safety and their QoL. This 
combination could guide clinicians and patients towards a 
more successful, less risky and less expensive management 
strategy. AI-based biomedical diagnostic functionality 
should also support optometrists, medical and paramedical 
specialists, especially in developing countries.

New approaches in glaucoma treatment that could affect 
the architecture and functioning of the Biomedical Model 
block include:
	 Use of long-lasting injections of medications (e.g., 

intracameral bimatoprost) to help patients with 
difficulties using or remembering to instill their 
drops (18,356,357).

	 Changes to grading systems of glaucoma severity 
to integrate ganglion cell loss and visual field 
deterioration, instead of the cup-to-disc ratio 
(358-360).

	 Better defined target IOP for individual patients.
	 Routine home monitoring of IOP that might help 

understand why some patients progress despite 
‘normal’ office IOP.

	 Treatment based on OCT progression rather than 
on changes in the patient’s IOP.

	 Improved accuracy in clinical glaucoma testing 
required for AI applications.

Medical overtreatment
Reducing overtreatment and misdiagnosis is seldom a top 
priority for clinicians who concentrate on successful patient 
treatment (361-367). In contrast, confidence in a precise 
diagnosis and appropriate treatment is a top priority for 
patients; although many are reluctant to challenge their 
doctors about any unexpected results (362) or to request 
a second opinion. Overdiagnosis and overtreatment for 
chronic diseases are pervasive problems for patients and 
health systems, often negatively affecting patients health 
(54,204,207,339,340,368-387). They endanger patient safety 
and have been classified as medical errors (383). AI medical 
platform development must account for patient concerns, 
including reduction of overtreatment, misdiagnosis and 
optimization of QoL.

Reducing overtreatment and misdiagnosis could support 
the business case to fund a comprehensive glaucoma 
healthcare ecosystem, with release of resources necessary 
for the system’s development and ongoing maintenance. 
According to Oakes et al. (373): “Overuse—the provision 
of care where the potential for harm exceeds the potential for 
benefit—has been cited as a leading contributor to the high cost 
of the US health care system. Overuse is often physically and 
psychologically harmful to patients and is a definitive misuse of 
resources. Such wasteful utilization helps to explain why health 
care spending is inconsistently associated with measures of health 
care quality. More is not always better. The identification and 
elimination of overused services could improve health outcomes 
and reduce spending, while redirecting important resources 
toward the delivery of high-value care.”

Patients with several chronic disorders undertake a 
range of treatments, including different drugs. Multiple 
treatments, medications, surgeries and stress associated with 
each condition might conflict with the risk of deterioration 
in overall health, common side effects and reduced QoL.

For people with a low risk of glaucoma, there are few 
benefits from treatment that wastes government and 
insurer resources while more urgent matters and health 
innovation are neglected. Overdiagnosis and overtreatment 
significantly contribute to the resource crisis facing the 
worldwide health system (372,374-377). The US spends 
$3.6T (or about 18% of the GDP) on healthcare, of which 
20–30%, or even more, are wasted (373,380,381,383) while 
similar loss numbers have also been quoted for the UK (385), 
Germany (386,387), Italy (388), Canada (389), Australia 
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(374,390,391), Sweden (374) and Switzerland (392). Across 
OECD about one-fifth of healthcare spending is wasted 
while according to WHO 20–40% of healthcare spending 
globally is wasted (382).

The estimated annual cost of US overtreatment or 
low-value care is $75.7B to $101.2B (380), perhaps even 
larger (371). Healthcare finance might be a function of the 
measurement of overuse and underuse of services while 
physicians are paid according to the quality of care they 
deliver and penalized for overuse/underuse (377).

Concerning overdiagnosis and overscreening (368): 
“Biological abnormalities that will not affect either life 
expectancy, or life quality, are called pseudo-disease. Pseudo-
disease is very common. As a result, efforts to screen populations 
for health problems will result in a lot of ‘disease’ and may 
produce significant expenditures on treatment. However, it is 
not clear that population health will improve. Organizations 
such as the American Heart Association, the American Lung 
Association, and the American Cancer Society (ACS) argue that 
mass screenings for the disease are necessary because observed 
disease represents only the tip of the iceberg. Clearly, the greater 
screening will produce more cases. On the other hand, what will 
be detected includes both true disease and pseudo-disease. […] 
diseases that are progressing extremely slowly may never cause 
clinical problems. Ironically, advances in screening technology 
have a greater likelihood of detecting cases for which a clinical 
manifestation will never materialize.

In summary, we typically assume that the more sensitive 
the test, the more it will contribute to population health status. 
However, tests can also do harm because false-positive tests 
can lead to other investigation that might be physically or 
psychologically harmful.”

Wi t h  s t r e t c h e d  r e s o u r c e s ,  r a p i d  c h a n g e s  i n 
pharmaceuticals and surgical treatments, and increasing 
specialization of medical experts, patients cannot rely 
on their GPs for awareness, monitoring and balancing 
contradictory requirements of several divergent treatments. 
According to Deloitte (13): “Health care, public health, social 
services, and other sectors typically function and are funded in 
silos, with different funding requirements and often-incompatible 
data collection and information systems. This can make it difficult 
to coordinate efforts, integrate data, and assess shared impact. […] 
The multiple sectors that affect health—often driven by a variety 
of stakeholder and interest groups—may have different cultures, 
values, and vocabularies and generally lack experience working 
together. This can likely impede partnership and collaboration.”

The goal of diagnosis is detection of clinically meaningful 
disease stages (372). For chronic diseases like glaucoma, the 

challenge is to establish meaningful objective thresholds for 
biomedical diagnosis in the context of the patient’s projected 
longevity and other co-morbidities. Such thresholds should 
be based on the patient’s relevant subjective QoL factors 
and individual risks, and be balanced against the cost of 
ongoing treatment.

A factor of overdiagnosis is lowering disease and 
treatment thresholds by expert panels and Clinical Practice 
Guidelines (CPG) committees—by expanding disease 
definitions (376), thus creating a new group of patients 
eligible for treatment. Changing regulatory thresholds 
for disease and treatment of chronic patients often result 
from pressure of special interest groups, based on statistical 
results from therapeutic trials that might not apply to 
an individual patient. Some trials might not stratify trial 
participants according to specific disease stages or consider, 
baseline risks, a patient’s prognosis, or possible harm.

Test values from a sample of healthy people beyond 
two standard deviations from the mean are considered 
statistically anomalous in standard epidemiological 
definitions. For a bell‑shaped distribution, 2.5% of the 
people would be ‘abnormal’, and might receive unnecessary 
treatment for a disease that is not present. A rational 
definition of objective biomedical thresholds that reduce 
rates of overuse and underuse requires substantial advances 
in the theoretical framework from which this problem is 
addressed (377).

A “modern epidemic” of unnecessary management 
of overdiagnosed diseases mainly afflicts high-income 
countries (372). Changes to disease definitions do not 
consider potential human and financial costs from 
overdiagnosis, especially as they are often made by 
conflicted panels. Treatment thresholds need to ensure that 
potential benefits exceed harms.

Other principal  reasons for  overtreatment are 
(368,371,372,374-377,383,386): new, more sensitive 
biomedical and biomarker tests that detect subtle symptoms 
and abnormalities. For a low risk of future illness or a false 
positive, the pseudo-disease label and subsequent treatment 
may do more harm than good.
	 Care ‘occurs too frequently’ or is delivered in the 

wrong dose or duration.
	 Diagnosis is subjective; it varies for different 

physicians or even for the same physician at 
different times (186). “The threshold for deciding 
whether or not someone has the disease can be 
ambiguous. This occurs not only in the definition of 
the disease, but also in the interpretation of clinical 
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data. Using their experience, clinicians examine and 
interpret clinical information. Like any judgment, 
these perceptions are not always reliable. For example, 
it is known that physicians are highly variable in their 
interpretation of clinical data. They disagree with one 
another when examining the same clinical information. 
Further, they disagree with themselves when presented 
with the same information at two points in time. […] 
study showed that the clinicians disagreed with one 
another in about 60% of the cases. […] At the second 
assessment, they disagreed with their own first judgment 
in between 8 and 37% of the cases. … one pathologist 
saw cancer in 12% of the slides while another saw 
DCIS in 33% of the same slides. […] These variations 
in diagnostic patterns imply that patients with the same 
problem, going to different doctors, may get different 
diagnoses. […] The variation studies suggest that there 
is room for providers to make different decisions about 
what care is required. These decisions may be influenced 
by training, availability of hospital beds and methods of 
reimbursement.” (368).

	 Unjustifiable geographic and jurisdictional 
frequency variations for medical procedures and 
care intensity.

	 Use of a binary ‘disease/no disease’ approach 
traditional for acute diseases versus a ‘continuum 
progressive spectrum of disease severity’ more 
befitting chronic diseases. Overestimation of 
benefits and underestimation of harms of medical 
interventions lead to unjustified enthusiasm for 
health services from both patients and clinicians. 
A lack of full disclosure to chronic patients of 
potential harms versus benefits for their treatments 
and overprescription of drugs can be dangerous 
for elderly patients with several slowly progressing 
chronic conditions, as glaucoma medications 
decrease QoL and increase risks for accidents (54).

	 Behav io ra l  e conomic s -ba sed  ana l y se s  o f 
overtreatment are strategies for health professionals 
to deal with uncertainty and to avoid regret, 
explaining why overtreatment might appear to be 
the ‘rational’ choice in clinical decision-making, 
even when it causes harm (371,375,377).

	 Cultural beliefs in preventive measures, uncritical 
faith in early detection, and good clinical practice 
regarded as ‘more is better’. More ‘medicalized’ 
terminology in discussions with patients often leads 
to more aggressive treatment and overuse.

	 Legal punishment for missed diagnosis but not for 
overdiagnosis. Fear of malpractice lawsuits and 
discomfort with medical uncertainty are drivers for 
unnecessary care. Patients might mistrust efforts to 
reduce care, equating them with rationing health 
services.

	 Health system model of business (more tests and 
treatments bring in more income). A merger of 
diagnostic, therapeutic and surgical practices 
might lead to a conflict of interest among health 
professionals.

	 Effective, low-cost interventions might be 
neglected in favor of profitable but less useful 
interventions.

Overtreatment has diverse contexts and numerous causes; 
addressing them requires several strategies (371). Physicians 
should be able to predict a specific treatment as proven 
low value before delivery, based on published biomedical 
evidence, a challenging task. They do not contemplate care 
with unknown effectiveness or apparent no value after use. 
Identified causes of overtreatment mostly include categories 
focused on service value from a medical perspective rather 
than from patients’ preferences.
	 A rigorous and well-structured German study 

has prioritized recommendations against the 
overuse and underuse of healthcare services, with 
standardized diagnostic aids providing the best 
tools to combat them (386). No medical needs 
should be overlooked and service should not be 
offered to the patient population that might not 
benefit from it.

	 Introduction of intelligent medical diagnostic 
systems is important for providing accurate 
glaucoma diagnoses, especially in developing 
countries that lack glaucoma experts. Academic 
examples of AI medical diagnostic systems include:

	 A smartphone-based deep learning system 
for glaucoma detection based on visual field 
deterioration, which demonstrated a superior 
accuracy and rapidity compared with visual field 
review by general ophthalmologists (393);

	 A deep learning algorithm analyzing color 
fundus images or visual field results that predicts 
glaucomatous optic neuropathy with greater sensitivity 
and specificity than ophthalmologists (394-396);

	 A high accuracy three-dimensional deep learning 
system for the detection of glaucomatous optic 
neuropathy using spectral  domain-optical 
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coherence tomography (397).
Soon such AI image diagnostic systems could be used 

clinically. Overdiagnosis and overtreatment might be 
reduced for some low-risk or non-glaucoma patients, with 
limited social public health resources more reasonably 
allocated.

However, more powerful ‘General AI’ methods, suitable 
for a patient-centric computerized glaucoma healthcare 
ecosystem, as conceptualized in this article, have to be far 
more complex and sophisticated compared with current 
specialized diagnostic systems. They need substantial, 
multifaceted discontinuity research of AI systems based on 
a new paradigm quantum computing and other state-of-
the-art innovative solutions (141,160,398-402). Defining 
functional requirements for such a healthcare ecosystem 
could greatly facilitate and accelerate their introduction.

In the current healthcare services and socioeconomic 
environment, money is scarce. Reducing overuse could 
release funds for critical care. Functional requirements and 
underlying methodology for a patient‑centric computerized 
glaucoma diagnosis, medical treatment and QoL ecosystem 
should be able to reduce over- and underuse of healthcare 
services.

Misdiagnosis and the need for a trusted second opinion
The re la t i ve ly  common g laucoma misd iagnoses 
(53,54,56,403) propel patients to a second opinion. This 
need increases when surgery is recommended. Other 
queries concern ongoing medical treatment if IOP is low, 
when treating the second still healthy eye, or reconfirming 
accurate diagnosis with rare types of glaucoma. Another 
common reason driving a second opinion could be side 
effects from treatment or seeking potential strategy options. 
A trusted second opinion could provide reassurance and 
enhance adherence.

US outpatient diagnostic error rates exceed 5%, i.e., 
approximately 12 million adults annually (403). About half 
of these errors could be harmful. Up to 66% of patients 
obtaining a second opinion will refine their diagnosis, 
while in 21% second opinion diagnoses differed from 
initial diagnoses. Misdiagnoses delay treatment, cause 
complications and increase costs. Just 12% initial diagnoses 
were the same as final diagnoses (404).

Scarcity in glaucoma experts often renders a second 
opinion very difficult or impossible to arrange. Often 
the initial appointment takes months or years. A patient-
friendly output from a computerized glaucoma healthcare 
ecosystem would reduce the need for a second opinion by a 

clinician. It could improve the patient’s chances of optimal 
treatment, minimizing strains on the overall health system.

There are practical difficulties with a second opinion, 
such as transferring relevant medical history, and with 
finding out historic success rates for procedures a particular 
clinician performs. Most health practitioners expect and 
encourage second opinions. However, while some clinicians 
outline risks clearly, many overstate their own success rates. 
Patients worry whether clinicians might be offended that 
their judgment or experience is being questioned.

Patients would appreciate a clinical printout generated 
by an AI system independently recommending the same 
treatment, or explaining why it differs, even though 
the AI‑based system does not recommend it. Lifelong 
consequences follow an unsuccessful operation. A patient-
centric computerized glaucoma diagnosis, medical 
treatment and QoL ecosystem should enhance trust in the 
clinical diagnosis and recommended treatments.

Overdiagnosing and overtreating glaucoma
For glaucoma, indirect biomedical testing methods increase 
the likelihood of overdiagnosis and overtreatment. Direct 
and accurate assessment of the health state of over one 
million optic nerve fibers and their surrounding tissue 
is currently impossible. Glaucoma diagnosis depends on 
results from five biomedical tests; i.e., IOP, gonioscopy, 
visual field, optic disc images, and retinal nerve fibre layer 
(RNFL) images. When all five tests cannot be performed, 
at least three are required. Test results are compared with 
population-based quantitative thresholds that vary with 
age, family history, genetic makeup, exfoliation and myopia. 
Also analyzed are qualitative differences with normalized 
ocular images (34,54,405,406). Depending on the resources 
available, some glaucoma experts also conduct OCT 
ganglion cell imaging (407-411).

Assessment of uncovered abnormalities depends 
on the examination method and requires experienced 
interpretation, as there are considerable variations even 
among skilled ophthalmologists (56,406). We do not know 
the optimal tests for mass screening. Overtesting incurs 
unnecessary costs for no gain.

Glaucoma clinicians currently observe the ‘primary 
glaucoma injury’ by the visible changes in optic nerve 
head structure. Optic disc images are two-dimensional, a 
view possible with the monocular direct ophthalmoscope. 
G laucoma  ha s  been  de f ined  a s  an  ‘ op t i c  ne rve  
headopathy’ (412).

The paucity of direct pathological evaluation of glaucoma 
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damaged optic nerves, individual neurons, and nerve fiber 
bundle distributions within the brain will hopefully be 
resolved with the development of advanced noninvasive 
biomedical tests. Diagnosis of glaucoma versus other eye 
diseases or no disease present is uncertain, especially for 
inexperienced examiners, with variations in equipment 
quality, state of maintenance, and the selection of different 
thresholds and determination of image abnormalities. “…
The gold standard diagnostic assessment may be the consensus of 
expert opinion.” (412). 

Challenges in selecting biomedical tests concern 
establishing exact thresholds for each change related to age, 
disease progression, unilateral blindness, and other factors. 
Progression varies in rate and timing compared with results 
indicating mild glaucoma diagnosis (406). Listed below 
different glaucoma sub-types have different speeds of 
damage; exact determination of glaucoma type is essential 
for individualized patient treatment.

Other eye conditions, like myopia, might complicate 
glaucoma diagnosis by mimicking its features. Yet glaucoma 
is more prevalent among myopes (413). Do IOP-lowering 
drugs control glaucoma progression effectively in high 
myopia combined with suspected glaucoma with IOP 
within the ‘normal’ range? This is being currently assessed 
by a prospective study (414) and a randomized controlled  
trial (415) at the Zhongshan Ophthalmic Center, Sun Yat-
sen University, Guangzhou, China. Resolution would 
optimize the allocation of public resources.

Lowering IOP is the major modifiable risk factor for all 
glaucomas, even though its efficacy might be limited for 
some sub-types (33,44,412). Acute situations with very high 
IOP must be treated aggressively but they affect a small 
number of patients. Glaucoma patients whose IOP falls 
in the normal range are often treated with IOP-reducing 
drugs and surgeries, even though evidence for efficacy is 
not as strong as for those with abnormally elevated IOP. 
Perhaps half of all glaucoma patients are overdiagnosed 
and overmedicated, which can be harmful and takes limited 
resources from other health priorities (53,54,56,126,406).

“When applying the current diagnostic criteria for open-
angle glaucoma, a total of 40% of patients did not to display 
any structural or functional damage suggesting glaucoma after 
11 years of continuous medical treatment and follow-up” (54). 
Up to 50% of patients thought to have glaucoma do not 
actually suffer from it (53,54,56). These studies were 
mostly from Finland, a universal healthcare country rated 
among the top healthcare providers in the world, one 
of a few global jurisdictions which proactively monitor 

overdiagnosis, compare costs, effectiveness and efficacy 
of available glaucoma treatments. This sorry situation, 
especially common for the elderly in developed countries, is 
aggravated by neglect of QoL issues (330).

Conversely, many people with glaucoma are unaware 
of their disease and not being treated. Approximately 
half of people with glaucoma in developed countries are 
not diagnosed (46,56,330) even though half of the newly 
diagnosed patients found through screening have seen an 
ophthalmologist or an optometrist (56).

Standard treatments for glaucoma patients are not 
always successful, might have side effects and be expensive 
(55,104,330,416). Routine cataract surgeries might increase 
visual field losses even if IOP values have been improved (416). 
In addition to treating the optic nerve head and the eye, 
ophthalmologists should also address patients’ psychosocial 
conditions, as the clinician’s relationship with patients is a 
key determinant of quality of life [Dr. Peter Shah quoted  
by (330)]. “In everyday practice the challenge lies in trade-off 
between overconsumption of care and too little care.” (417).

“We overtreat some of our glaucoma patients. This occurs 
for a variety of reasons. In some cases, we may overestimate risk 
in ocular hypertensive patients and treat patients with low risk 
of developing glaucoma. These patients might be better off if 
observed closely without treatment over time. In other patients, 
we may fail to recognize that therapy is ineffective and continue 
its use unnecessarily, gaining only side effects without efficacy. In 
addition to local side effects, some of our medications have systemic 
issues that often go unrecognized.” [Dr. Robert D. Fechtner 
quoted by (330)].

Optimizing QoL requires ongoing feedback between 
initial and evolving diagnoses and individual patient’s 
response to treatment. Failure of feedback disrupts dynamic 
balancing of divergent responses. Effective biofeedback 
might stabilize a patient’s health and QoL (45,238).

To minimize over- and under-treatment, the Therapy 
feedback response layer of the Biomedical Model block 
is necessary (Figure 1). It also balances the effects of 
contradictory events and interactions characteristic 
of glaucoma progression (418). Regretfully, most AI 
medical treatment platforms currently being developed 
do not include effective feedback mechanisms. Some AI 
applications are too risk-averse, requesting unnecessary 
testing and treatment, which leads to overdiagnosis 
or  overprescr ipt ion (381,419-421) .  Overcoming 
overtreatment is impossible to achieve cost-effectively 
without recent advances in AI/deep learning decision-
analytic methodologies to be implemented in a healthcare 



Journal of Medical Artificial Intelligence, 2023 Page 29 of 72

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2023;6:3 | https://dx.doi.org/10.21037/jmai-22-33

ecosystem.

Differentiating glaucomas: the value of stratification
Glaucoma subtypes differ by age of onset, gender and racial 
predilection, speed of progression, risk of blindness, response 
to medical or surgical treatments, genetic influence, and 
IOP fluctuations. Advances in computerized diagnosis and 
treatment plus improvement in QoL could be achieved by 
analyzing glaucomas as a stratified group of neurodegenerative 
brain diseases (33,81,225,239,412,422-424). Stratification of 
patients could simplify analysis of this complex problem and 
facilitate cost-effective personalized healthcare (81,109,235). 
A computerized glaucoma healthcare ecosystem enhanced by 
AI engines is a prerequisite for the required decision-analytic 
stratification of glaucoma.

By focusing on the causes of disease, stratification could 
improve diagnostic accuracy and intervention costs, and 
lead to new, individualized and more effective drug targets 
for the pharmaceutical industry. Stratification allows smaller 
patient populations to be tested at earlier disease stages and 
with more accurate monitoring to achieve more effective 
results (109). For some glaucomas, vision deterioration 
might be faster than for others, calling for more aggressive 
treatment. Recently, many chronic diseases, such as cancers, 
Crohn’s, diabetes, are being stratified into subgroups based 
on more precise decision-analytic criteria (13).

With stratification, computerized glaucoma healthcare 
ecosystems could facilitate personalized forecasts, better 
risk models, improved treatment efficacy with decreased 
variations in medication responses, and fewer side effects—
all useful for glaucoma patients, their health practitioners, 
government budget authorities, and private insurers 
(81,109). Including a patient’s QoL choices is essential, as 
lifestyle might have a bigger effect than genetic variants on 
disease risk and medication response (103). An AI engine 
could analyze how all elements in this complex system 
interact with each other and quantify, predict and optimize 
each individual’s health, QoL and costs.

In Figure 7 and Tables S1-S3 we have updated patient-
focused classifications (225,424) with data presented in 
other publications (33,80,405,406,422). For some patients, 
the chart could clarify the factors affecting their QoL in the 
future.

Glaucoma patient stratification does not necessarily 
mean sizeable differences between outcomes. After 
adjusting for age, central corneal thickness, peak IOP, beta-
zone parapapillary atrophy and disc hemorrhage, visual field 
change (dB/year) in faster progressing exfoliative glaucoma 

is only moderately faster than in other slower progressing 
glaucomas (422). Fast visual decline in the early years often 
means rapid decline later too. In this scenario, the ‘usual’ 
gradual escalation of treatment is inadequate (425). High-
risk patients require swift intervention with more aggressive 
individualized treatments. Addressing this complex 
challenge necessitates computerized management to be 
cost-effective. In contrast, patients with slow progression 
require less frequent long‑term follow-up (425).

Visual field values are not all-encompassing characteristics 
of visual health; its loss is not the only factor to evaluate 
glaucoma progression. Up to 30–40% of retinal nerve 
f iber loss precedes detectable visual f ield defects 
(33,34,406,412,422) and disc hemorrhage is the single 
most significant predictor for visual field loss (422). 
Categorization of glaucoma patients phenotypically  
(426-430) correlates with subgroups and might simplify AI 
deep learning models.

Each stratified model should address a global slice of 
data, with resulting subproblems easier to analyze. Every 
subproblem needs deep domain expertise (109). For AI 
training, stratification of glaucoma patients (Figure 7) is 
advantageous. More aggressive subgroups, such as exfoliative 
glaucoma, have greater patient care costs (81,423). Objective 
stratification of glaucoma diagnosis would improve quality 
and granularity of QoL costs and facilitate reimbursement 
models for healthcare systems.

Clinicians debate whether to lump together or separate 
glaucoma subtypes, given that all treatment depends on IOP 
reduction. A potential downside of diagnosis stratification 
would be to create multiple computerized systems and 
decision trees for essentially similar treatments.

On the road to personalized or precision medicine
Contemporary medical therapeutics is shifting from a ‘one-
size-fits-all’ approach based on diagnoses that fit normalized 
combinations of patients’ medical histories, physical 
examinations, and laboratory data. Evolving treatments 
will include different well-targeted actions derived from 
objective biomedical data. Disease severity and response 
to treatment likely vary based on mutations in glaucoma 
genes, as well as the patient’s phenotype. Genetic data will 
help to identify which patients to treat and how to do so. 
Genetically targeted pharmacotherapy would take into 
account all relevant mutations found in the patient’s DNA.

Personalized or precision medicine is based on accurate 
assessment of variability in a patient’s clinical, genetic, 
lifestyle, risk factors and environmental data. Biomarkers 

https://cdn.amegroups.cn/static/public/JMAI-22-33-Supplementary.pdf
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and diagnostic pathways could allow patient stratification 
based on risk, prognosis, and treatment response. Patients’ 
relatives might also benefit from genetic screening, to 
calculate better their risk of developing glaucoma (431-433).

Personalized medicine presumes that a person’s genome 
would allow targeted repair without disturbing anything else. 
Identify the specific gene and its disordered molecular pathway, 
correct them pharmacologically or genetically, one patient at 
a time. As the glaucoma biological process involves multiple 
genes, complexity increases further with environmental/
lifestyle interactions, individual’s polygenic traits, and specific 
epigenetic factors. We are unlikely to hit target for a specific 
patient, certainly not for an entire populace.

There are already examples in glaucoma therapeutics. 
PTGFP gene polymorphisms influence IOP-lowering from 
latanoprost in Chinese, Japanese and Mediterranean patients 

(434-436). Genomic knowledge might resurrect medications 
like betaxolol that enhances IOP lowering in patients 
with variations in the beta-1 adrenergic receptor (437).  
Genome-Wide Association Studies has identified genes that 
influence steroid responsiveness (438,439). As more loci 
are identified and validated, genetic testing will predict the 
steroid response.

Using a patient’s genetic makeup to predict efficacy and 
adverse effects from medications, pharmacogenomics needs 
to be included in any computerized glaucoma ecosystem. 
Fifteen to 30% of Caucasians with polymorphisms of the 
CYP2D6 gene might be ‘poor metabolizers’, elevating 
systemic drug levels and bradycardia (440), which is also 
found with topical beta-blockers (441).

Genomic engineering will enable precision medicine. A 
single copy of dominant alleles of the MYOC gene increases 

A chart to clarify glaucoma general diagnosis

Note: this box shape 
denotes secondary 
glaucomas that could 
be open angle—or 
might morph to angle 
closure, which is often 
more difficult to treat
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Figure 7 A chart to clarify glaucoma’s general diagnosis. Percentages shown on the chart are approximate total occurrences of glaucoma 
in the global population, typically experienced by ophthalmologists in their clinical practices. The exact statistics might differ significantly 
in developed vs. developing countries, within geographic regions and individual countries, and even among ophthalmological clinics 
in the same city, especially as a large proportion of the population affected by glaucoma has not been diagnosed. Based on the original 
classifications that have been introduced in (33,225,424). POAG, primary open-angle glaucoma; PCG, primary congenital glaucoma; NTG, 
normal-tension; JOAG, juvenille-onset open angle glaucoma; XFG, exfoliation; PDG, pigmentary dispersion; EVP, episcleral venous 
pressure; A-V, atrioventricular; C-C, carotid-cavernous; NVG, neovascular glaucoma; ICE, iridocorneal endothelial. 
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risk for juvenile open angle glaucoma. Clustered regularly 
interspaced short palindromic repeat technology selectively 
inactivates the disease-causing allele, sparing the normal 
copy. The feasibility of this approach has been demonstrated 
in a mouse model of myocilin-induced glaucoma, as well 
as in human trabecular meshwork cells (442). It would also 
apply to other dominantly-inherited Mendelian glaucomas, 
like those with optineurin mutations.

Soon therapeutic options and expected outcomes 
will match known mutations to the expected phenotype 
(309,443-445) and enable other kinds of gene and stem cell 
therapies (446-452). Genome-wide association study has 
identified many glaucoma risk genes (453-455) but there 
is no single ‘curative’ gene therapy for mid- to later-in-life 
glaucoma. Genetic information could support development 
of computerized treatment algorithms and guidelines, and 
it should be included in every comprehensive database of 
glaucoma patients.

Gene therapy principal targets are:
	 Neuroprotection; 
	 Increasing conventional outflow; 
	 Increasing unconventional or uveoscleral outflow; 
	 Decreasing aqueous humor production; 
	 Controlling wound healing post drainage surgery.
It is not always necessary to replace a defective gene 

with a corresponding normal. In organ culture, regulation 
of ‘conventional’ pathways (i.e., trabecular meshwork, 
Schlemm’s canal, and downstream outflow channels) 
reduce outflow resistance. By turning down the resistance 
of an alternative molecular pathway, the altered pathway 
compensates for one with abnormally high resistance (446).

Some medications lower IOP through the ‘unconventional’ 
or ‘uveoscleral’ outflow pathway (446,456-458). Both 
pathways might be managed by viral vector/gene constructs 
to reduce IOP (459-461). Similarly, the aqueous secretory 
system could be ‘turned down’ by drugs and various 
constructs to lower IOP (462-464). Stem cells might restore 
functionality by infusing cultured outflow pathway cells or 
induced pluripotent stem cells grown in outflow pathway 
medium (446,465,466).

New anti-apoptotic neuroprotective, neurorescue and 
neuroregenerative approaches are part of the US National 
Eye Institute’s Audacious Goals effort (467). Pharmacologic 
and gene therapeutic strategies are being assessed to save, 
regrow and reconnect retinal ganglion cells to their afferent 
partners in the retina, in the midbrain, and beyond in the 
visual cortex. All these factors will affect technical choices in 
a computerized glaucoma diagnosis, medical treatment, and 

QoL ecosystem.

Key points
(I)	 The Biomedical Model is one of the most important 

components of a patient‑centric computerized 
glaucoma diagnosis, medical treatment and QoL 
ecosystem. Smart computerization of glaucoma 
treatment requires advancement of this model to 
support the interconnected workflow of biomedical 
testing, patient treatment, assessment of both QoL 
and corresponding socioeconomic conditions; and 
better model representation of the chronic character 
of glaucoma. This section described the requirements 
for a sophisticated digital platform that could quantify, 
model and balance various health, treatment, QoL, 
and economic factors characteristic of numerous 
chronic diseases for each patient. These requirements 
have dynamically changed over many years and will 
likely even more rapidly change in the future.

(II)	 To develop an effective computerized healthcare 
decision support platform, we need to resolve 
challenging health/analytical, technical, regulatory, 
security and privacy issues inherent in global 
implementation. Quantitative outcomes of such 
a complex dynamic process might be the system’s 
decisions on medical treatment strategies and on 
critical milestones in an individual’s health state that 
might affect a patient’s lifestyle, self-reliance, and 
financial well-being. We have formulated several 
new approaches within the Biomedical Model to 
support radical improvements in biomedical testing 
necessary for computer-aided glaucoma diagnosis 
and treatment.

(III)	 Increasingly in chronic disease management, 
overdiagnosis and overtreatment have been recognized 
as problems for patients and health systems. This 
contributes to the crisis in the worldwide health 
system. According to WHO, across OECD nations 
about one-fifth of healthcare spending is wasted. Some 
governments consider financing healthcare services 
based on the assessment of overuse and underuse. 
As reasons for overuse are diverse, addressing them 
requires a range of effective strategies.

(IV)	 U p  t o  h a l f  o f  t h e  g l a u c o m a  p a t i e n t s  a r e 
overdiagnosed and overtreated, which can be 
harmful and reduce resources for other health 
priorities. A confluence of several indirect biomedical 
testing methods to diagnose and monitor glaucoma 
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likely exacerbates overdiagnosis and overtreatment. 
Assessment of abnormalities depends on examination 
methods and examiner experience. Conversely, 
many people with glaucoma worldwide are unaware 
of their disease, undiagnosed and untreated. 
Overcoming overtreatment cannot be achieved 
rapidly and cost-effectively without recent advances 
in AI/deep learning decision-analytic methodologies 
incorporated within a healthcare ecosystem.

(V)	 In the absence of objective tests, a computerized 
healthcare ecosystem could also improve initial 
glaucoma diagnostics. This could be achieved by 
raising the learning and reasoning abilities of current 
AI systems and addressing their shortcomings; so 
that they would be able to treat patients, support 
them in arranging their daily activities, and provide 
them and their physicians with a trusted second 
opinion. With the current shortage of glaucoma 
experts worldwide, most newly identified patients 
(a relatively large share of whom are likely to be 
overdiagnosed) would likely be unable to easily find 
qualified clinicians to treat them. This reinforces the 
need for introduction of a computerized glaucoma 
treatment and care ecosystem that could help a 
limited number of glaucoma experts in supporting 
the growing number of patients all their lives.

(VI)	 Optimized use of medical services could divert needed 
funds to critical care. Functional requirements and 
underlying methodologies for a patient‑centric 
computerized glaucoma diagnosis, medical treatment 
and QoL ecosystem should achieve this goal.

(VII)	 Analyzing glaucomas as a set of distinct subgroups 
of patients could advance computerized glaucoma 
diagnosis, treatment and QoL optimization; simplify 
digital decision analytics; and facilitate cost‑effective 
personalized healthcare. Categorization by glaucoma 
phenotypes might facilitate simplification while 
running AI deep learning models could fuse complex 
patient assessments. Such objective glaucoma 
diagnosis stratification would support the evaluation 
of quality and granularity of QoL costs, as well as 
optimize healthcare reimbursement models. Yet, there 
is valid debate among the clinicians whether to lump 
various glaucoma types together, keep them separate, 
or simultaneously build computerized models and 
conduct data analysis for both scenarios, as the 
potential downside of diagnosis stratification would 
be the creation of multiple computerized systems and 

decision trees for essentially similar treatments.
(VIII)	 Medical therapeutics is shifting to personalized 

medicine. Complex genetic information could inform 
choices of which patients are best to treat, by which 
means, and how aggressively. Various biomarkers and 
diagnosis pathways could stratify patients on their 
likely disease, prognosis and treatment response. 
We are approaching the ability to match therapeutic 
options and expected outcomes with known 
mutations, as well as gene and stem cell therapies. 
All these new factors would affect technical choices 
in the development of a computerized glaucoma 
diagnosis, medical treatment and QoL system.

Use of interactive QoL assessment questionnaires for 
glaucoma patients

The design of the QoL assessment block is critical to 
define functional requirements and develop a methodology 
for patient-centric computerized glaucoma diagnosis, 
medical treatment and QoL system. Successful treatment 
of glaucoma patients requires personalized care with the 
establishment of individualized therapeutic and QoL 
targets, which would guide a patient’s biomedical targets.

Achieving integrated patient-centered eye care
The World Health Organization recommended integrating 
into health systems the delivery of people-centered eye care 
services. Integrated people-centered eye care is defined as 
services:
	 Managed to deliver a continuum of health 

interventions covering promotion, prevention, 
treatment and rehabilitation;

	 For the full spectrum of eye conditions as needed;
	 That recognize people as participants and 

beneficiaries throughout their lives (22).
All  patient-centered care components must  be 

customized according to patient preferences, which include 
involvement in decision-making. Quality eye care services 
must be affordable and tailored to population needs. 
Technological advances facilitate care access by underserved 
populations.

For  this ,  e f fect ive  s trategies  are  needed.  One 
is  empowerment of  pat ients ,  engaging them and 
communities—by raising awareness of glaucoma, prevention 
of vision impairment, and improving ways to access eye care. 
Patients and the public expect to become more involved in 
the care and more informed about health (468).
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‘Patient engagement’ is the process of building the 
capacity of patients, families and healthcare providers to 
facilitate active patient involvement in their care (469). As 
engaged patients make informed decisions about their care 
options according to their priorities, it is integral to lifelong 
healthcare (470).

With the rapidly aging population, glaucoma patients 
have to self-administer eye drops throughout their lives, in 
addition to managing medical treatments, pharmaceuticals 
and clinical appointments for other acute and chronic 
diseases that multiply with time passing. Not surprisingly, 
they usually have dismal adherence to the IOP self-
treatment.

Effective functional support could only be provided 
by a smart and action-oriented computerized healthcare 
ecosystem that would monitor health and well-being, 
activate alarm in an emergency, arrange an appointment 
with a clinician or reconfirm medical treatments when 
necessary, explain the optimal actions, provide second 
opinions, continuously prompt drops restock and control 
their proper administration. It would advise glaucoma 
patients on evolving QoL states of mobility, reading, 
general self-care, work, driving and other lifestyle decisions. 
Patients could benefit from support groups, online 
educational resources and facilitated communication. The 
system will support patients in taking care of themselves 
and extending independent living.

Using the Biomedical Model block, QoL assessment 
within the computerized healthcare ecosystem would 
estimate secondary risks to daily function, particularly as the 
disease progresses (471). Many patients would appreciate 
a rolling 5–10 years forecast on ongoing fitness to drive, 
dangers of legal blindness, ability to work, need for personal 
care, likelihood of major surgeries, estimating risks of a 
rapid QoL reduction with increased glaucoma visual loss in 
the less affected eye (55,56,472,473). For glaucoma patients, 
QoL is mostly affected in later disease stages. Psychological 
problems (social withdrawal, depression) and loss of the 
general ability to live independently often accompany 
increasing glaucoma severity (349).

All individualized glaucoma diagnostic, treatment and 
care management approaches are complex, with many 
dynamically changed functions and variables. Coherent 
methodology to treat glaucoma patients should support the 
digitization of this interconnected data.

For optimal care outcomes in chronic patient care, 
a strong long-term doctor-patient relationship with 
mutual trust is critical. Could an AI-driven, computerized 

treatment ecosystem impinge on this (474-478)? Could it 
be an obstacle to implementation? However rational, user-
friendly and intuitive novel computerized platforms might 
be, physicians and other healthcare workers will need to 
train to work with them.

Defining QoL
Glaucoma patients QoL is being increasingly examined  
(36-41,47-51,479-483). Progress in treatments and 
technologies has increased survival, with healthcare focus 
shifting from acute diseases to living a full life with chronic 
diseases (484).

Inherently subjective and culturally dependent, a 
universal QoL definition would be challenging (484-488). A 
common definition for glaucoma QoL (36) has been based 
on published data (36,480): “QoL is defined as individuals’ 
perception of their position in life in the context of the culture 
and value systems in which they live and in relation to their 
goals, expectations, standards, and concerns. It is a wide-ranging 
concept affected in a complex way by the person’s physical health, 
psychological state, level of independence, social relationships, 
personal beliefs and their relationships to salient features of 
their environment. QoL is thus the sum of a range of objectively 
measurable life conditions experienced by an individual. These 
may include physical health, personal circumstances (wealth, 
living conditions, etc.), social relationships, functional activities 
and pursuits, and wider societal and economic influences. The 
subjective response to such conditions is the domain of personal 
satisfaction with life. The QoL of an individual or subgroup can 
be established by comparing their position to that of the total 
population.”

As populations increase and age, numbers with visual 
impairment grow rapidly. Major living factors contribute 
to QoL, each with a sight-dependent component (36,481). 
QoL defines glaucoma patients’ ability/inability to perform 
specific tasks, especially those most important to them (39).

Patient engagement in care and decision-making 
improves their QoL. Patient-centered care variously 
measures cost-effectiveness, to provide patients, clinicians 
and other stakeholders the information needed for optimal 
treatment and QoL.

Glaucoma, collective health and social impact: 
developing countries’ perspective
Even though glaucoma QoL has mostly been coped with in 
developed countries, it is also a major cause of irreversible 
visual impairment in developing communities. Compared 
with European populations, glaucoma is more prevalent 
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among African, East Asian and Latin American peoples 
(79,489,490). With population growth and aging, increased 
socio-economic impact has to involve individual and 
collective strategies.

Introduced in Brazil, Collective Health has been further 
developed by the Brazilian Association of Postgraduate 
Programs in Collective Health, incorporating health, social 
sciences and humanities (491,492). While Public Health 
focuses on population diseases, injuries, risks and deaths, 
Collective Health is broader. It embraces all the conditions 
required to avoid disease, prolong life, and also improve 
QoL by enhancing human freedom through individual and 
collective happiness (491).

In Public Health, health promotion, prevention 
(secondary, tertiary and quaternary), treatment and 
rehabilitation are all part of the push against glaucoma 
(469,493), including social inequities and facilitated access 
to effective and safe management resources. Promotion 
of glaucoma health involves awareness for early detection 
and of the main risk factors. Awareness-raising campaigns 
in developing countries guide primary care professionals 
in targeting those at greatest risk, such as the elderly and 
family members of diagnosed patients.

As glaucoma is genetic, its primary prevention is 
impossible. Secondary prevention (early diagnosis, 
effective treatment), tertiary prevention (limiting negative 
consequences of disease, rehabilitation) and quaternary 
prevention (minimizing inappropriate diagnosis and 
medical interventions, overdiagnosis, overtreatment and 
overmedication) are the strategies to prevent progression to 
disability (53,54,207,330,372).

Secondary prevention searches for glaucoma with 
targeted screening aim to identify disease early. Costs 
decrease and QoL improves with early glaucoma diagnosis 
and treatment (494,495). At more advanced stages resources 
needed for control are more costly (81,494) or unattainable 
in developing countries.

Glaucoma population screening is not cost-effective (496). 
Opportunistic detection with routine eye examinations is 
cost-effective and should be encouraged (497).

In Brazil, the National Policy of Glaucoma Care 
established Glaucoma Reference Centers, where patients 
access specialized consultations, ancillary tests and eye 
drops within the Brazilian Unified Health System (SUS), 
supported by the ophthalmologic society. The Ministry of 
Health’s DATASUS database estimated that by 2020 about 
140,000 patients were supposed to be registered (498). Still, 
with glaucoma prevalence in Brazil of more than 1 million 

people, this coverage of care remains inadequate.
Many patients using medical treatment in glaucoma 

referral centers continue to lose vision from challenges with 
chronic use of eye drops, such as low adherence, negative 
impact on QoL, and side effects. The more medications 
needed and the higher the frequency of adverse effects, the 
worse is the QoL (499). Add to this the toxicity of eye drop 
preservatives on eye tissues (324).

Optimally glaucoma treatment should not depend 
on patient actions. Success of novel therapies (laser 
trabeculoplasty, micro-invasive surgical techniques) depends 
on facilitated access and wide acceptance of updated 
treatment guidelines. Early-stage glaucoma treatments that 
postpone eye drop use could control the disease better. 
Laser treatment is growing as a primary cost-effective 
therapy (495,500). Micro-invasive surgeries might be a cost-
effective option for initial to moderate glaucoma (81,501). 
In advanced glaucoma, filtering surgeries might be the most 
cost-effective option (502).

Rehabilitation of those visually impaired is important 
to reduce glaucoma’s social impact. Public policies need to 
raise community and health professional awareness about 
rehabilitation opportunities.

As glaucoma impacts not only the individual and his/her 
family but also the general community, strategies against it 
must involve all of society. With the shortage of qualified 
glaucoma experts, especially in developing countries, an 
effective and efficient integrated healthcare ecosystem could 
provide within the scope of Collective Health much-needed 
support to combat the debilitating effects of glaucoma.

Conventional QoL questionnaires: strengths and 
constraints
QoL questionnaires that assess various chronic diseases 
and account for cultural differences (484,488) are mostly 
based on patient-reported outcome (PRO) questionnaires 
and surveys developed by WHO, Medical Outcomes Study 
(MOS), EuroQol Group, US FDA, National Eye Institute, 
US Congress Office of Technology Assessment, UK’s 
National Institute for Health and Care Excellence, by other 
international and national health institutions and on input 
by patients (51). Reflecting a wide variety of cultures and 
diseases, they are often further adapted to particular medical 
conditions, like glaucoma (424), to the local language, and a 
jurisdiction’s health requirements (479).

The healthcare ecosystem QoL block (Figure 1) might 
include a computer adaptive testing (CAT, personalized 
assessment) system and a conventional database of globally 
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standardized glaucoma QoL questionnaires. In CAT 
questions can be added or deleted, increasing flexibility, 
accuracy and efficiency. AI-guided choice of questions 
would be based on local treatment settings, individual 
patients’ ability and their prior answers.

To ensure reliability, CAT needs to be trained on large 
representative data for each patient subgroup, which 
limits clinical application (503-505). Any rigid centralized 
approach based on just one standardized database of 
questions would not cover the possible permutations of 
medical factors, or socioeconomic, financial, cultural, 
language, geographic and ethnic variations evolving 
constantly. It would fail to explore unexpected correlations 
important for the personalized patient QoL improvement.

For clinical use of QoL questionnaires, more attractive 
is a functional hierarchy, a typical workflow, key affecting 
factors, patient- and clinical-focused outputs, and 
effectiveness feedback loops (Figure 8). A global peer-to-
peer assembly of independently derived and standardized 
QoL questionnaires could be realized with a distributed 
ledger technology (DLT), which has recently evolved from 
the cryptocurrency blockchain model (506-508).

D LT  c o u l d  i m p r o v e  t h e  d a t a  n e c e s s a r y  f o r 

interconnected QoL questionnaires and application 
flexibility. With increasing information complexity, DLT 
rather than conventional databases might be beneficial, 
as it does not impose one-size-fits-all requirements on its 
components and records. DLT could reduce costs of non-
uniform questionnaires, improve customer experience, 
and support introduction of new value-added services for 
glaucoma patients.

DLT for health applications allows ‘privacy by design’, 
enabling individual records to be encrypted, while 
conventional databases typically encrypt the whole data set, 
with compromising one record results in penetration of 
all. Peer-to-peer DLT also eliminates the need for a single 
authority to administer all component questionnaires.

General health-related (‘generic’) QoL questionnaires 
provide a patient-derived measure of the overall impact 
of sickness or surgery, allowing various diseases to be 
compared (56,488,509). Often, they do not well correlate 
with glaucoma’s QoL impact.

Vision-specific (‘disease-specific’) QoL questionnaires’ 
assess more accurately ocular symptoms and difficulties 
with vision-dependent tasks (483,488). They do not allow 
comparison with non-ocular diseases.

General health-related QoL 
questionnaire selection engine

Vision-specific QoL 
questionnaire selection engine

Glaucoma-specific QoL 
questionnaire selection engine

Patient-focused QoL 
questionnaire outcomes

Patients’ ability
•	 To work;
•	 Drive a car
•	 Their need for personal care;
•	 Likelihood of major surgeries
•	 Psychological problems
Need for computerization

Better understanding of 
side effects of medication 
and surgery, affecting QoL
•	 Burning, stinging, tearing, 

dryness, itching, soreness, 
tiredness……

•	 Systemic effects of 
cataracts, other eye and 
chronic diseases 

•	 Systemic effects of eye 
and other medications

Patients’ evolving/
adjusting experiences and 

expectations
•	 Education
•	 Proactive family and 

social involvement or 
social isolation

•	 Financial stability—
housing, insurance, cost 
of medication

•	 Employment/volunteering
•	 Modifiable risk factors—

healthy lifestyle, physical 
activity, self-management 
practices

Distributed 
ledgers

Distributed 
ledgers

Distributed 
ledgers

Figure 8 A functional hierarchy, key affecting factors and outcomes of QoL questionnaires that could be processed by a DLT-based QoL 
block (Figure 1). QoL, quality of life; DLT, distributed ledger technology.
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Glaucoma-specific QoL questionnaires respond to the 
relative weaknesses of vision-specific questionnaires. They 
include (86,483,510,511):
	 Glaucoma Symptom Scale (GSS): scores ten 

symptoms commonly experienced by glaucoma 
patients on a five-point rating scale.

	 Viswanathan questionnaire: ten questions asking 
for a binary ‘yes’ or ‘no’ response.

	 Glaucoma Quality of Life (GQL-15): asks 15 
rating-scored questions to assess glaucoma 
functional disability.

	 S y m p t o m  I m p a c t  G l a u c o m a  ( S I G ) :  4 3 
questions, including psychological and systemic 
inquiries, derived from patient focus groups and 
ophthalmologists.

	 Glaucoma Health Perceptions Index (GHPI): six 
questions to assess stress caused by glaucoma and 
levels of concern about blindness.

	 Glaucoma Activity Limitation (GAL-9): German 
revised scale 9 items evaluating activity limitation 
and mobility.

	 Glaucoma Activity Limitation (GAL-10): Indian 
revised scale 10 items evaluating activity limitation 
and mobility.

	 Spratt (481): classification of conventional QoL 
assessment approaches as they relate to glaucoma 
diagnoses.

	 Performance-based testing of visual function films 
patients undertaking tasks. Offering advantages 
over self-reported evaluation of visual ability, such 
tests are difficult to arrange and administer. Labor- 
and time-intensive, they are rarely used beyond 
academic studies.

QoL assessment approaches
People assess their health‑related QoL subjectively, 
comparing expectations with experience, rather than 
objectively on its merit (512). QoL is “the gap between 
expectations and experience” (513). Patients with severe 
damage do not necessarily report a poor QoL, while some 
with good health might report a significant impact on their 
QoL from a mild illness. Most older people in the United 
Kingdom self-rate their health as ‘good’ or ‘excellent’, 
and say they do not have a ‘life-limiting’ ailment, even 
though the majority live with one or more long-term  
conditions (204,514).

Even though they are supposed to evaluate health 
rather than disease (488), QoL assessments complement 

biomedical tests, being doctor‑ and disease‑centric. 
Although they could help clinically (513), their application 
to patient personal, family, financial and business planning 
is limited to research (43,483-485,487,511,515).

Patients’ wellbeing is affected by education, family 
and social involvement versus isolation, financial stability, 
housing, employment or volunteer activities, adaptability 
with aging for modifiable risk factors like healthy lifestyle 
and exercise (516,517), and even local climate (204,518,519). 
Experiences change expectations, resulting in shifts in the 
QoL meaning (512).

Dissatisfied patients are more likely to experience a poor 
outcome by not attending appointments or adhering to 
prescribed treatments. Reported adherence to glaucoma 
medications varies between 5% and 80%, with pharmacy 
refills producing the lowest numbers contrary to patients’ 
self-reporting; while half of new patients discontinue their 
glaucoma treatment within six months. Most glaucoma 
patients cannot instill eye drops correctly (33,520-523). 
Adherence to medications to control IOP is important to 
prevent glaucoma progression.

The impact of chronic diseases on patients’ QoL could 
be minimized with help to adjust their expectations and 
to adapt to their changed status. Adherence management 
improves if personalized information and guidance are 
provided.

To improve health status and QoL, self-efficacy scales 
have been proposed, such as the general, chronic disease 
management and glaucoma medication self-efficacy 
questionnaires (523-525). Improvement in self-management 
efficacy boosts patients’ medication compliance (523) 
while dealing with feelings of helplessness and depression 
helps patient confidence. Health education and proper 
communication with clinicians improve self-management 
efficiency (526-528). Computerized systems help clinicians 
to maintain individualized dialogs with patients beyond the 
limitations of office visits.

Costs of medications, clinical visits and fears of blindness, 
anxiety, and depression are all important to patients 
(36,37,47-50,482). Confidence in the doctor and the correct 
direction of treatment improve QoL. A good doctor-patient 
relationship is vital (479).

According to Barcaccia et al. (484), citing (485): “It is 
obvious that different interpretations of QoL, different points 
of view, different definitions, will lead to different decisions on 
very important topics. In truth, ethical consequences stem from 
different QoL definitions: Health professionals often make quality 
of life judgments when making decisions about the care of patients 



Journal of Medical Artificial Intelligence, 2023 Page 37 of 72

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2023;6:3 | https://dx.doi.org/10.21037/jmai-22-33

and their perspective on expected quality of life is the crucial factor 
in deciding whether treatment for a life-threatening condition 
will be administered or not.”

Efficacy of QoL assessment of glaucoma patients
Conventional QoL glaucoma assessments are subjective, ill-
defined, ambiguous and conceptually elusive because their 
definitions are complicated and their statistical methods used 
inconsistently and incorrectly (86,483,484,487,510,511,529). 
Many patients cannot complete QoL self-assessments due 
to questionnaire complexity and their health, emotional, 
cognitive and communication challenges (485,487,510).

Patients with similar glaucoma disability rate their 
QoL differently, depending on personality, mood, family 
support, and other interests and activities, concomitant 
health issues, financial challenges and side effects from 
treatment (324,530-536). Also contributory are other eye 
diseases and risk factors for secondary glaucomas (537-539), 
corticosteroids and other drugs (540-543), and systemic 
effects of eye medications (544,545). While QoL decreases 
right from early stages in glaucoma patients compared with 
the general population, differences have been found in some 
studies to be substantial only at later stages (54,55).

The primary focus of current QoL assessment of 
glaucoma patients is on the effects of visual impairment (36). 
Decreased QoL has links with medication inconvenience; 
for many eye surgery provokes more discomfort than do 
medications (54); strokes have the greatest effect on QoL 
compared with diabetes or high blood pressure (515). 
Patients are not interested in glaucoma classification, but 
rather the impact of their disease on QoL (42).

QoL tests were meant to assess the impact of glaucoma 
on a patient’s life, to establish suitability for surgery or 
a feasible medical regime, and then to guide a patient 
through difficult choices for therapeutic decisions. They 
were intended to customize treatment options based on 
a patient’s profile. For many patients, ability to recognize 
people, read, drive and climb stairs is more important than 
biomedical testing characteristics (36,39,86). Maximizing 
the patient’s QoL is the principal goal of the therapeutic 
alliance between clinician and patient (36,37,39,47-
50,54,511).

Mobility independence is particularly important in 
the United States, where driving provides the primary 
transport; elderly persons who stop driving are five times 
more likely to move to a long-term care facility, to suffer 
higher rates of depression, and to report lower QoL. Many 
patients, even with advanced visual field loss and a prior 

collision continue to drive, subjecting themselves and their 
community to increased risk (40,81,546). In contrast, for 
Japanese glaucoma patients, with their excellent public 
transport system, driving is relatively unimportant (547).

Assessing glaucoma QoL is restricted mainly to academic 
research, not clinical practice (39,511). Current QoL 
questionnaires are parochial and focus on physical symptoms, 
not the personal or social aspects of the disease (55). Of 27 
QoL assessment questionnaires expressly developed for 
glaucoma patients all: “…demonstrated poor developmental 
quality, more specifically a lack of conceptual framework and item 
generation strategies not involving the patients’ perspective. […] 
this review revealed that most authors did not try to improve the 
quality of their instrument, even if the results from validity and 
reliability tests show unsatisfactory evidence.” (510).

Despite recommendations on how to improve or delete 
current questionnaires, they have not improved. Rapid, 
accurate, precise and sensitive ophthalmology-specific QoL 
assessments need computerized adaptive testing from a 
large bank of pre-calibrated questions. Improvements for 
each novel treatment require validation.

In turn, effective validation requires comprehensive 
multidimensional testing of eye health and patient 
wellbeing, based on an individualized approach to issues of 
greatest relevance for each patient (86,529). This is what 
we suggest to implement with Functional Requirements for 
QoL ecosystem. Its development and validation will need 
labor-intensive, expensive research efforts (511).

Conventional QoL glaucoma assessments have been 
designed in developed countries with advanced biomedical 
test equipment and with glaucoma patients’ expectations of 
employment, mobility and driving. In developing countries 
like India, with different culture, social life, financial 
concerns and high unemployment, QoL questionnaires are 
less effective (37). Even in Singapore, cultural differences, 
financial burdens and psychological impact of disease 
necessitate localization of questionnaire content (43).

Treatment cost and value
Treatment cost has a major impact on glaucoma QoL 
assessment.

“The goal of glaucoma treatment is to maintain the patient’s 
visual function and related quality of life, at a sustainable cost. 
The cost of treatment in terms of inconvenience and side effects 
as well as financial implications for the individual and society 
requires careful evaluation.” (345).

The more expensive the treatment, the worse the  
QoL (479), as costs and side effects of treatment are the 
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most significant negative factors claimed by patients. From 
an overall cost perspective, the value of some standard tests 
has not been established. Patients with diagnosed open-
angle glaucoma from two geographically different regions 
in Finland were compared. One region had 25% higher 
per patient treatment costs than the other. There was no 
statistically significant difference in quality-of-life scores 
of life questionnaire (15D) between them. The region with 
higher treatment costs had less severe case glaucomas and 
early-stage glaucoma patients who used more resources 
reported worse QoL (54). Equal outcomes for Medicare 
expenditures for Medicare recipients in different regions 
of the United States were reported where expenditures 
per recipient vary by as much as twice (368). Healthcare 
decisions might be influenced by physician training, 
availability of hospital beds, and methods of reimbursement 
rather than by medical needs.

The need for computerization
Conventional QoL glaucoma assessment scores are complex 
(54,55), patients need to respond to many questions (43,547), 
administration costs are high and physicians need health 
psychology training to achieve valid outcomes. They are not 
covered by medical insurance, disincentivizing practitioners 
from using them. Unable demonstrably to support 
treatment strategies, QoL scores are meaningless (41).

“In the daily medical setting, a careful clinical history is more 
relevant than all these (conventional QoL assessment) methods 
and essential to assess the patient’s QL, knowing their potential 
limitations in daily life activities.” (349).

“Standard QoL assessment approaches are a highly subjective 
form of self-evaluation and draw heavily upon a patient’s own 
perception, expectations and belief system. As such their usefulness 
will perhaps always be limited. A superior method of assessing the 
impact of glaucoma on our patients’ visual abilities may be the 
direct observation of how well they perform visually demanding 
tasks.” (481).

Conventional QoL assessments are handicapped by 
subjectivity of and volatility in QoL meaning as well 
as divergence of patients’ life goals, experiences and 
socioeconomic conditions, superimposed on changing 
expectations. There is no ‘gold standard’, universal, globally 
applicable, one-size-fits-all QoL assessment scale for all 
glaucoma patients (38,41,54,55,479,483).

Usefulness of any one QoL assessment scale can only 
be established for an individual patient or a select group 
of patients at a given moment. Ranked output of any QoL 
assessment scale should guide biomedical testing targets. 

This process is personalized, requiring analysis of non-
uniform data streams. Algorithmizing is not feasible.

For all these reasons, an agile, user-friendly, cost‑effective 
glaucoma patient’s QoL assessment questionnaire is possible 
only with an advanced AI/deep learning decision-analytic 
platform. Our QoL assessment block in Figure 1 includes 
the AI enablers to implement such a QoL assessment 
questionnaire.

Key points
(I)	 Most glaucoma patients are elderly, often with 

declining cognition and with several chronic diseases; 
usually, they meet their eye clinicians briefly and just 
a few times a year. They have to self-administer one 
or more eye drops indefinitely while managing other 
medical regimens, including pharmaceuticals and 
clinical appointments for their concomitant diseases, 
which likely multiply and worsen over time. Many 
of them also have to endure their diminishing QoL. 
Realistically, their daily functional support could 
only be provided by a comprehensive healthcare 
ecosystem.

(II)	 A powerful, smart and action-oriented computerized 
platform could monitor patients’ health and well-
being; activate alarms in case of emergency; confirm 
their ongoing medical treatments; arrange a physical 
or virtual appointment. It should also be able to 
explain treatment options available; assist with a 
second opinion for any proposed surgery; remind 
patients in real-time to restock and to administer 
drops. As well, it should be able to advise glaucoma 
patients on their evolving QoL related to mobility, 
ability to read, use of interactive interfaces, general 
self-care, work, driving and many other often critical 
lifestyle decisions.

(III)	 We outline the architecture of the QoL assessment 
block that is critical to define functional requirements 
as well as the underlying methodology for developing 
a patient‑centric computerized glaucoma diagnosis, 
medical treatment and QoL ecosystem, based on 
personalized care and individualized therapeutic and 
QoL targets. This could help to select a patient’s 
biomedical targets. The coherent methodology 
should provide a viable foundation to digitize this 
complex and highly interconnected workflow.

(IV)	 With the shortage of qualified glaucoma experts, 
especially in developing countries, an effective 
and efficient integrated patient‑centric digital 
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system could combat glaucoma within the scope of 
Collective Health, including communal action at 
primary, secondary and tertiary care levels.

(V)	 Conventional QoL assessments are based on various 
patient-reported outcome (PRO) questionnaires 
and surveys. These are adapted to particular 
medical conditions, to the local language, and the 
jurisdiction’s distinctive health needs. General 
health-related QoL questionnaires provide a 
patient-derived measure of the overall impact of 
sickness or surgery; they allow comparison across 
various diseases. Vision-specific QoL questionnaires 
assess ocular symptoms and specific difficulties 
with vision-dependent tasks. Glaucoma-specific 
QoL questionnaires focus on glaucoma-related 
symptoms. 

(VI)	 Conventional QoL assessments have been criticized 
as inherently subjective, ill-defined, ambiguous and 
conceptually elusive. As they are based on complex 
definitions, their statistical methods might be 
inconsistent. Although possibly helpful in academic 
research, their usefulness to chronic glaucoma 
patients is quite limited. For many glaucoma 
patients, it might be more valuable to follow their 
ability to recognize people, read, drive and walk on 
stairs than to follow the results of their biomedical 
testing.

Economic foundations of a glaucoma healthcare ecosystem

Development of a sustainable healthcare ecosystem depends 
on macro- and microeconomic analysis of its components, 
and on addressing strategies to mitigate risks. Prolonged 
and expensive, such analysis needs top platform experts to 
reconcile diverse political, socioeconomic, regulatory and 
legal, long-term investment, bio-medical, QoL, clinical, 
technology and security goals.

Ensuring sustainability of the healthcare ecosystem
A global ecosystem must be implemented as a transactional 
technology platform. Platform technology is important but 
not critical while human factors and access to capital are 
usually decisive (548-550). Current ‘Platform-as-a-Service’ 
paradigm allows developers to select technologies from 
infinite and relatively inexpensive choices. An infrastructure 
i s  a s sembled  f rom bui ld ing  b locks  wi th  l imi ted 
customization, as opposed to dicey capital investment in a 
custom-built rigid IT structure (551-553).

After a program budget has been allocated to deploy 
a healthcare ecosystem, a draft FRS for its operational 
platform is usually released. Then this document is 
negotiated with service stakeholders and potential vendors 
(usually SIs).

Regretfully, the interests of beneficiaries (patients) and 
system operators (clinicians) are not always taken into 
account upfront. If they are evaluated after completion, it 
is too late to change the course of platform development. 
Success rates of such health system development projects 
are dismal, as with other information technology projects, 
such as in finance, governance, or infrastructure (554-565). 
With this article, we hope to reverse this tendency for the 
development of a glaucoma healthcare ecosystem.

The platform economy disrupts legacy industries and 
introduces new global-reach platforms (i.e., Amazon, 
Alibaba, Google, Facebook) that allocate resources more 
efficiently than conventional corporations because their 
independent participants collaborate and compete more 
vigorously. They reduce shared search costs with economies 
of scale; especially after reaching a critical mass, where 
for new users the value of the ecosystem exceeds the cost 
of joining (566-570). “…Practically any industry in which 
information is an important ingredient is a candidate for the 
platform revolution” (566).

Governments also formulate their platform policy 
strategies (571,572), particularly in the delivery of digital 
healthcare (13,573-577). New concepts of collaborative 
ecosystems and platforms to manage chronic diseases 
have emerged (578-581). So far, the implementation of 
a comprehensive patient-focused ecosystem to manage 
chronic diseases has not been announced.

Economics, finance and QoL
How could financial support be attracted for an effective 
healthcare ecosystem? Economic, financial and regulatory 
factors include:

(I)	 It should provide substantial benefits to the 
glaucoma patient’s vision and QoL.

(II)	 It should present interpretable and explicable 
algorithms for health regulatory frameworks (i.e., 
US HIPAA, FDA, MDR, GDPR; AMA June 2018 
Policy on Augmented intelligence in health care 
(582) and clinicians (583-585).

(III)	 It should transparently save costs compared with 
existing fragmented systems.

(IV)	 Its financial sustainability and technology development 
should be assured over the next 10–25 years.
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Annual medical costs for glaucoma in the US are 
projected to be $12 billion by 2032 and $17.3 billion 
by 2050 (81,586,587). Direct annual costs for glaucoma 
treatment increase with severity—$8,157 for no vision loss 
to $18,670 for blindness in 2008 (588). Add to this social 
security benefits, lost income tax revenue and long-term 
care (589). Similar amounts prevail globally (500,590-592).

Glaucoma management is expensive, including medical 
evaluation, testing and decision making, medications, 
laser and surgical procedures. Increased knowledge about 
glaucoma progression, with and without treatment, has 
encouraged earlier and more aggressive interventions 
to prevent visual loss in an aging population. As disease 
awareness expands and diagnosis is made earlier, costs 
escalate. The risk of unilateral blindness in a patient with 
POAG 10 years from diagnosis is 7.4%, jumping to 13.5% 
after 20 years (84,593). Patients with severe visual loss 
strain financial resources, as their independence is lost and 
support services increase.

Although glaucoma is incurable, treatment slows 
progression of visual loss. How long does a patient live after 
diagnosis? Years of observation to determine an individual’s 
rate of progression show that many patients are overtreated. 
If prior variables were known, we might forgo treatment for 
some patients. The corresponding epidemiological model is 
‘the number needed to treat’ (NNT) (594-596).

In the Ocular Hypertension Treatment Study (OHTS), 
the NNT to prevent one person from developing glaucoma 
was 20 (597). If we had a reliable way to identify that person, 
treatment would be unnecessary for 95% of patients with 
ocular hypertensive symptoms. Cost savings become far greater 
when disease is advanced, as surgery, multiple medications and 
more frequent observation all rise (500,586-592).

A patient-focused global glaucoma ecosystem could 
attract government and insurer support. To save, only 
patients at risk of vision loss would be treated. Genetic 
predictor tools might help to rationalize costs (598). The 
platform accurately making those predictions would be 
valuable. A controlled utilization of therapy would save 
further with reduced comorbidities, side effects from 
medical and surgical therapies, doctor visits, diagnostic 
testing and remote monitoring.

A robust glaucoma decision-making platform would use 
clinical information obtained over a few patient visits to 
determine optimal frequency for monitoring, testing and 
treatment to prevent visual loss. Clinicians will continue 
to be essential, deciding what information is required to 
be captured and overriding a treatment algorithm deemed  

in error.
The US AMA June 2018 Policy on Augmented 

intelligence in health care endorses a human ‘second 
opinion’. Diagnostic systems should enhance physician 
clinical decision-making, not replace them. AMA calls for 
AI systems advancing the delivery of care in a way that 
outperforms what either can do alone; are transparent; and 
take into account the legal implications of healthcare AI, 
such as issues of liability, and professional and governmental 
oversight (582).

With glaucoma AI ecosystem, fewer clinicians would care 
for more patients with less overtreatment, overdiagnosis and 
visits to healthcare providers. Those needing more frequent 
monitoring would be more accurately identified and able 
to benefit from it. Equally important is the overall benefit 
to patient QoL. Maintenance of functional vision would 
also allow for increased patient mobility and independence, 
prevention of falls and injuries, and yielding better 
outcomes. An FRS should denote rigorous microeconomic 
modeling of the resulting cost-benefit balance.

Attracting financial support
The ability to predict glaucoma progression is complex 
(Figures 3,4). Glaucoma’s ‘landmark studies’, such as 
OHTS, CIGTs, EMGT, AGIS, Baltimore Eye Study, have 
cost hundreds of million dollars and taken many years to 
complete (599-601). While data from those studies could 
be incorporated into AI algorithms, they are insufficient 
to support a fully functional and effective ecosystem. 
Government and private investments in new technologies, 
therapies and data will also be required.

We believe that much data needed to create novel robust 
and powerful glaucoma programs is not in the mainstream 
practice. For example, IOP levels ‘around the clock’ are 
needed to predict glaucoma progression and to monitor 
therapy. Remote monitoring remains non-autonomous but is 
in development or early implementation (e.g., Triggerfish/
Sensimed—sensimed.ch; Implandata Eyemate—implandata.
com; Qura—qura.biz; Injectsense—injectsense.com; to 
name just a few).

OCT technology cannot predict future loss of nerve 
fiber layer. Visual field testing is subjective, with variability 
and errors. Objective measures of visual function, such as 
pattern electroretinogram, are time-consuming and not 
accurate. With evolution, accuracy will improve. Venture 
capital will drive biomedical innovation.

Start-up capital for glaucoma patient-focused and QoL-
oriented infrastructure projects will be essential. Venture 
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investors might be attracted to their early development 
phase with large returns possible. A glaucoma healthcare 
ecosystem might also pave the way for patient-focused 
platforms for other chronic diseases (such as Alzheimer’s, 
Parkinson’s, cystic fibrosis, cardiovascular, cancer, and 
diabetes). Successful ecosystem development would be 
monetizable.

Patient-centered outcomes models
Conventional Biomedical Models of acute diseases consider 
people as either sick or healthy. ‘Outcomes models’ (the 
Donabedian model, The Quality Health Outcomes Model 
- QHOM, Kaplan’s Outcomes Model) are based on the 
observation that diagnosis and treatment do not necessarily 
improve life expectancy and QoL of patients with chronic 
diseases; they might even lead to deterioration in a patient’s 
health (368,529,546,602-606).

Outcomes models require more comprehensive patient-
centric socioeconomic, financial and risk analyses. They 
are more quantitative and objective, even when they 
produce counterintuitive results (487). Using government-
supplied statistical indicators, outcomes models overcome 
the subjectivity of questionnaires while not negating QoL 
subjective assessment methods but complementing them.

Unlike a linear Donabedian model, QHOM is a dynamic 
model that could cope with multiple factors and relationships, 
tying quality of care to desired outcomes. It could guide 
database development to improve outcomes management, 
compare treatment options and suggest key variables and 
policies in a clinical and organizational intervention (603).

Chronic diseases are gradual processes with multiple 
causes, and are not easily cured. Many patients have several 
chronic conditions (368). As elderly patients typical for 
glaucoma must adapt to their several diseases, psychological 
and social factors along with epidemiological data are key. 
Data imprecision and the need for ongoing massive data 
collection necessitate a powerful ecosystem.

QALY as a measure of health status in chronic diseases
Patient‑centered outcomes models use Quality Adjusted 
Life Year (QALY) to measure health status in chronic 
diseases. QALY combines two assessments—benefit or 
harm of new treatments and their effects on a patient’s  
QoL (42,43,86,368,509,546,547,602-609).

QALY is  the cornerstone of economic analysis 
(86,509,608), which is the basis of rational health care 
decisions (86). More expensive than for acute diseases, 
chronic disease management has to account for both society 

and the individual. QALY also provides stakeholders with 
the cost-effectiveness factors to allocate limited resources 
optimally (45,86,509).

Initially embraced by governments and medical 
insurance industry as a cost-utility measure to maximize 
the value of healthcare spending, QALY use has expanded 
to affect decision-making by medical researchers, clinicians 
and patients. It assigns appropriate values to medical and 
QoL impacts for each patient’s treatment, its side effects, 
and overall program costs. The cost/QALY ratio might 
be useful to compare relative efficiencies of treatment 
programs. Integration of QALY assessment could facilitate 
global adoption of our proposed platform.

Kaplan’s conventional survival analysis used to evaluate 
QoL in chronic diseases, such as cancers and diabetes, gives 
a unit of credit for each year of life (368); or for glaucoma, 
for prevented years of blindness. Thus, a person with severe 
glaucoma with some sight is scored as if in perfect health. 
In contrast, in QALY, years of wellness are scored on a 
continuum from 0 for death to 1.0 for full functioning.

A disease that reduces QoL by one-half will take away 
0.5 QALYs over 1 year. If it affects two people, e.g., 
including a caregiver, it would take away from this family 
1 year over 1 year because caregivers experience stress 
and endure a substantial cost (610-614). A drug treatment 
that improves wellness or QoL would equivalently 
improve QALY if the benefit were maintained over 1 year 
(42,43,283,368,509,546,547,602-608).

Based on QALYs, Kaplan’s Outcomes Model might be 
interpreted differently from the conventional Biomedical 
Model. QALY analysis shows the relatively minor impact of 
high-profile acute diseases compared with chronic diseases like 
glaucoma. “…The disease burden patterns of Westernized developed 
countries will begin emerging in the developing world.” (368).

Kaplan’s Outcomes Model does not consider biological 
abnormalities problematic unless they threaten life 
expectancy or reduce QoL. In contrast to the Biomedical 
Model, the Outcomes Model can make decisions that 
maximize the quality-adjusted life expectancy.

Certain QALY assumptions and the universality of its 
methodology have been challenged, particularly related 
to equity and efficiency (509). However, as no alternative 
measure of similar evaluation power and universality has 
emerged, contemporary research focuses on improving the 
QALY approach.

Quality assurance of an outcomes model
Glaucomatous visual loss creates a huge economic burden. 
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Quality assurance is essential to ensure user’s confidence in 
a complex health economics outcomes model with many 
input variables (615). In QALY modeling, quality assurance 
could be accomplished with sensitivity analysis, which 
assesses how each input contributes to output’s uncertainty 
(616,617). It could clarify the model’s recommendations to 
decision-makers, test the robustness of the model’s results, 
and facilitate recalculating outcomes with alternative 
assumptions, thus improving the model.

Computationally intense, a rigorous sensitivity analysis 
demands mathematical proofs of theoretical assumptions. 
For simplicity, sensitivity analysis calculations use a 
univariate output model; yet real-life processes result in 
multiple outputs of signal- or time-dependent data. Thus, 
a discrete sensitivity analysis is needed for each output of 
interest. For widespread models with mutually correlated 
and nonlinear outputs, sensitivity analysis results are hard to 
interpret (616,617).

D e v e l o p m e n t  m e t h o d o l o g i e s  a n d  f u n c t i o n a l 
requirements of computerized diagnosis and treatment 
systems do not reflect the need for comprehensive quality 
assurance. After a long and expensive R&D phase, most 
such systems fail when scaled commercially to the complex 
clinical environment, especially in developing countries that 
need to benefit most from this approach (182,618-625).

Quality assurance prevents mistakes, avoids medical 
treatment problems, and boosts patient confidence. It aims 
to hold health services publicly accountable (606). The 
technical aspect of quality of care is proportional to its 
effectiveness, and dependent on the best knowledge and 
technology (605). With quality management, our glaucoma 
healthcare ecosystem must continually modify, extend and 
improve itself by self-learning.

The DES model for Glaucoma evaluates model outcomes 
sensitivity with univariate analyses (45,238,347,348). 
Designed for healthcare cost/utility evaluation, this 
univariate model supports discrete sensitivity analyses for 
each time-dependent data output. AI engines shown in 
Figure 1 could be used to compare cost-effectiveness among 
glaucoma treatments, as well as no treatment, subgroup 
analyses for different IOPs and degrees of glaucomatous 
damage, visual deterioration in the less affected eye, 
frequency of visual field testing, effects of local factors and 
regulatory environments, risks of testing, procedures and 
pharmaceuticals, effects of costs for informal care, low-
vision services and aids, transport and production losses.

With glaucoma biomedical testing, patient treatment, 
QoL assessment and socioeconomic conditions often 

correlated, interpretation of discrete output sensitivity 
measures might be hard, especially for glaucoma types, 
each requiring a different decision-analytic approach (45). 
A new AI-based methodology is necessary for such complex 
analysis, along with regulatory acceptance of tiered cost-
effectiveness acceptability thresholds by governments or 
private insurance companies. Healthcare procedure is cost-
effective if it is efficient and cheaper, or if its cost does not 
exceed the determined threshold of cost-effectiveness.

In the Netherlands,  such a threshold has been 
recommended at a maximum of €80,000 (~US$95,000 in 
August 2020) per QALY; the UK uses a range of £20,000–
£30,000 (~US$26,000–40,000) per QALY; in Canada a range 
of CAN$20,000–CAN$100,000 (~US$15,000–76,000) per 
QALY (45); in the US willingness-to-pay thresholds lie 
between $100,000 and $150,000 per QALY (626,627); while 
WHO considers interventions cost-effective if it costs less 
than three times the national annual GDP per capita and 
highly cost-effective if less than the national annual GDP 
per capita (628). Brazil follows the WHO guidelines, which 
in 2014 was equivalent to BRL 81,000 (~US$15,000) (495).

Outcomes models and shared decision making
Outcomes models enable shared decision-making by 
clinicians with patients while accounting for resource 
limitations. Treatment strategies involve evaluation of risk/
benefit profiles for various options.

While the Biomedical Model seeks to eradicate the 
disease whatever the side effects, treatment costs or harm 
to QoL, the Outcomes Model recognizes a chronic disease 
diagnosis does not necessarily result in better patient 
outcomes (56). If left undetected, some glaucomas for some 
patients might not impact life expectancy or QoL (368). 
This affects shared decisions for public policy, clinical policy 
and treatment.

A patient‑centric computerized glaucoma diagnosis, 
medical treatment and QoL ecosystem should generate 
individualized forecasts of disease progression. Biomedical 
testing results and QoL criteria forecasts would be updated, 
depending on scenarios within the probable digital range 
for a particular patient. Such forecasts facilitate joint 
decisions by clinicians with patients on the appropriate 
individual biomedical targets to trigger clinical actions. As 
laser trabeculoplasty and other kinds of surgery are offered 
as a first-line glaucoma treatment for patients who have 
problems with remembering to instill eye drops, eye drop 
cost, allergies, or dry eyes (629-631), the ecosystem should 
also exhibit surgeons track records for different procedures.



Journal of Medical Artificial Intelligence, 2023 Page 43 of 72

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2023;6:3 | https://dx.doi.org/10.21037/jmai-22-33

Depending on the biomedical  tests  results  and 
conventional QoL assessments, clinicians could outline 
treatment options and probabilities for various outcomes. 
As complex and jargon-ridden biomedical data are often 
difficult to interpret (632), for clinicians the most important 
challenge to derive a shared decision is to ensure that 
risk information has been well understood by patients. As 
elderly patients often have several chronic conditions, they 
can put values on possible treatment outcomes within the 
context of their own circumstances and objectives.

Use of QALY to evaluate healthcare systems
Outcomes models have been used to forecast the 
progression of chronic diseases, evaluate their effects on 
patients’ everyday activities and long-term treatment, and 
facilitate family- and business-related planning. Limited 
health resources must be optimized to help people live 
longer and feel better. Focused on the most efficient use of 
resources, QALY is used as an outcome measure to evaluate 
healthcare systems by decision-makers (governments, public 
and private insurance services, medical researchers, health 
economists and long‑term investors) (608).

As economic and risk factors affect all healthcare 
decisions, QALY helps global health services to address 
growing pressures to determine the optimal use of limited 
resources. With novel and more expensive treatments, 
healthcare systems need additional resources for new 
cures, even while health budgets barely afford legacy 
solutions. Widely used but ineffective treatments surge 
public perception of healthcare underfunding. Hence, clear 
priorities must be established and tough choices made (56).

Credible decision-analytic modeling of cost-effective 
resource allocation for chronic healthcare is not trivial, 
especially in real-time. As noted (86): “The best way 
to measure the economic benefit of glaucoma care remains 
controversial, with some measures lacking precision, and others 
lacking generalizability. […] Innovation in glaucoma care 
requires accurate, validated tools to assess the improved utility of 
each novel treatment otherwise we cannot justify the broad-scale 
societal uptake of such new technologies.”

Use of QALY to assess glaucoma patients
The Outcomes Model has been used to evaluate health 
and behavioral outcomes. It is based on an analysis of 
QALY as a measure of health status in a chronic illness, 
considering benefits, side effects and program costs 
specific to this particular disease. Although QALY has 
been used in glaucoma academic research and long‑term 

effectiveness analysis of government and private healthcare 
systems (53,54,86,511,633-635), rarely has it been applied 
to evaluate real‑time healthcare outcomes for individual 
glaucoma patients. Personalization of treatment is 
impossible without simultaneous optimization of biomedical 
testing, QoL assessment and corresponding socioeconomic 
conditions for every patient.

Accurate but challenging bottom-up microcosting, 
starting with each patient and progressing up to national 
and global healthcare systems is ‘the gold standard’ 
in costing. Modeling at the patient level is effective 
when considering health interventions owing to patient 
heterogeneity (412,626,636). Its use also supports proactive 
development of global infrastructure, which must be 
widespread, comprehensive and smart. Such a global 
infrastructure is vital to capture and forecast biomedical 
testing, treatment, QoL assessment and corresponding 
socioeconomic conditions for each chronic patient.

The QALY approach should help to find the right 
balance between benefits of a particular treatment and 
its risks, QoL costs for individual patients and cost-
effectiveness for society. Such balance should avoid waste in 
public and private insurance services (56). Higher resource 
allocation that leads to overtreatment might not provide 
measurable benefits to patients or improved healthcare 
service (86).

For example, by exploring whether it is cost-effective 
to treat selected individuals who are unlikely to develop 
functional impairment from glaucomatous damage, the 
QALYs elucidate difficult treatment decisions, especially 
for elderly glaucoma suspects or younger individuals 
with stable, early glaucoma. Ongoing improvements 
in technology, effects of therapy, medication, relative 
prices, demography and life expectancy would benefit all 
stakeholders (53). It might be possible to correlate QALY 
with the percentage of ganglion cell loss.

Several QALY studies, covered in a recent in-depth 
review (86), have attempted to analyze comparative 
cost‑effectiveness of various glaucoma treatment scenarios 
for a range of durations and patients’ ages. QALY has 
been used in a comprehensive health economic modeling 
of glaucoma treatment options in the UK (633), Finland 
(53,54), France (633), Germany (633), Japan (608), the 
Netherlands (45) and elsewhere.

To evaluate treatment cost-effectiveness, health 
economists have used the Markov model for QALY 
decision analytics, which is simple to implement in 
academic environments and can provide estimates of 
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disease advancement. By dividing overall progression 
into time cycles and assigning resource use and health 
outcomes to every cycle, this model estimates probability 
of advancement, long-term costs and outcomes for various 
disease scenarios (56,86). With its inherent limitations, 
the Markov model cannot be used for clinical or insurance 
applications. We make a detailed examination of QALY 
decision analytic modeling in the next section.

Analyzed glaucoma treatments cover eye drops versus 
laser trabeculoplasty versus surgery for equal visual 
outcomes. Each treatment (or absence of treatment) has 
been assumed to have positive factors and substantial risks. 
QALY helped to quantify that patients with visual loss in 
one eye can serve as accurate predictors of outcome values 
that would develop if the visual loss were to occur in both 
eyes (86,472).

These decision-analytic results were divergent and 
country dependent, for both acceptance of direct and 
indirect treatment costs, as well as local expectations 
and tolerance for deteriorating QoL. Final values and 
conclusions are affected by many assumptions and estimates 
built into the models, especially as they do not account for 
downstream effects and risks related to long-term medical 
and QoL outcomes and corresponding utilization of 
healthcare services (86).

Several Finnish studies based on the Outcomes Model 
and QALY have confirmed Dr. Fechtner’s above-cited 
views that physicians overtreat some glaucoma patients 
(53,54,56). In Finland approximately half the patients 
diagnosed with glaucoma do not suffer from it but have 
been prescribed unnecessary medications for over 10 years. 
Likewise in Australia, in a 1990s population-based cohort 
study conducted over 7 years, more than half the patients 
treated for glaucoma did not have the disease (634). On 
the contrary, in Australia and Sweden more than half of 
the patients with newly diagnosed glaucoma had seen 
an ophthalmologist, but their disease was not diagnosed 
(633,635). All three countries have first-rate socially 
supported health systems.

Similar to Kaplan (368), Vaahtoranta-Lehtonen (53) 
explains this by: “Compared to studies performed in academic 
centres, in everyday practice ophthalmologists often apply a 
nonoptimal combination of diagnostic and follow-up tests and do 
so far less frequently, leading to a low specificity.”

Health economic modeling supports analyzing glaucomas 
as a stratified group of chronic diseases. Comparing 
resource utilization for patients with various types of 
glaucomas shows healthcare costs are higher for some types 

(i.e., exfoliation versus POAG) (512). Such quantifiable data 
is critical to run comparative evaluations of reimbursement 
models (fee-for-service versus bundled payments), as cost 
forecasts depend on the granularity of glaucoma diagnosis 
(56,637,638).

QALY might ensure better decision-making and 
a different treatment strategy regarding the need for 
intervention for populations in developing countries. In the 
Indian population, it is difficult to separate mild glaucoma 
patients from controls because demographic characteristics 
differ from those in developed countries (37). However, 
QALY is not sensitive to small changes in glaucoma severity 
or therapies (639,640).

For instance, a cross-sectional analysis of glaucoma 
patients under different therapies demonstrated QALY’s 
utility values that did not differ much between groups (639). 
Unlike conventional QoL glaucoma assessments techniques, 
the more comprehensive and granular QALY approach, 
fortified by stronger analytics and modeling methods, 
should better handle the impact of extensive demographic 
differences.

QALY decision analytic modeling in an academic 
environment
Decision analytic assessments of QALY are conducted 
to evaluate the efficiency and cost‑effectiveness of 
healthcare and to administer social services to glaucoma 
patients. Several decision-analytic modeling methods are 
used to estimate disease advancement, such as decision 
tree, Markov and DES models. Each decision-analytic 
model of healthcare economics evaluates different 
tradeoffs and quality assurance approaches in and out of  
academia (616,617,626,636,641-643).

The model selected to evaluate QALY outcomes for 
glaucoma patients must represent a complex, interconnected 
workflow of biomedical testing, patient treatment, QoL 
assessment, and corresponding socioeconomic conditions. 
It must be powerful enough to cover chronic effects of 
glaucoma regulatory disclosure requirements, and be agile 
enough to explore alternative strategies. The model should 
also consider robustness, in-field conditions, accuracy, speed 
and computational efficiency, granularity, transparency, 
ease of use, quality assurance, and cost of development and 
maintenance.

QALY outcome applications for chronic diseases must 
be properly designed, tested and constantly improved; their 
output has to be monitored for continuously changing 
inputs, especially for longer cycles. Despite this, modeling 
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approaches might differ in QALY estimates and decision 
outcomes, especially if the number of analyzed patients is 
insufficient (616,617,626,636,641-643). Choice of a viable 
QALY model outside of the R&D environment depends 
on the functional requirements formulated by academic, 
clinical, policy, financial and computer technology experts.

The decision tree is a simplified legacy model, which 
estimates probability of potential outcomes without 
accounting for effects of time. It is straightforward but 
labor-intensive to implement, inflexible and taxing to derive 
far‑reaching conclusions (616,617,626,642).

Commonly used in economic research, the Markov 
model is relatively uncomplicated and fast to implement 
with Excel spreadsheets and Visual Basic scripts. While it 
provides an advantageous mix of accuracy and run-time, 
it introduces complexity when calculating cost and QALY 
outcomes with large numbers of events. It can be used for 
evaluation of idealized models with a mutually exclusive 
chain of limited events. As the Markov model is forced to 
constantly check clinical events at the end of each cycle, its 
processing is slowed down, a major limitation, especially in 
non-basic applications (616,617,626,636,641-643).

DES modeling provides higher accuracy, reliability 
and speed for more complex, larger models,  with 
interdependent multiple health conditions competing for 
clinical events. It allows comparison of therapeutic effects 
of a medicine including adverse reactions with the use of 
an alternative treatment. Originally developed for physics 
and engineering applications, DES is currently extensively 
utilized in microeconomics, as well as in the insurance 
and biotechnology industries. With the introduction of 
personalized medicine, DES could better reflect individual 
patients’ characteristics and clinical profiles rather than 
rely on the population level statistics used by conventional 
methods.

DES modeling has been proposed for comprehensive 
costing analysis of different approaches to the treatment 
of glaucoma patients (45,238). Theirs and similar novel 
costing methods could link biomedical and QALY model 
blocks shown in Figure 1, supporting the implementation of 
an effective glaucoma treatment decision support platform.

DES is more complex to implement than alternatives, 
as it runs stochastic modeling, which estimates probability 
distributions of potential outcomes and possible risks by 
exploring many random variations in process inputs. Such 
random variations are based on fluctuations in historical 
data, such as the effect of IOP changes on the visual field in 
glaucoma patients. DES models could incorporate patient 

heterogeneity of costs and risks. It could handle historic 
data and plan future events, while Markov’s is a ‘memory-
less’ model (616,617,626,636,641-643).

The selection of decision-analytic models and the 
choice of key modeling assumptions, inputs and outcomes 
robustness have been insufficiently justified (642,644). 
Many QALY academic researchers continue to use 
simplified decision trees and Markov modeling. A 2017 
comprehensive evaluation of 41 model-based studies on 
the cost‑effectiveness of treatments for depression found 
that 21 used decision trees, 15 Markov models, and three 
DES models. Based on 11 predefined quality of modeling 
criteria, decision trees scored positively in just four of the 
11 criteria, Markov models in five, and three DES models 
in seven (642).

In a 2020 review of 22 decision-analytic modeling on 
the cost-effectiveness of treatments for primary open‑angle 
glaucoma, undertaken for more than 35 years in 15 different 
countries, 14 were Markov models, four were decision 
trees and four DES (644). Mass digitization of glaucoma 
care, financing and administering cycles in the clinical 
environment would require a more powerful and robust 
implementation approach compared with academic research 
conditions.

QALY decision analytic modeling in the clinical 
environment
In 2002, with 42 brands of five pharmacological classes of 
drugs that were then commonly used to treat glaucoma (either 
as monotherapy or in combination), medical therapy for 
glaucoma offered 56,159 different options (645). Today, with 
eight pharmacological classes available and new treatments 
(laser options, minimally invasive glaucoma surgical devices), 
as well as generic and new drug combinations, that number 
has increased substantially (18,646-650).

Yet for a glaucoma specialist, all but a few options are 
inappropriate for initial treatment in most cases. Like much 
in AI, what comes easily to trained humans is often hard for 
computers. Experience and learning hone treatment options 
for the specialist.

For AI systems, each treatment option is an extra input 
to be considered, an additional burden for the system to 
quantify potential outcomes. With exponential growth, 
input options for QALY decision-analytic modeling from 
biomedical factors offer trillions of choices, especially with 
the chronic character of this illness, far exceeding human 
cognitive capacity (Figure 9).

In 2011, more than 27 million possible inputs (different 
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utilities, utility respondents, cost bases, cost perspectives, 
time frames, discount rates, currencies, years) might go into 
a QALY analysis alone (627,651-654). A decade later, this 
has ballooned. Boundless data growth is characteristic of 
modeling the output span.

No medical expert can comprehend and analyze such 
colossal volumes of incongruous data in real-time. This is 
why ‘consensus of expert opinion’ is often regarded as the 
gold standard of diagnostic assessment (412). Hopefully, 
potentially unlimited processing abilities of AI will address 
this complex challenge.

The DES model, one of the most analytically powerful, 
can be computationally demanding, especially for 
probabilistic sensitivity analyses. In 2019 it simulated 
100,000 indiv idual  women with  postmenopausa l 
osteoporosis, to estimate the average total per-patient costs 
and QALYs in a 10-year time horizon (626). It performed 
100 million simulations (10,000 samples, each containing 
10,000 individual patients) for each treatment strategy in  
7.5 hours. For a medium-size ophthalmological practice 
with a dozen clinicians and a similar number of patients, 
modeling a more complex and more computationally 
intensive glaucoma treatment would be too expensive, and 
too slow to optimize meaningful multidimensional data for 
each patient.

In daily practice, clinicians stick to a dozen or so 
treatment plans they regard as viable and effective, based 
on training and experience. This pragmatic approach runs 
contrary to individualization of patient treatments. It limits 
the potential for treatment optimization for an individual, 

as well as accounting for possible QoL criteria that force 
patients to abandon their treatments (125,655,656). Even 
though computationally effective modeling is necessary 
to better understand glaucoma academically, no existing 
algorithmic modeling method could be scaled up for 
practical use in its global clinical environment, as it would 
be too slow and too expensive to implement.

Hence, functional requirements and underlying 
methodology for a patient‑centric computerized glaucoma 
diagnosis, medical treatment and QoL ecosystem must 
reflect the fundamental quantitative barrier between 
radically different digitizing approaches in the institutional 
research and worldwide clinical environments. Such a wall 
between two polar approaches reinforces our conclusion 
that only effective implementation of a powerful AI-based 
healthcare ecosystem could optimize numerous input 
and output parameters for individual patients globally, 
overcoming the quantitative barrier between academic and 
clinical approaches.

As a result of our quantitative analysis (Figure 9), from 
being a ‘nice to have’, AI has been found to be a ‘must have’ 
enabler.

Key points
(I)	 By considering the interests and opinions of users 

and stakeholders, we would like to ensure the 
successful development of a sustainable patient-
centr ic  computer ized g laucoma heal thcare 
ecosystem. How could such a critical system attract 
government and/or private insurance financial 
support? This depends on the economic, financial 
and regulatory factors formulated and discussed in 
this section.

(II)	 AI systems incur costs, but these would be offset at 
least in part by less overtreatment, less overdiagnosis, 
fewer visits to healthcare providers, less under-
treatment, with more optimal treatment outcomes. 
By avoiding unnecessary doctor visits and treatments, 
with potential side effects, patients’ QoL should be 
enhanced; there should be significant cost savings. 
It would be possible to conduct rigorous economic 
modeling to reveal break-even points.

(III)	 The multifactorial processes causing glaucoma visual 
loss make progression prediction complex and costly. 
With significant investment by VCs to develop novel 
technologies to facilitate diagnosis and treatment, 
venture funding will drive biomedical innovation and 
improve patient QoL. The extensive costs of new 
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Figure 9 Growth in facts affecting provider decisions versus 
human cognitive capacity. Inspired by a forecast by William W. 
Stead in 2008 that the absorption by physicians of the information 
published in 1990–2020 in exponentially growing genetics journals 
will inevitably be limited by the human processing capacity (108).
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glaucoma research will also require institutional and 
government financial contributions.

(IV)	 Venture financing of complex healthcare ecosystems 
is more challenging than the funding of early-stage 
biomedical products and services. Longer timelines 
for returns on investment from the development of 
an integrated healthcare ecosystem compare poorly 
with development of a new pharmaceutical or device. 
Many expensive and slow-to-resolve regulatory 
requirements and legal challenges that are difficult to 
predict, amplify this problem. A successful glaucoma 
healthcare ecosystem might prompt recognition of 
the need for similar patient-focused platforms for 
other chronic diseases (e.g., Alzheimer’s, Parkinson’s, 
cystic fibrosis, cardiovascular diseases, cancers, 
diabetes) and thus become monetizable in its own 
right.

(V)	 We could use QALY to evaluate healthcare 
outcomes, which requires comprehensive and 
quantitative patient-centric socioeconomic, financial 
and risk analyses. QALY combines into a single 
measure two disparate assessments of health status in 
chronic diseases: how much a new drug or treatment 
could extend (or shorten) a patient’s life and how 
much it might improve (or diminish) their QoL. 
It provides the healthcare system’s stakeholders 
with the cost‑effectiveness factors necessary for the 
optimal allocation of limited resources.

(VI)	 A  h e a l t h c a r e  e c o s y s t e m  s h o u l d  g e n e r a t e 
individualized forecasts of disease progression 
based on a patient’s situation, personal choices and 
likely risk profile. It should be able to facilitate 
joint decisions by clinician and patient on the most 
appropriate individualized biomedical targets for 
clinical actions. It should also exhibit surgeons’ track 
records for different procedures.

(VII)	 Modeling of health economics supports the analysis 
of glaucomas as a stratified group of diseases. 
Healthcare cost forecasts might depend on the 
granularity of glaucoma diagnosis, being different 
for various types of glaucoma. Cost quantifiable data 
enable comparative evaluations of reimbursement 
models.

(VIII)	 Decision analytic assessments of QALY evaluate 
healthcare efficiency and cost‑effectiveness, thus 
optimizing social support services for glaucoma 
patients. The most commonly used methods to 
estimate disease advancement are decision tree, 

Markov, and DES, with each model offering 
different tradeoffs. DES models are more flexible 
and computationally efficient than decision trees or 
Markov models.

(IX)	 Biomedical and QoL factors mean the distribution 
of input options for QALY patient-centric decision-
analytic modeling amounts to trillions of choices, 
far above human cognitive capacity; they grow 
exponentially. Computationally effective modeling 
is necessary to understand glaucoma. No existing 
algorithm could be scaled up for the worldwide 
implementation that could ensure reliable analysis, 
as it would be too slow and expensive.

(X)	 F u n c t i o n a l  r e q u i r e m e n t s  a n d  u n d e r l y i n g 
methodology for a patient‑centric computerized 
glaucoma diagnosis, medical treatment and QoL 
ecosystem must reflect very different digitizing 
approaches in global academic research versus 
clinical environments. Such a formidable wall 
between these two polar approaches reinforces our 
conclusion that only effective implementation of a 
powerful AI‑based decision-making system could 
effectively optimize numerous input and output 
parameters for individual patients. As a result of our 
quantitative analysis, from being a ‘nice to have’ 
feature, AI has been found as a ‘must have’ enabler.

Discussion

We believe radical improvement in global glaucoma care 
is possible with the aid of a patient-centric computerized 
treatment and healthcare ecosystem. A smart computerized 
system to manage glaucoma patients holistically, over 
a long period should be built on a new methodological 
foundation. With exponential data accumulation and 
human limitations to make healthcare decisions, the use 
of AI systems that complement clinical care is vital. We 
outline broad criteria necessary to optimize the efficacy of 
the integrated computer-aided decision-making system. 
Although no current AI training algorithms can meet these 
complex challenges, one should be able to define and later 
implement a potent global health data infrastructure with 
extensive R&D.

We identify many interdependent issues (including health/
analytical, ability to live independently, psychological, risk, 
technical, regulatory, security and privacy) necessary to 
resolve to create an effective treatment decision support 
platform on a large scale; we outline selection criteria for an 
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AI engine. We also establish AI engine types likely suitable 
for medical diagnostic applications. Large investment is 
needed to develop a relevant AI healthcare solution. 

A well-defined infrastructure could guide the proper 
structuring of each patient’s data with appropriate granular 
analysis, of selected patients’ segments, for example, the 
type of glaucoma, genetic predisposition and stage of the 
disease. AI-run testing and treatment methodologies must 
be individualized for each patient. A computerized medical 
treatment and QoL support ecosystem should support the 
multifaceted functionality of the critical building blocks of 
this defined integrated approach. It should also produce and 
periodically update personalized mid‑ to long‑term forecasts 
useful to glaucoma patients, their health practitioners, 
government budget authorities and private insurers. We 
have listed economic, financial and regulatory factors 
necessary for such a critical system to attract government 
and/or private insurance financial support, along with the 
need to conduct rigorous economic modeling to reveal 
break-even points.

Elderly glaucoma patients often suffer from various 
physical and/or psychological problems caused by 
several co-existing chronic diseases. To minimize health 
deterioration and to manage treatment risks, each chronic-
care patient needs a holistic approach, rather than separate 
treatment of each disease.

Increasingly in chronic disease management, overdiagnosis 
and overtreatment are challenges for patients and health 
systems. Up to half of glaucoma patients are overdiagnosed 
and overtreated, which can be harmful and reduce resources 
for other health priorities. This contributes to the crisis 
facing worldwide healthcare resources. Some governments 
consider financing healthcare services based on an assessment 
of overuse and underuse. As reasons for overuse are diverse, 
addressing them requires a range of effective strategies.

Conclusions

Analyzing glaucomas as a set of distinct subgroups of 
patients could advance computerized glaucoma diagnosis, 
treatment and QoL optimization; simplify digital decision 
analytics; and facilitate cost‑effective personalized 
healthcare. Such objective glaucoma diagnosis stratification 
would support the evaluation of quality and granularity of 
QoL costs, as well as optimize healthcare reimbursement 
models. Yet, there is valid debate among the clinicians 
whether to lump various glaucoma types together, keep 
them separate, or simultaneously build computerized 

models and conduct data analysis for both scenarios, as the 
potential downside of diagnosis stratification would be the 
creation of multiple computerized systems and decision 
trees for essentially similar treatments.

The requirement-gathering process that will develop 
a more formal FRS for an effective, efficient, integrated 
patient-centric glaucoma healthcare ecosystem would be 
a reasonable starting point. This ‘evergreen’ document 
would need to crystallize broad agreement between clients 
and developers, supported by health innovation, medical 
and regulatory communities in many countries, on how to 
implement, continuously to improve and extend a glaucoma 
holistic ecosystem. Typical inputs required for developing a 
sustainable healthcare ecosystem platform are a description 
of services that the software must offer, demonstration of 
the platform’s added value and economic benefits, applicable 
regulatory frameworks, features, functions and components 
of the system and its subsystems, work and data flows and 
risk profiles. Addressing these requirements will identify the 
project’s scope, cost and chances of success.

In summary, Figure 1 “Critical building blocks and 
enabling commercial and proprietary engines…” presents 
a condensed block diagram of the integrated approach 
to define functional requirements for a patient-centric 
computerized glaucoma diagnosis, medical treatment and 
QoL ecosystem.
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Supplementary

Table S1 Glaucoma general diagnosis

Glaucoma sub-type Description Share of the population affected Forecast References

Glaucoma The optic nerve has been damaged. • 0.5% at the age of 40; 
• 2% of over 40-year-old; 
• 8% of 80-year-old

Cannot be generalized; see specific diagnoses below (225,412,424)

Primary Intraocular pressure (IOP) might or might not be elevated. Optic nerve damage occurs without any known or detectable cause. ~60% of glaucomas Cannot be generalized; see specific diagnoses below (225,412,424)

Secondary IOP is or has been elevated due to some known pathological cause. Optic nerve damage occurs as a result of clinically evident external or 
internal conditions; i.e., injury, eye inflammation, exfoliation or pigment dispersion syndromes (with exfoliation fibrils or pigment molecules 
hindering drainage in the trabecular meshwork), prolonged use of steroid medication, problems with the focusing lens or cornea.

~40% of glaucomas Better outlook if the cause can be identified and treated; otherwise, 
treatment success depends on effective IOP control

(225,412,424)

Table S2 Primary glaucoma diagnosis

Glaucoma sub-type Description Share of the population affected Population affected Forecast

Open-angle [primary open-angle 
glaucoma (POAG), adult-onset]

Primary open-angle glaucoma occurs without any detectable cause. 
Normal-tension glaucoma (NTG), also called low-tension or normal-pressure glaucoma is a sub-type of primary open-angle 
glaucoma. The optic nerve is damaged even though the intraocular pressure (IOP) is not very high (usually between 12-20 mm 
Hg). The cause of damage is usually unknown. At higher risk for NTG are people: 
• with a family history of NTG;  
• of Japanese/Korean ancestry;  
• with a history of systemic heart disease. 
Juvenile-onset open angle glaucoma (JOAG)

~40% of total glaucomas More common in people with African 
ancestry

Open-angle glaucomas are responsible for about half of 
glaucoma visual disabilities. 
For NTG, because IOP is ‘normal’ (i.e., defined as POAG 
with <21 mmHg in some studies (33,387), diagnosis is 
often confirmed later than for high-IOP glaucomas. This 
emphasizes the importance of optic nerve evaluation at 
all treatment stages.

Angle-closure [primary angle-closure 
glaucoma (PACG)]

This type of glaucoma usually occurs due to reduced access of aqueous humor to the eye’s drainage pathways. It is caused by 
inherited anatomic elements of the individual’s eye (typically in long-sighted individuals) and further deteriorates with age-related 
thickening of the cataract that pushes the peripheral iris forward, further narrowing access of fluid to the drainage angle. Usually 
affects both eyes. If of sudden onset, might cause severe pain, headaches, nausea and vomiting, blurring of vision, sensations 
of rainbow rings around lights. If untreated, could destroy sight-in days. Almost all oral medications contraindicated in glaucoma 
are linked to this type of glaucoma. Most commonly chronic and asymptomatic. Forms of angle-closure glaucomas: 
• Acute; 
• Chronic.

~20% of total glaucomas Affects women more than men.  
More common in Chinese, Indian,  
other Asian and Inuit populations.

Angle-closure glaucomas are responsible for another 
half of glaucoma visual disabilities; in particular, because 
their diagnosis is often missed, even more frequently 
than for the open-angle glaucomas.

Primary congenital glaucoma (PCG) 
(childhood; juvenile)

Occurs in babies when there is an incorrect or incomplete development of the eye’s drainage canals during the prenatal period. A very small percentage of 
diagnosed glaucomas

Usually inherited Microsurgery can correct structural defects. Results are 
often better when uncomplicated by other abnormalities.
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Table S3 Secondary glaucoma diagnosis

Glaucoma sub-type Description
Share of the population 
affected

Population affected Forecast Angle

Exfoliative, also called 
pseudoexfoli-ative (XFG)

LOXL-1 gene abnormality has been associated with this particular condition. 
Abnormal material that looks like microscopic dandruff is released in the eye where it 
damages the drain and rubs on the iris, releasing its pigment granules into the watery 
fluid, further blocking drain channels and raising eye pressure, often rapidly and 
severely. This in turn might damage the optic nerve.

~25% of total 
glaucomas.

More common in older people and certain ethnic 
groups, including: 
• People from the Nordic and other Northern European 
countries; 
• Greeks and other Mediterranean populations; 
• Indians.

Tends to be a more aggressive form of glaucoma, but the 
underlying exfoliation syndrome might be found with no evidence 
of glaucoma.

Open-angle; might morph to 
angle-closure [secondary  
angle-closure glaucoma (SACG)], 
which is often more difficult to 
treat

Pigmentary dispersion 
syndrome (PDG)

Pigment granules from the back of the iris are dislodged by rubbing, float with the 
aqueous fluid, blocking and damaging the drainage channel. The eye pressure rises. 
This in turn might damage the optic nerve.

Small share of total 
glaucomas.

Although this is a relatively uncommon condition, 
it is more common among younger people, mostly 
shortsighted men in their 20s to 30s

As with the underlying exfoliation syndrome, pigmentary  
dispersion can occur without glaucoma. Usually treated like 
primary open-angle glaucoma, with some differences in the type 
of laser procedure performed in the affected eye.

Open angle

Uveitic Uveitic glaucoma diagnosis usually covers numerous inflammation disorders (e.g., 
sarcoidosis, tuberculosis, toxoplasmosis, and various viruses) that increase eye 
pressure. Forms of Uveitic glaucomas that affect only one eye: 
• Fuchs’ Heterochromic Iridocyclitis; 
• Posner-Schlossman Syndrome (Glaucomatocyclitis); 
• Herpetic uveitis; 
• Infective; 
• Toxoplasmosis. 
Other forms that can affect one or both eyes: 
• Juvenile idiopathic arthritis; 
• Ankylosing spondylitis; 
• Sarcoidosis; 
• Steroid related.

Small share of total 
glaucomas.

~20% of patients with ocular inflammatory disorders 
(uveitis)

With modern treatments focusing on the root cause of 
inflammation, as well as controlling eye pressure, many patients 
can maintain excellent vision.

Open angle; might morph to 
angle-closure (SACG), which is 
often more difficult to treat

Neovascular (NVG), also called 
new vessel, hemorrhagic, 
thrombotic, congestive, 
rubeotic, and diabetic 
hemorrhagic

NVG diagnosis usually covers numerous blinding diseases. Small share of total 
glaucomas.

Most commonly associated with retinal vein blockage 
or diabetic eye disease patients

The better controlled a person’s diabetes and the more efficient 
the treatment after a retinal vein obstruction, the less likely is 
NVG to develop. Treatment starts with the identification and 
correction of the cause. Newer medications and laser approaches 
have revolutionized treatment, but the outlook for visual recovery 
depends on the underlying cause, how much visual damage it 
has caused, and how amenable it is to the treatment.

Open angle; might morph to angle 
closure (SACG), which is often 
more difficult to treat

Elevated episcleral venous 
pressure (EVP)

• Venous obstruction; 
• Cavernous thrombosis; 
• Vena Cava syndrome; 
• A-V abnormalities; 
• C-C fistula; 
• Sturge-Weber.

Small share of total 
glaucomas.

Rare Open angle

Irido corneal endothelial 
syndrome (ICE)

ICE is a rare form of glaucoma, usually found in only one eye. Symptoms include hazy 
vision upon awakening and the appearance of colored rings around lights.

Small share of total 
glaucomas.

Rare. Cause unknown. ICE is difficult to treat; it causes visual damage through corneal 
decompensation, as well as glaucoma.

Open angle; might morph to angle 
closure (SACG), which is often 
more difficult to treat

Traumatic Mostly caused by a blunt injury to the eye and occasionally injuries that penetrate the 
eye; occurs either immediately after an injury or years later (called angle-recession 
glaucoma). Blunt Trauma (Angle Recession) causes include a blow to the eye from 
sportsrelated injuries (in baseball, boxing, squash). Angle recession highlights the 
damage done to the drainage canals in the eye with pressure increases sometimes 
many years after the injury. 
• Blunt trauma (angle recession; 
• Hyphema; 
• Ghost cell; 
• Schwartz.

Small share of total 
glaucomas.

The greater the extent of injury (seen as angle 
recession), the higher the risk. Glaucoma might occur 
up to 30 years later. Other conditions, such as severe 
nearsightedness, previous injury, infection, or prior 
surgery might also contribute.

Treated similarly to a more aggressive form of primary open-angle 
glaucoma.
If you have had an eye injury, you should have regular checks 
by an ophthalmologist for the rest of your life, to ensure that any 
subsequent glaucoma is detected early and efficient treatment 
offered to safeguard your vision.

Open angle

Lens-related • Lens particle; 
• Phakolytic; 
• Phakoanaphylactic.

Small share of total 
glaucomas.

Rare Open angle

Other Various rare forms of glaucomas not covered above:
• Drug-induced; 
• Iatrogenic; 
• Tumors.

Small share of total 
glaucomas.

Rare Open angle; might morph to angle 
closure (SACG)


