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Original Article

Efficient labelling for efficient deep learning: the benefit of a 
multiple-image-ranking method to generate high volume training 
data applied to ventricular slice level classification in cardiac MRI
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Background: Getting the most value from expert clinicians’ limited labelling time is a major challenge 
for artificial intelligence (AI) development in clinical imaging. We present a novel method for ground-truth 
labelling of cardiac magnetic resonance imaging (CMR) image data by leveraging multiple clinician experts 
ranking multiple images on a single ordinal axis, rather than manual labelling of one image at a time. We 
apply this strategy to train a deep learning (DL) model to classify the anatomical position of CMR images. 
This allows the automated removal of slices that do not contain the left ventricular (LV) myocardium.
Methods: Anonymised LV short-axis slices from 300 random scans (3,552 individual images) were 
extracted. Each image’s anatomical position relative to the LV was labelled using two different strategies 
performed for 5 hours each: (I) ‘one-image-at-a-time’: each image labelled according to its position: ‘too 
basal’, ‘LV’, or ‘too apical’ individually by one of three experts; and (II) ‘multiple-image-ranking’: three 
independent experts ordered slices according to their relative position from ‘most-basal’ to ‘most apical’ in 
batches of eight until each image had been viewed at least 3 times. Two convolutional neural networks were 
trained for a three-way classification task (each model using data from one labelling strategy). The models’ 
performance was evaluated by accuracy, F1-score, and area under the receiver operating characteristics curve 
(ROC AUC).
Results: After excluding images with artefact, 3,323 images were labelled by both strategies. The model 
trained using labels from the ‘multiple-image-ranking strategy’ performed better than the model using the 
‘one-image-at-a-time’ labelling strategy (accuracy 86% vs. 72%, P=0.02; F1-score 0.86 vs. 0.75; ROC AUC 
0.95 vs. 0.86). For expert clinicians performing this task manually the intra-observer variability was low 
(Cohen’s κ=0.90), but the inter-observer variability was higher (Cohen’s κ=0.77).
Conclusions: We present proof of concept that, given the same clinician labelling effort, comparing 
multiple images side-by-side using a ‘multiple-image-ranking’ strategy achieves ground truth labels for DL 
more accurately than by classifying images individually. We demonstrate a potential clinical application: the 
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Introduction

A typical cardiac magnetic resonance (CMR) imaging scan 
for a single patient may contain over a thousand images (1).  
This number of individual images presents a challenge, even 
for experienced clinicians, to manually sift through and 
find the images most relevant to the clinical question being 
considered. Deep learning (DL) can be used to streamline 
clinical workflow by automatically detecting features from 
CMR images to focus clinical attention and determine 
scanning workflow in real-time (2). However, a major rate-
limiting step in the development pipeline for training 
networks on specific tasks is the significant expert investment 
of human time required to generate sufficient high-quality 
labelling on a large enough scale for training (3). Since 

more data labelling is usually not possible due to expert 
unavailability, researchers instead focus their efforts on 
tweaking the model’s architecture and parameters to boost 
algorithmic performance. Maximising the data yield from 
limited expert labelling time is rarely prioritised and there 
is no precedent for the optimal data labelling strategy for 
clinical images. In medical imaging, the number of clinicians 
with sufficient experience is limited, meaning that inefficient 
labelling also has an opportunity cost of stopping clinicians 
from other useful activities, such as direct clinical care (4). 
Efficient DL requires an efficient labelling strategy, so it is 
of utmost importance to ensure labelling humans’ limited 
time results in the best possible algorithmic performance.

When expert clinicians are labelling medical images, 
one way to present the information is as single images 
about which the clinician is asked a binary question. 
Another is to present a large number of images in parallel 
and ask clinicians to rank a single feature (which may 
provide the answer to the binary question) from the group 
simultaneously presented. The optimally efficient strategy 
for a team of expert clinicians to label large volumes of 
medical image data is not known.

We aim to develop a strategy for medical image 
annotation that results in more secure labels, which take 
into account the varied opinion of multiple experts rather 
than the single opinion of one expert. We aim for this 
strategy to produce labels that result in better performing 
DL models when the amount of data labelled and the time 
spent on labelling is the same as other strategies.

In this study we compare two ways of labelling training 
data for machine learning (ML) in clinical imaging: (I) a 
strategy of single assessments into one of three discrete 
categories and (II) a ranking strategy of simultaneous 
comparisons of multiple images. We hypothesise that, given 
the same amount of expert labelling time, a DL classifier 
trained using data from a ‘multiple-image-ranking’ labelling 
strategy outperforms the same model trained with data from 
a single image assessment labelling strategy. We apply this 
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in CMR to the paradigm of identifying the subset of late 
gadolinium short-axis cardiac views that contain the heart 
by comparing the algorithmic performance of DL classifiers 
trained using both labelling strategies. This is clinically 
important because these images are used to examine the 
heart for scar [late gadolinium enhancement (LGE)] due 
to a range of conditions (5-7). The identification and 
characterization of LGE, especially in the left ventricle (LV) 
is a key determinant of treatment (8). When a stack of short-
axis LGE images is acquired only some of the slices image 
the LV, which is relevant to clinicians assessing LGE. Many 
images are ‘too basal’ or ‘too apical’; these are not relevant 
for LGE assessment and may divert clinicians’ focus from 
the clinical question (Figure 1). Using ML to automate slice 
level classification in order to streamline LGE assessment 
workflow is an area of active research (9,10). In a future 
with both clinician and artificial intelligence (AI) image 
interpretation, algorithms such as the classifier presented 
in this study could automatically remove images in which 
the structure of interest is not present, focusing human and 
machine attention to only review the images that maximize 
clinical yield. We present the following article in accordance 
with the STARD reporting checklist (available at https://
jmai.amegroups.com/article/view/10.21037/jmai-22-55/rc).

Methods

Data extraction and pre-processing

Anonymised short-axis late gadolinium images for 300 
scans (3,552 individual images) performed at our centre in 
London, UK between 2018 and 2022 were retrospectively 
and randomly extracted from our local CMR database 
[dataset (11)]. The eligibility criteria were having had a 
CMR with short-axis late gadolinium imaging between 2018 
and 2022. The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by the ethics board of the UK Health Regulatory 
Agency (Integrated Research Application System identifier 
243023) and informed consent was waived due to the data 
and analyses being anonymised at source. Two experienced 
CMR clinicians reviewed the extracted images and excluded 
those of insufficient quality due to significant artefact. Each 
short-axis stack was separated into its constituent individual 
images, which were randomly shuffled prior to manual 
labelling. The images were shuffled to ensure that labellers 
were ranking different slices from different scans rather 
than simply reordering all the slices from a single scan. 
This enabled the identification of generic inflection points 
between apical, LV and basal slices across the entire dataset.

Too apical

245

In the LV

2,413
Too basal

665
1000 1500 2000 2500 3000
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Figure 1 Slices from a stack of short-axis late gadolinium images for a patient in our dataset. Distribution of ‘too basal’, ‘in the LV’, and ‘too 
apical’ classes in the dataset of 3,323 images. Classifications labelled using the ‘one-image-at-a-time’ strategy. LV, left ventricle.

https://jmai.amegroups.com/article/view/10.21037/jmai-22-55/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-22-55/rc
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Data labelling and curation

A consensus meeting of clinicians determined definitions 
for the labelling of LV slice level according to the Society of 
Cardiovascular Magnetic Resonance (SCMR) guidelines (12):

(I) ‘Too basal’: a slice in which there is LV myocardium 
visible around less than 50% of the circumference 
of the blood pool;

(II) ‘LV’: a slice in which there is LV myocardium 
visible around more than 50% of the circumference 
of the blood pool;

(III) ‘Too apical’: a slice beyond the LV apex in which 
no LV myocardium is visible.

The images were uploaded to the Unity Imaging 
platform for labelling (13). Cardiac imaging experts 
performed the labelling (SZ, KV, GDC). Two strategies of 
ground truth labelling were performed, in parallel, on the 
same dataset of images:

Strategy 1: ‘one-image-at-a-time’. Single images were 
presented to the labeller sequentially. The labeller was 
instructed to review the image and select only one of the 
following options: “this slice is too basal”, “this slice is 
in the LV”, or “this slice is too apical” (Figure 2). There 
were three clinicians labelling the pool of images but a 
single image was only labelled by a single labeller and then 
removed from the pool (i.e., not repeated).

Strategy 2: ‘multiple-image-ranking’. Shuffled images 
were presented to labellers in batches of eight in random 
order. Labellers were instructed to reorder the images by 
moving the image tiles on the screen (e.g., click and drag) 
from “most basal” to “most apical” (Figure 3).

A bespoke algorithm was designed to determine which 
images were presented for labelling. This algorithm 
measured four parameters:

(I) ‘Ranking’: the ordinal position of the image within 
the entire dataset from 1 (most basal image) to 3,323 
(most apical image). This was initialized randomly 
at the start;

(II) ‘Rating’: a score between 0 (very apical) and 3,000 
(very basal) that was initialized at 1,500 for all 
images;

(III) ‘View count’: the number of times a particular 
image had been viewed and labelled;

(IV) ‘Volatility’: a measure of the agreement between 
multiple ratings of the same image, taking values 
between 0 (labellers always disagree about the 
position of this image in the dataset) and 1 (labellers 
agree perfectly about the position of this image in 
the dataset). Initialised at 0 for all images.

These variables were defined and updated in the back-end 
of the ranking algorithm, and were never shown to the raters. 
The only thing the raters saw were batches of 8 images which 
they could drag from most basal (top left of screen) to most 
apical (bottom right of screen), and a button to submit the 
current batch and load the next batch (Figure 3).

At the start, eight random images were presented. After 
the labeller ranked and submitted them, the ‘rating’, ‘view 
count’, and ‘volatility’ was updated for those eight images, 
and the ‘ranking’ was updated for the entire dataset. Images 
that were labelled as being towards the basal end of the 
spectrum had their ‘rating’ increase (closer to 3,000), those 
labelled as being towards the apical end of the spectrum had 
their ‘rating’ decrease (close to 0), whilst those regarded 
as being in the LV had the ‘rating’ stay close to 1,500 (the 
starting value). If an image had been previously rated as 
being quite basal, but a new labeller rated it as quite apical 
(i.e., a very divergent opinion) there would be larger jump 
in the rating and the volatility would increase (and vice 
versa if the new labeller agreed with the previous labeller’s 
label).

Then, a new set of eight images was presented to the 
labeller. Each time a labeller submitted an ordered batch, 
the four parameters of the algorithm were updated in real-
time. The algorithm prioritised images for review on the 
following criteria:

(I) Images that had not been seen before (view count 
=0), or had been reviewed much fewer times than 
other images in the volume were preferentially 
shown;

Figure 2 A screenshot of the ‘one-image-at-a-time’ data labelling 
strategy using the Unity platform. LV, left ventricle.
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(II) Images with high volatility (seen multiple times 
but different opinions between labellers) were 
preferentially shown until the volatility of their 
label decreased.

Images continued to be shown until every image had 
been reviewed at least three times. Three expert labellers 
worked independently on the pooled dataset but because 
of representation, were sometimes viewing images that had 
been seen by other labellers, contributing to the dynamic 
ratings in real-time. The resulting final dataset was an 
ordinal ranking of images based on slice level (rank 1 = 
most basal; rank 3,323 = most apical), based on the pooled 

labelling effort of three experts.
To enable direct comparison between the two versions 

of the model (trained using labels from the ‘one-image-at-
a-time’ and ‘multiple-image-ranking’ strategies), discrete 
labels had to be assigned to the ‘multiple-image-ranking’ 
labels to reflect the same three classes labelled using the 
‘one-image-at-a-time’ strategy. After the ranking had 
been completed, the images were probed to determine the 
inflection points at which ‘too basal’ transitioned to ‘LV’ 
and at which ‘LV’ transitioned to ‘too apical’. The discrete 
labels of ‘too basal’ and ‘too apical’ were assigned above and 
below these thresholds respectively, with ‘in the LV’ being 

Slices in random order

Slices ordered from basal to apical

Most basal

Most apical

Figure 3 A screenshot of ‘multiple-image-ranking’ data labelling strategy, before and after images were ranked using the Unity imaging 
platform.
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assigned to all the images in between.
To enable parity of labelling effort, the cumulative 

labelling time for each method was standardised at 5 hours. 
The labelling was performed by SZ, KV, and GDC. They 
were blinded to each other’s labelling.

Neural network design and training

The labelled data were split into training, validation, and 
test sets (80:10:10) using a stratified method to reflect class 
imbalances. The architecture chosen was an adapted version 
of Resnet (14) (trained from scratch starting with random 
weights) with a feed-forward network and final layer that 
output the probability of the input image being “too basal”, 
“in the LV”, or “too apical”. The class with the highest 
output probability was assigned as the predicted label for 
that image.

Two versions of the same network were trained; one for 
each labelling strategy (one-image-at-a-time or multiple-
image-ranking). For the training and validation sets, the 
labels assigned by the respective labelling strategy were 
retained. For the test set, only the labels assigned by ‘one-
image-at-a-time’ strategy were used as the definitive ground 
truth for performance evaluation. The test set was not seen 
by the network during training and validation.

Training was augmented by random crops to a 224×224 
pixel size, flips and rotations. For the training set only, 
images were first cropped 40% top/bottom and 30% left/
right in order to remove non-cardiac structures from the 
image periphery. This resulted in rectangular images which 
were made square by applying a 256×256 pixel centre 
crop. After this crop the random crop to 224×224 pixels 
was applied for augmentation. Each version underwent 
10 training runs starting with different random weight 
initialization. The models were trained on a Tesla P100-
PCIE-16GB GPU. Model parameters are shown in Table 1.

Evaluation of performance

Performance of both versions was evaluated on the same 
test set, using labels assigned by the one-image-at-a-time 
strategy. We regarded these labels to be the definitive 
ground truth because the one-image-at-a-time strategy is 
the currently established labelling paradigm for these type 
of data. The following performance metrics were calculated 
for both versions: accuracy, F1-score and area under the 
receiver operating characteristics curve (ROC AUC).

Statistical analysis

For statistical comparison between the two versions, the 
‘too basal’ and ‘too apical’ predictions were combined 
into a single class called ‘not in the LV’. The predictions 
could therefore be evaluated as a binary classification (‘in 
the LV’ vs. ‘not in the LV’) enabling comparison with 
McNemar’s tests (15). The null hypothesis was that there 
was no difference in the overall accuracy between the model 
trained using the ‘one-image-at-a-time’ strategy and the 
model trained using the ‘multiple-image-ranking’ strategy. 
A P value <0.05 was considered significant.

Intra-rater and inter-rater variability

The test set (333 images, 10% of the dataset) was double-
labeled by the same clinician and labeled by a second 
experienced clinician at least 2 weeks apart, in a blinded 
manner, using the one-image-at-a-time labelling strategy. 
Cohen’s κ was calculated to assess intra- and inter-rater 
variability for each labelling class.

Results

A total of 229 images were removed during quality control 
due to artefact, leaving 3,323 short-axis late gadolinium 
images available for labelling. Experienced clinicians were 
given a maximum of 5 hours (cumulative) per method to label 
as many images as possible using the two labelling strategies:
 ‘One-image-at-a-time’: after 5 hours clinicians had 

assigned labels to the entire dataset of 3,323 images. 
Although there were three labellers working on 
the dataset, each image was only labeled once by a 
single labeller and was not shown again.

 ‘Multiple-image-ranking’: three clinicians labelled 
for a combined total 5 hours (SZ—2 hours; 
KV—2 hours; GDC—1 hour). Every image in the 

Table 1 Key training parameters of DL classifier

Parameters Value

Architecture Resnet + feed forward neural network

Train:validation:test 80:10:10

Trainable parameters 22,199,747

Optimizer Adam with weight decay

Learning rate 1e-4

DL, deep learning.
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dataset of 3,323 had been viewed and ranked at 
least 3 times. A total of 44,097 individual pairwise 
comparisons were made.

The distribution of classes from the ‘one-image-at-a-
time’ strategy is shown in Figure 1.

Label agreement between the two labelling strategies

The data labels arising from each labelling strategy are 
illustrated in Figure 4. The multiple-image-ranking strategy 
labelled fewer images in the ‘LV’ class (2,225 vs. 2,413) and 
more in the ‘too apical’ class (455 vs. 245) than the one-
image-at-a-time strategy. The number of images labelled 
in the ‘too basal’ class were comparable between the two 
strategies (one-image-at-a-time =665; multiple-image-
ranking =643). Overall, there was only moderate agreement 
between the labels from the two strategies (Cohen’s κ=0.67).

Model performance

Both versions of the model (with labels from the ‘one-
image-at-a-time’ or ‘multiple-image-ranking’ labelling 
strategies) were trained with the same parameters for  
70 epochs. For each version, the iteration with the smallest 
loss on the validation set was selected. Accuracy, F1-score, 
and ROC AUC on the test set are shown in Table 2. The 
ROC curves and AUC for both model versions are shown 
in Figure 5.

Comparison of model versions

Confusion matrices of each model’s agreement with the 

ground-truth test set of 333 images is shown in Table 3. 
McNemar’s test showed that the ‘multiple-image-ranking’ 
model’s predictions had significantly higher agreement with 
the test set labels than the ‘one-image-at-a-time’ model 
(P=0.02) (Table 4).

Intra-rater and inter-rater variability

On the test set of 333 images that were double-reported 
by the same expert and another expert, the intra-observer 
variability was low (Cohen’s κ=0.90), but the inter-observer 
variability was higher (Cohen’s κ=0.77) (Table 5).

Discussion

This study has two key findings. First, we demonstrate that 
a ‘multiple-image-ranking’ strategy is feasible for ground 
truth labelling of clinical image data. For a fixed human 
time-investment, a network trained from this strategy was 
superior to a network trained with a ‘one-image-at-a-time’ 
labelling strategy (P=0.02). Second, we present a clinical 
application of this strategy to automatically detect which 
CMR short-axis slices are not imaging the LV myocardium 
with high accuracy (86%). This enables automatic removal 
of unrequired images to focus clinicians’ attention on the 
images most relevant to answering clinical questions.

Comparison with other approaches

Since annotated medical data are a limited resource due 
to limited availability of expert clinical labellers, trying to 
maximise algorithmic performance whilst reducing labelling 
effort is an area of active research in ML. One approach is 
transfer learning using networks that have been pre-trained 
on huge datasets in an unsupervised fashion and then fine-
tuning for the specific task using a few (much fewer than if 
training from scratch) manually annotated examples (16). 
Another approach is ‘active learning’, in which the examples 
within the dataset that are most likely to contribute to 
network learning are selected for manual annotation (17,18). 
This can be combined with metrics of label uncertainty to 
identify the data that will yield the most performance-value 
from manual annotation (19). A third approach is to use 
contrastive learning, a variant of self-supervised learning, 
based on the intuition that transformations of an image 
should have similar representations to each other and the 
original image, but dissimilar representations to different 
images. These approaches have shown some success to get 
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Figure 4 Data labels from each labelling strategy. LV, left ventricle.
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the most algorithmic training value from limited clinical 
images (20,21). All three approaches aim to reduce the 
amount of data that needs to be manually labelled, but 
they do not enable the contribution of multiple different 
labellers with minimal time penalty. Our multiple-image-
ranking approach enables the entire data volume to be 
viewed multiple times, by multiple experts, without taking 
more time than the one-image-at-a-time strategy. This 
approach reflects the wide spectrum of individual labelling 
behaviour and reduces label volatility without having to 
label fewer data or spend more time labelling. Our approach 
may be particularly helpful for tasks in which there are no 
clear class boundaries and there is intrinsic intra- and inter-
rater variability.

Impact on clinical ground-truth labelling

Researchers in clinical AI assiduously hone algorithmic 
performance by tweaking model architecture, but 
optimising the data labelling strategy is rarely prioritised. 
There is no precedent for the optimal data labelling strategy 

for clinical images. In this study we present a novel strategy 
to streamline the process of creating ground truth labels by 
clinician experts for ML, and compare it to a conventional 
labelling approach. The version of our classifier trained 
using the ‘multiple-image-ranking’ strategy significantly 
outperformed the version trained using the ‘one-image-
at-a-time’ strategy. Since the same number of images were 
labelled and the same time spent on both strategies, the 
differences between the two models’ performance is not 
due to data amount or labelling effort. The ‘multiple-
image-ranking’ strategy may have succeeded for a number 
of reasons. First, it shows many pictures in batches so 
a single ranking enables multiple pairwise comparisons 
with relatively little time penalty. Ranking a batch of eight 
images results in 28 unique pairs of comparisons, and it is 
efficient because it does not necessarily require systematic 
comparison of every pair. For example, image A and C do 
not need to be compared explicitly if both A and B, and B 
and C have already been compared. Ranking also allows 
reinspection of the same images, and correction of spurious 
errors which may have occurred on the first assessment. 

Table 2 Performance of two versions of the trained model (trained using labels from the ‘one-image-at-a-time’ labelling strategy or the ‘multiple-
image-ranking’ labelling strategy) on a test set of 333 images

Performance metric ‘One-image-at-a-time’ labelling strategy ‘Multiple-image-ranking’ labelling strategy

Class: ‘too basal’

Accuracy (95% CI) 0.91 (0.87–0.94) 0.93 (0.90–0.96)

ROC AUC (95% CI) 0.95 (0.91–0.99) 0.98 (0.96–1.00)

F1-score 0.77 0.85

Class: ‘in the LV’

Accuracy (95% CI) 0.72 (0.67–0.77) 0.86 (0.82–0.89)

ROC AUC (95% CI) 0.82 (0.77–0.87) 0.95 (0.93–0.97)

F1-score 0.78 0.90

Class: ‘too apical’

Accuracy (95% CI) 0.80 (0.75–0.84) 0.92 (0.88–0.95)

ROC AUC (95% CI) 0.97 (0.92–1.00) 0.97 (0.92–1.00)

F1-score 0.42 0.63

Overall

Accuracy (95% CI) 0.72 (0.67–0.77) 0.86 (0.82–0.89)

ROC AUC (95% CI) 0.86 (0.82–0.90) 0.95 (0.93–0.97)

F1-score 0.75 0.86

CI, confidence interval; ROC AUC, area under the receiver operating characteristics curve; LV, left ventricular.
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A conventional ‘one-image-at-a-time’ approach does not 
allow this unless all images are re-reviewed.

Although our analyses show that experts are usually 
internally consistent in this task (Cohen’s κ=0.90), there is 
more disagreement between experts (Cohen’s κ=0.77). AI 
algorithms trained on labels from a single operator may be 
less secure than those which are developed from a broader 
spectrum of expert opinion. The key differences between 
the methods are summarized in Table 6.

For the same human labelling time investment, the 
version trained on the labels from the ‘multiple-image-
ranking’ strategy outperformed the ‘one-image-at-a-time’ 
strategy, demonstrating it is a more efficient way to harness 

human time. This is quite a surprising finding since the test 
set was labelled using the one-image-at-a-time strategy. 
We hypothesise this is because the multiple-image-ranking 
strategy reframes the labelling task from classification to 
regression. This has at least two potential advantages. First, 
a slice which is borderline between “too basal” and “in the 
LV” is no longer forced into a dichotomous label, with 
the model being punished for getting it wrong. Instead, 
the model is rewarded for placing the slice appropriately 
on the decision boundary. The influence of ‘grey zone’ 
labels and the problems it causes for classification tasks 
is a well recognised phenomenon. Indeed, our multiple-
image-ranking strategy could be regarded to be a novel 
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Figure 5 ROCs curves of two versions of the model evaluated on the test set of 333 images. AUC, area under the curve; LV, left ventricle; 
ROC, receiver operating characteristic.



Journal of Medical Artificial Intelligence, 2023Page 10 of 13

© AME Publishing Company. J Med Artif Intell 2023;6:4 | https://dx.doi.org/10.21037/jmai-22-55

extension of categorical label smoothing (22). In this type 
of strategy, the classification boundaries are blurred and 
performance improvements are significant. This may be 
particularly useful for datasets where there is controversy 
at the boundaries between classes, such as LV slice level as 
illustrated by the inter-observer variability.

Second, our multiple-image-ranking strategy has in built 

robustness to labelling errors, whilst allowing collaborative 
labelling with pooling of experience. The multiple-image-
ranking strategy relies on rapid repeated relative labelling, 
therefore rare stochastic labelling errors, or unrepresentative 
expert opinions, have only a modest influence over the final 
rating for a given image. We propose these two phenomena 
may be responsible for the improved performance of using 

Table 3 Confusion matrices for two model versions trained using data from either the ‘one-image-at-a-time’ or ‘multiple-image-ranking’ 
labelling strategy, to predict whether images in the test set of 333 images are ‘in the LV’ or ‘not in the LV’

Model name Predictions (n) Model prediction: in the LV Model prediction: not in the LV

One-image-at-a-time Ground truth (test set): in the LV 167 75

Ground truth (test set): not in the LV 18 73

Multiple-image-ranking Ground truth (test set): in the LV 202 40

Ground truth (test set): not in the LV 6 85

LV, left ventricle.

Table 4 Recall, precision, and accuracy of two versions of the trained model, tested on a set of 333 images

Predictions from Recall (95% CI) Precision (95% CI) Accuracy (95% CI) P value (vs. ‘one-image-at-a-time’)

‘One-image-at-a-time’ labelling strategy 0.90 (0.85–0.94) 0.49 (0.41–0.58) 0.72 (0.67–0.77) –

‘Multiple-image-ranking’ labelling strategy 0.97 (0.94–0.99) 0.68 (0.59–0.76) 0.86 (0.82–0.90) 0.02

P value from McNemar’s test between the ‘one-image-at-a-time’ version and the ‘multiple-image-ranking’ version. CI, confidence interval.

Table 5 Intra-rater and inter-rater variability for LV slice level classification

Slice level/rater variability Rater 1, pass 1 Rater 1, pass 2 Rater 2

Too basal (n) 66 56 47

In the LV (n) 242 255 257

Too apical (n) 25 22 29

Variability vs. rater 1 pass 1 (Cohen’s κ) – 0.90 0.77

LV, left ventricle.

Table 6 Features of the two ground-truth labelling strategies

Features One-image-at-a-time labelling strategy Multiple-image-ranking labelling strategy

Total labelling hours (sum of all experts’ time) 5 5

Number of experts contributing 1 3

Number of views per image 1 ≥3

Number of images labelled 3,552 3,552

Paired image comparisons 0 44,097

Labelling output Unrelated classes Ordinal list
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the multiple-image-ranking strategy for model training. 
Further work is required to test and prove these hypotheses 
formally.

We recommend this method for ordinal data that does 
not require feature segmentation. Within CMR, this 
method could be used for other tasks such as quantifying the 
amount of LGE, for which current methods are imprecise 
and time-consuming (23), hence preventing automation 
by ML. Streamlining data labelling by clinical experts 
addresses a major bottleneck in the clinical ML pipeline (24).

Impact on clinical workflow

Using AI algorithms to streamline radiographer workflow 
and guide sequence selection in CMR has been previously 
described (2). This study is another proof of concept of AI 
technology to improve clinical workflow in imaging. CMR 
studies frequently exceed 1,000 individual images; datasets 
of this magnitude are challenging even for experienced 
clinicians to manually sift through. Automatic removal of 
images that are irrelevant to a clinician’s analysis of the 
study (such as the removal by our classifier of short-axis 
slices that do not image the LV) would help clinicians to 
focus their attention on images relevant to answering the 
clinical question.

In our dataset of 3,324 images, 664 (20.0%) were too 
basal and 246 (7.4%) too apical. These short-axis LGE 
images did not image the LV and so were unhelpful to 
clinicians undertaking scar analysis. Automatically removing 
these images from the dataset reduced the size of CMR 
studies by over 25%.

Automatic image curation could be used to focus not 
only human attention, but also the machine attention of 
other AI algorithms in the imaging workflow. For example 
in CMR, algorithms that aid humans by automatically 
segmenting cardiac structures to derive volumetric and 
functional measurements still require manual clinician input 
to edit the segmentation when the slice is not imaging the 
LV. The need for this manual editing could be mitigated 
by automatically removing the non-LV slices before the 
segmentation algorithm, using a classifier like the one we 
present in this study. Another challenge for automation 
in CMR is the quantification of LGE, for which semi-
automated methods are available but not routinely used 
in clinical practice because they require time-consuming 
human-computer interaction including determination of 
which slices are imaging the LV (9,23). Automatic removal 
of the non-LV slices would streamline LGE quantification 

and standardize reporting of this important imaging 
biomarker.

Limitations

Our study has some limitations. First, neither version of 
the model is 100% accurate for all three classes. Like many 
classifications in clinical medicine, determining the slice 
level in CMR requires some subjective judgement and in 
our study, clinicians did not always agree with each other. 
Our inter-rater experiment illustrates that there is intrinsic 
variability between clinicians for this task (inter-rater Cohen 
κ=0.77). The version trained using the ‘multiple-image-
ranking’ strategy agreed with the clinicians’ labels more 
than clinicians agreed with themselves, but this was not the 
case for the ‘one-image-at-a-time’ labelling strategy; the 
innovation of ‘multiple-image-ranking’ lifted the algorithm 
to supra-human performance. This further illustrates the 
benefit of using labels generated by a group of experts to 
improve label (and algorithm) accuracy.

Second, this study is proof of concept of this labelling 
strategy. For the ‘LV’ class in particular, there was a trade-
off between recall and precision. This was exacerbated by 
significant class imbalances in the data. We favored a higher 
recall because the clinical impact of a false negative (keeping 
a non-LV slice in the dataset) is more acceptable than of 
a false positive (wrongly removing an LV slice from the 
dataset).

Third, as with all DL models, it is possible that our 
findings may not generalize to other settings due to 
‘overfitting’ (25). To mitigate this, we report performance 
on a test set that was only used after training the models. 
Furthermore, the dataset was assembled from randomly 
selected scans performed at two different hospitals 
across a number of years. Our future work will test the 
reproducibility of these results by evaluating the models’ 
performance on large, public CMR datasets.

Conclusions

We present a novel strategy for ground truth labelling of 
medical image training data for ML. Comparing multiple 
images side-by-side using the ‘multiple-image-ranking’ 
strategy obtains information from human image analysis 
more efficiently than by classifying them individually. We 
present proof of concept that this labelling strategy results 
in a trained classifier for LV slice level categorisation that 
outperforms a ‘one-image-at-a-time’ labelling strategy, 
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and with higher accuracy than the intrinsic inter-human 
variability for this task. A potential clinical application of 
this is the automatic removal of unrequired CMR images. 
This leads to increased efficiency by focussing human and 
machine attention on images which are needed to answer 
clinical questions.
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