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Background and Objective: Novel advances in machine learning (ML) and its subfield, deep learning 
(DL), as well as the recent release of large-scale electrocardiogram (ECG) databases, have driven a sharp 
increase in research related to automated ECG interpretation. This review aims to summarize the recent ML 
approaches for automatically interpreting standard 12-lead ECG signals.
Methods: We searched 10 indexing databases, for original research in English, referring to the application 
of ML/DL techniques in 12-lead, raw ECG signal analysis. The retrieved titles were filtered based on their 
relevance. The results were summarized and reported.
Key Content and Findings: More than 80% of studies integrated a DL approach, while fewer attempts 
applied a feature extraction method to obtain inputs for training a simple ML classifier. The average 
diagnostic accuracy was as high as 90%, while several other performance metrics, such as the area under 
the curve (AUC), F1-score, sensitivity and specificity, were also employed. DL models generally demanded 
10-time more samples for training but were capable of better handling multi-class problems. The most 
frequently involved disease (49% of studies) was myocardial infarction (MI), while atrial fibrillation (AF) 
was encountered in more than one-third of studies. Various datasets were used for training and testing, 
constituting either private collections or publicly available databanks [such as the “Physikalisch-Technische 
Bundesanstalt” (PTB) dataset and datasets derived from the “China Physiological Signal Challenge” and 
the “Computing in Cardiology Challenge”]. Overall, DL and simpler ML approaches for automated ECG 
interpretation display unprecedented growth, reaching remarkably high performances.
Conclusions: While such novel tools can support clinicians in reaching reliable diagnoses for life-
threatening conditions on the spot, concerns regarding their accountability do exist. Generalizability of the 
developed approaches is still an issue, possibly mitigable with the extensive deployment of developed models, 
so as to become massively accessible and validatable. Finally, the observed heterogeneity of the various 
attempts underlines the need for transparency and reproducibility in the development processes.
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Introduction

Since its conception in 1872 by Muirhead, and its formal 
establishment in 1901 by Einthoven, electrocardiogram 
(ECG) has been considered a cornerstone of the diagnostic 
armamentarium in cardiology (1,2). The main concept 
lies in applying several electrodes onto the patient’s skin 
to capture the voltage signals produced by heartbeat 
cycles (normal or abnormal), from different angles. The 
conventional clinical setting involves the application of 
10 electrodes, whose inputs are combined to produce a 
12-lead electrical signal, namely a collection of 12 time-
series signals of voltage (3). These 12 signals represent 12 
different “looking angles”, six on the coronal plane (“limb” 
leads) and six on the transverse one (“precordial” leads). To 
employ ECG as a diagnostic tool, clinicians and researchers 
are trained to identify the ECG features distinguishably 
present in each abnormal heart condition. This has led to 
a rule-based system for identifying ECG compartments 
(e.g., P wave, QRS complex, ST segment) and their 
morphological characteristics (e.g., duration, amplitude, 
shape) and relating them to distinct clinical entities in order 
to reach a diagnosis. Back in the 1950s, the first attempts 
to automatically interpret ECGs were based on the same 
idea (4). Rule-based algorithms were used to delineate ECG 
signals, detect and extract their components (e.g., the QRS 
morphology, QRS duration, PR duration) and relate the 
findings to clinical diseases, according to predefined rules, 
based on domain knowledge, thus simulating a human 
examiner (5). However, up until now, such methods have 
received considerable criticism due to their suboptimal 
predictive accuracy that might mislead inexperienced 
clinicians into false conclusions (4). 

Today, in the era of machine (ML) and deep learning 
(DL), new approaches arose as potential solutions to 
this challenge (6,7). ML and DL techniques have a long 
history in medical practice. The application of these 
techniques in medicine began in the 1970s, where statistical 
and probabilistic models were used to analyze medical  
data (8). However, it was not until the advent of computer 
technology and increased computing power that ML and 
DL began to be used more widely in medical practice. One 
of the earliest applications of ML in medical practice was 
in the field of radiology. In the 1980s, researchers began 

to use ML algorithms to analyze medical images, such as 
X-rays and computed tomography (CT) scans (9). These 
algorithms were able to identify patterns and anomalies in 
the images that were not visible to the human eye, helping 
radiologists to make more accurate diagnoses. Since then, 
ML and DL have been used in various medical fields, 
including oncology, cardiology, neurology, and genomics. 
DL has made significant advances in medical practice in 
recent years. DL techniques have been used to develop 
predictive models for patient outcomes, disease diagnosis, 
and drug discovery (10).

With respect to automated ECG analysis, the most basic 
ML approach uses algorithms to extract more abstract 
features from ECG data, often not interpretable by the 
human eye. After applying some dimensionality reduction 
technique, such as Discrete Fourier Transformation 
(DFT) or Discrete Wavelet Transformation (DWT), these 
features (for example, frequency coefficients of a frequency 
spectrum, derived by DFT, or wavelet coefficients produced 
by DWT) are then “fed” to a simple ML classifier, such 
as a k-Nearest Neighbor (kNN) or a support vector 
machine (SVM) model to establish a relationship used for 
classification (11). The most recent approach, representing 
an “end-to-end” solution, is the application of DL with 
neural networks (NN) (12,13). In this case, raw ECG data 
are roughly “dumped” to an NN that “learns” the complex 
parameters mediating the relationship between data points 
and the associated different clinical entities (labels). Various 
NN architectures with different components can be applied 
for this task. For example, long-short term memory (LSTM) 
structures, which re-use previously seen information during 
later processing, and residual NN layers that preserve raw 
information by enabling it to “bypass” intermediate analysis 
steps, are useful techniques for that purpose. On top of that, 
many approaches often involve extensive data preprocessing 
and frequently employ combinations of the aforementioned 
techniques, usually by applying a feature extraction method, 
and then serving the extracted features as inputs to an NN 
model.

Rationale and objective

Considering the remarkable variations among potential 
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models, including simpler ML techniques (such as SVM, 
kNN) and purely DL models with various configurations, 
the high heterogeneity of different approaches becomes 
evident. Additionally, the orientation of the task at hand 
can vary significantly. ECG interpretation models can be 
utilized for many purposes and in many different settings, 
ranging from binary classification of specific entities [for 
example, atrial fibrillation (AF) against normal] using few-
lead, long-duration settings (such as Holter devices), up 
to multi-label classification into several diseases, from 
the standard 12-lead ECG setting (14-16). This great 
abundance of different models and focuses, along with 
the recent release of several large-scale, high-quality, 
annotated ECG datasets (17-20), has led to an explosive 
growth in relevant projects, which, in turn, generates the 
need for summarizing them, assessing the current state in 
the field, and fostering a solid ground for future research. 
Aligning with this need, this narrative review constitutes a 
comprehensive summary of advances in the field of ML/
DL-enabled automated ECG interpretation, focusing on 
the clinically relevant, standard 12-lead ECG setting, and 
providing evidence for the predictive performance of the 
various approaches. We present this article in accordance 
with the Narrative Review reporting checklist (available at 
https://jmai.amegroups.com/article/view/10.21037/jmai-
22-94/rc). 

Methods

Eligibility criteria

We included titles relevant to automated interpretation 
of the ECG, using ML or DL techniques. Not prototype 
studies or studies not in English were excluded. Additionally, 
studies using fewer than 12 leads as initial input (for 
example, 3-lead Holter signals) were also excluded. We 
followed this approach to narrow down the spectrum of 
included settings to only the 12-lead standard ones and 
avoid heterogeneity in application fields. Studies that used 
initial inputs other than raw ECG signals (for example, 
heartbeat features such as RR interval) were not included. 
Similarly, models that produced classification outputs 
(labels) other than clinical entities (for example, heartbeat 
features such as PR prolongation) or performed the binary 
classification “normal/abnormal” were excluded to ensure 
the clinical usability of the studies included. Studies that did 
not report metrics for their predictive performance were 
also excluded.

Search strategy and study selection

We searched PubMed, Scopus, Google Scholar, IEEE 
Xplore Digital Library, Microsoft Academic, dblp—
Computer Science Bibliography, ACM Digital Library, 
arXiv, medRxiv and bioRxiv indexing databases for 
relevant titles, from January 2016 up to January 2021 
(Table 1). To implement the aforementioned inclusion 
criteria, an appropriate set of search terms was used, 
depending on each specific database. The following search 
query is an indicative example for PubMed: (“ECG” OR 
“electrocardiogram”) AND ((“pattern” OR “signal” OR 
“automatic”) AND (“recognition” OR “detection” OR 
“prediction” OR “analysis” OR “reading” OR “diagnosis”)) 
AND (“algorithm” OR “machine learning” OR “ML” 
OR “deep learning” OR “DL” OR “neural networks” OR 
“CNN” OR “RNN” OR “time series” OR “series analysis”). 
After screening and filtering the retrieved titles, based on 
content eligibility, paradigmatic studies were shortlisted and 
presented.

Data extracted

The algorithm type employed, i ts  configuration/
architecture, the dataset(/s) used, the number and type of 
labels involved and the performance metrics applied, were 
the main features extracted. Moreover, the dataset size, as 
well as the subset percentage allocated for training, were 
documented. The performance measures are reported 
for testing on unseen external data or on a hold-out fold, 
and if none of these approaches were followed, then they 
represent the average cross-validation scores. For studies 
applying a two-step classification model [for example, 
myocardial infarction (MI) vs. normal, followed by the 
type of myocardial infarction], the performance measure is 
reported for the final step. Further information about the 
ECG databanks, such as the recording frequency and the 
length of their waveforms, was obtained. The availability of 
the source code and the data used is also reported.

Algorithm types

The majority of studies (35 studies, 81%) employed 
various DL techniques, either as complete “end-to-
end” solutions, or in conjunction with other approaches, 
such as feature extraction techniques (Table 2). Although 
falling into the same algorithmic category, these studies 
display great heterogeneity in the architecture of their NN 



Journal of Medical Artificial Intelligence, 2023Page 4 of 14

© AME Publishing Company. J Med Artif Intell 2023;6:6 | https://dx.doi.org/10.21037/jmai-22-94

(Table S1). Both convolutional and recurrent NN (CNN, 
RNN; respectively) are widely used, with CNN present in  
28 studies (80%) and RNN in 13 (37%). A usual pattern 
suggests RNN for parallel “temporal” analysis (across each 
lead) and CNN for “spatial” analysis (aggregating outputs 
from all previously analyzed leads), although CNN can 
be used for “temporal” analysis as well (21-28). Gated 
recurrent units (GRU) and LSTM layers were shown to 
display superior performance, against the vanilla version 
of RNN (29). Quite often is the use of bidirectional RNN, 
GRU and LSTM structures (9 studies, 26%), in order 
to retain information in both directions (back and forth) 
during processing (25,27,30-36). The ReLu activation 
function is typically employed after each convolution in 
hidden layers, while Softmax (multi-label classification) and 
Sigmoid (binary classification and multi-label classification 
with multiple labels per entry) activation functions are used 
in the final layer. Pooling (average, max or custom) and 
batch normalization layers are widely applied several times 
in intermediate steps, to reduce the dimensionality, improve 
performance and speed-up the whole training process. 
Residual blocks, with skip connections, are found in  
12 studies (34%) in order to preserve the information intact, 
in parallel with its processing through other layers, before 
concatenating the two outputs (22,26,37-46). Attention 
layers and inception blocks are also encountered. Attention 
mechanisms are quite often (10 studies, 22%) as a means for 

focusing on important intermediate inputs and improving 
performance (23,25,26,30-32,36,37,47,48). On the contrary, 
inception is more rarely applied (3 studies, 7%) in order to 
reduce overfitting and computational cost (24,44,48). The 
exclusive use of more traditional ML techniques is also 
found in some studies. These often involve a technique for 
abstract feature extraction, most usually DFT, DWT or a 
similar variation, and then “feed” the extracted features to 
train a simple ML classifier, such as kNN or SVM (49-53). 
Another frequent pattern is the combinatorial employment 
of both feature extraction techniques (usually a DWT or 
a DFT approach) and the use of these extracted features 
for training an NN (37,43,45,54-57). Data preprocessing 
techniques are also frequently encountered, with noise 
reduction and signal normalization commonly applied. 
Moreover, many studies prefer not to use the whole, 
repetitive ECG signals, but slice the long ones to achieve 
equal lengths, or segment them into separate beats and 
select representative ones. A detailed presentation of 
different algorithm architectures for each study, along with 
relevant comments, is provided in Table S1.

Datasets

As shown in Table 2, 12 (28%) projects use an internal 
dataset for training and testing, usually derived from the 
clinical environment of the researchers. The remaining 

Table 1 The search strategy summary

Items Specification

Date of search January 2021

Databases and other 
sources searched

PubMed, Scopus, Google Scholar, IEEE Xplore Digital Library, Microsoft Academic, dblp—Computer Science 
Bibliography, ACM Digital Library, arXiv, medRxiv and bioRxiv

Search terms used Terms related to ECG: (“ECG” OR “electrocardiogram”), pattern recognition: ((“pattern” OR “signal” OR 
“automatic”) AND (“recognition” OR “detection” OR “prediction” OR “analysis” OR “reading” OR “diagnosis”)), 
and ML/DL algorithms and models: (“algorithm” OR “machine learning” OR “ML” OR “deep learning” OR “DL” 
OR “neural networks” OR “CNN” OR “RNN” OR “time series” OR “series analysis”)

Timeframe From 2016 to 2021

Inclusion and exclusion 
criteria

Prototype studies in English, relevant to automated interpretation of the ECG, using ML or DL techniques. 
Studies using fewer than 12 leads as initial input were excluded. Studies that used initial inputs other than raw 
ECG signals, as well as those with models producing classification outputs (labels) other than clinical entities or 
performing binary classification into “normal/abnormal”, were also excluded. Studies not reporting performance 
metrics were not included

Selection process Two authors independently screened and filtered the retrieved titles, based on content eligibility. In case of 
discrepancies, a third author was involved and the decision was reached by majority voting

ECG, electrocardiogram; ML, machine learning; DL, deep learning; CNN, convolutional neural network; RNN, recurrent neural network. 

https://cdn.amegroups.cn/static/public/JMAI-22-94-supplementary.pdf
https://cdn.amegroups.cn/static/public/JMAI-22-94-supplementary.pdf
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Table 2 Summary of study characteristics

Study Technique Dataset
Total number 
of samples

Labels
Performance 

metric†

Adedinsewo et al., 2020 DL Int N/A LVSD, no-LVSD 0.859

Attia, Kapa, et al., 2019 DL Int 97,829 LVSD, no-LVSD 0.857

Attia, Noseworthy, et al., 2019 DL Int 649,931 AF, non-AF (future onset) 0.794

Cai et al., 2020 DL Int, CPSC2018, MLws 16,557 AF, normal 0.994

Chen et al., 2020 DL CPSC2018 9,831 AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, 
STE, normal

0.97

Darmawahyuni et al., 2019 DL PTB 12,359 MI, normal 0.976

Feng et al., 2019 Mi CCDD 620 SRa, ST, PAC, PVC, RBBB, LVHV, STc, Tc, 
Lad, normal

0.742

Fu et al., 2020 DL PTB 760,128 AMI, ALMI, ASMI, IMI, ILMI 0.629

Han & Shi, 2019 sML PTB 33,586 MI, non-MI 0.927

Jafarian et al., 2020 DL PTB 5,968 AMI, ALMI, ASMI, IMI, ILMI, IPLMI, normal 1

Jia et al., 2019 DL 1stChiECG 13,500 AF, I-AVB, RBBB, LAFB, PVC, PAC, ER, 
Tc, normal

0.872 (f1)

Jo et al., 2021 DL Int, PTB-XL, 
ChapECG, CinC2017

169,369 AF, non-AF 0.993

Khawaja, 2018 n.a. Int n.a. Hypertrophy, MI, normal 0.746

Li et al., 2020 DL Int 7,000 AF, I-AVB, RBBB, LAFB, PVC, PAC, ER, 
Tc, normal

0.928

Liu J et al., 2019 sML PTB 104 MI, normal 0.816

Liu W et al., 2020 DL PTB 64,350 AMI, ASMI, ALMI, IMI, ILMI, normal 0.931

Lu et al., 2020 DL CCDD 143,092 SVT, VT, MI, LVH, LAtH, normal 0.878

Makimoto et al., 2020 DL PTB 289 MI, non-MI 0.81

Megahed et al., 2019 DL PTB 549 AMI, ALMI, ASMI, ASLMI, IMI, ILMI, 
IPLMI, IPMI, LMI, PMI, PLMI, normal

0.993 (f1)

Mostayed et al., 2018 DL CPSC2018 107,414 AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, 
STE, normal

0.739 (f1)

Oh et al., 2017 sML PTB, INCART 16,099 CAD, non-CAD 0.997

Oppelt et al., 2020 Mi CinC2020 49,539 CinC2020 classes 0.724

Padhy & Dandapat, 2017 sML PTB 9,946 AMI, ALMI, ASMI, IMI, ILMI, normal 0.981

Prabhakararao & Dandapat, 
2020

DL PTB, STAFFIII 14,260 EMI, AcMI, CMI, non-MI, normal 0.978

Raghunath et al., 2020 DL Int 1,151,037 AF, non-AF (future onset) 0.83 (auc)

Ribeiro et al., 2020 DL Int 2,322,513 I-AVB, RBBB, LBBB, SB, AF, ST 0.926 (f1)

Sigurthorsdottir et al., 2020 DL CinC2020 43,135 CinC2020 classes 0.573

Strodthoff & Strodthoff, 2019 DL PTB 53,489 AMI, IMI, normal 0.933 (sen)

Tison et al., 2019 Mi PTB, Int 36,186 PAH, HyC, CA, MVP, normal 0.87 (auc)

Table 2 (continued)
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Table 2 (continued)

Study Technique Dataset
Total number 
of samples

Labels
Performance 

metric†

Tripathy & Dandapat, 2016 sML PTB 68 BBB, MI, HMD, normal 0.861

Tripathy & Dandapat, 2017 sML PTB 68 BBB, MI, HMD, normal 0.984

Tripathy et al., 2019a Mi PTB 17,100 AMI, ALMI, IMI, ILMI, IPLMI, normal 0.998

Tripathy et al., 2019b Mi PTB 174 MI, non-MI 0.997

Wang C et al., 2019 Mi 1stChiECG 14,000 AF, I-AVB, RBBB, LAFB, PVC, PAC, ER, 
Tc, normal

0.863 (f1)

Wang HM et al., 2019 DL PTB 61,074 AMI, IMI, normal 0.953 (auc)

Yao et al., 2020 DL CPSC2018 9,831 AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, 
STE, normal

0.852

Yuan & Xing, 2019 Mi 1stChiECG 14,000 AF, I-AVB, RBBB, LAFB, PVC, PAC, ER, 
Tc, normal

0.879 (f1)

Zhang X et al., 2019 DL PTB 54,753 AMI, ALMI, ASMI, IMI, ILMI, normal 0.998

Zhang X et al., 2020 DL Int 277,807 PAC, AF, Afl, PVC, asystole, oMI, MI, 
LVHV, STc, hyperK, Tc, LVH, I-AVB, II-

AVB, LBBB, RBBB, VpES, normal

0.95

Zhang D et al., 2021 DL CPSC2018 9,831 AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, 
STE, normal

0.966

Zhang J et al., 2020 DL CPSC2018 9,831 AF, I-AVB, LBBB, RBBB, PAC, PVC, STD, 
STE, normal

0.868

Zhang J et al., 2021 sML PTB 60,766 AMI, ALMI, ASMI, ASLMI, IMI, ILMI, 
IPLMI, IPMI, LMI, PMI, PLMI, normal

0.994

Zhu et al., 2020 DL Int 180,112 Several including I-AVB, II-AVB, VT, PAC, 
AF, WPW, normal

0.983 (auc)

†, represents accuracy for most studies, except when otherwise indicated, according to the following notion: (f1), F1-score; (auc), area 
under the curve; (sen), sensitivity (for multi-label classification models the average values are provided). DL, deep learning; sML, simple 
(non-DL) machine learning; Mi, Mixed methods (more details on the algorithms used in each approach are provided in Table S1); Int, 
internal database (private collection); CPSC2018, China Physiological Signal Challenge 2018; MLws, Mason-Likar wearable ECG 12-lead 
system; PTB, Physikalisch-Technische Bundesanstalt ECG database; CCDD, Chinese Cardiovascular Disease Database; 1stChiECG, First 
China ECG Intelligent Competition; PTB-XL, new release of PTB ECG database; ChapECG; Chapman ECG database; CinC2020/2017, 
PhysioNet/Computing in Cardiology 2020 or 2017; INCART, St. Petersburg INCART 12-lead Arrhythmia Database; STAFIII, STAFF III 
Database in PhysioNet; N/A, not applicable; n.a., not available; LVSD, left ventricular systolic dysfunction; AF, atrial fibrillation; I-AVB, 
1st degree atrioventricular block; LBBB, left BBB; RBBB, right BBB; BBB, bundle branch block; PAC, premature atrial contraction; PVC, 
premature ventricular contraction; STD, ST-segment depression; STE, ST-segment elevation; MI, myocardial infarction; SRa, sinus-rhythm 
arrhythmia; ST, sinus tachycardia; LVHV, left ventricle high voltage; STc, ST-segment change; Tc, T-wave change; Lad, left axis deviation; 
AMI, anterior MI; ALMI, anterolateral MI; ASMI, anteroseptal MI; IMI, inferior MI; ILMI, inferolateral MI; IPLMI, inferoposterolateral MI; LAFB, 
left anterior fascicular block; ER, early repolarization; SVT, supraventricular tachycardia; VT, ventricular tachycardia; LVH, left ventricular 
hypertrophy; LAtH, left atrial hypertrophy; IPMI, inferoposterior MI; PMI, posterior MI; PLMI, posterolateral MI; CAD, coronary artery 
disease; EMI, early progression of MI; AcMI, acute MI; CMI, chronic MI; SB, sinus bradycardia; PAH, pulmonary arterial hypertension; HyC, 
hypertrophic cardiomyopathy; CA, cardiac amyloidosis; MVP, mitral valve prolapse; HMD, heart muscle defect; Afl, atrial flutter; oMI, old 
MI; hyperK, hyperkalemia; II-AVB, 2nd degree atrioventricular block; VpES, ventricular pre-excitation syndrome; WPW, Wolf-Parkinson-
White syndrome. 

https://cdn.amegroups.cn/static/public/JMAI-22-94-supplementary.pdf
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studies employ publicly available datasets, while a few 
use datasets offered in the context of relevant contests  
(25,26,30,32,35,37,39,41,43,45,47,58). Five (12%) projects 
employ combinations of two (23,55,59), three (58) or  
four (41) datasets, by using separate datasets for development 
and testing, or by mixing them and then splitting them from 
scratch for the different building stages. The “Physikalisch-
Technische Bundesanstalt” (PTB) ECG dataset (60), present 
in 21 studies (49%), is the most widely used source of 
data. Its current version was released in 2004, consisting of 
549 ECGs by 290 different individuals, belonging to nine 
different classes. The second most frequent databank is 
the “China Physiological Signal Challenge 2018” dataset, 
adopted by six studies (14%). The “First China ECG Smart 
Competition” dataset, the “China Cardiovascular Disease 
Database” (CCDD) and the data from “Computing in 
Cardiology/Physionet Challenge 2020” follow, with two 
associated projects each. More details on the most frequent 
data sources are provided in Table 3. Finally, some datasets, 
such as the “Chapman ECG” dataset, the “St. Petersburg 
INCART 12-lead Arrhythmia Database” and the PTB-XL 
database are exploited by only one study each. PTB-XL, 
released in April 2020, is the most recent, large, publicly 
available ECG dataset, with more than 21,000 ECG samples 
of 10 seconds length, obtained from 18,885 individuals. The 
ECG samples are classified roughly into five super-classes 
(MI, ST-/T-change, conduction disturbance, hypertrophy 
and normal)  with many secondary subcategories , 

accompanied by a rich collection of demographic and 
clinical information. A usual approach is to segment the 
ECG lines into several frames or even single heartbeats, so 
that a large number of datapoints is generated. The most 
frequent algorithm for QRS detection and beat separation 
is the Pan-Tompkins algorithm (61). The average dataset 
size across all studies is 158,490, with an average size for the 
training set equal to 134,053. Models based on DL or mixed 
techniques (DL combined with other methods) demanded 
more subjects for training (158,577 on average) than simpler 
ML models (an average of 14,940 samples).

Labels

There are great variations among studies concerning the 
clinical entities used as labels (Table S2). The most widely 
included pathology is the MI (62,63), encountered in 
21 (49%) of the studies. In nine of them, the model also 
focuses on the localization of the infarction (inflicted area). 
AF is the second most popular disease, included in 16 (37%) 
of the studies. Moreover, while most studies attempt to 
identify the ongoing heart condition from the ECG, a few 
studies claim to provide predictive value for future onset of 
AF (22,24) or other conditions (21). Different combinations 
of these clinical entities are used in each study (often 
underlined by the employed, already annotated, dataset), 
with an average of seven different disease classes per study. 
Detailed information on the included class labels is provided 

Table 3 Most frequently used datasets

Dataset
Year of 
release

Size
Length 

(s)
Frequency 

(Hz)
Label size Comments and availability

PTB Diagnostic ECG 
Database

2004 549 ~115 1,000 9 (with additional specific 
details for each case)

http://www.physionet.org/content/
ptbdb/1.0.0/

China Physiological  
Signal Challenge 2018

2018 9,831 6 to 60 500 9 https://2018.icbeb.org/Challenge.html

The First China ECG 
Smart Competition

2019 14,000 9 to 90 500 9 Refers to the “Rematch” phase; Questionable 
availability (not included on the webpage); 
http://mdi.ids.tsinghua.edu.cn/

China Cardiovascular 
Disease Database

2010 179,130 500 378 Availability upon request; http://www.ecgdb.
com/

Computing in  
Cardiology Challenge 
2020

2020 20,674 6 to 
60/10

500 111 disease labels 
(according to SNOMED 

CT)

Includes 5 sub-datasets, from which only 2 are 
included here (CinC201, Georgia Challenge); 
https://physionetchallenges.org/2020/

Size refers to the number of ECG records included. Length refers to each ECG record. SNOMED Clinical Terms (https://www.snomed.
org/). PTB, Physikalisch-Technische Bundesanstalt; ECG, electrocardiogram; SNOMED CT, Systematized Nomenclature of Medicine 
Clinical Terms. 

https://cdn.amegroups.cn/static/public/JMAI-22-94-supplementary.pdf
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in Table 2. 

Performance metrics

In the present review, only studies providing metrics for 
their predictive performance were included. Most of them 
apply several different measures, such as accuracy, area 
under the curve (AUC), F1-score, sensitivity, specificity, 
positive and negative predictive value (PPV and NPV; 
respectively), while two studies adopt custom metrics 
(25,37). The most widely used performance metric is 
accuracy, namely the percentage of correct to overall 
attempted diagnoses, present in 32 (74%) of the studies. 
The average, unweighted accuracy is 89.3% [standard 
deviation (SD) =11.5%], although performance can vary 
significantly with respect to several factors, such as the 
algorithm type, the algorithm configuration, the train/
test sets and the label size and balance (Figure 1). While 
the mean specificity, representing the ability of the model 
to correctly distinguish normal samples, was 91.2%, the 
mean sensitivity, namely the model’s performance in 
identifying positive cases, was fairly lower at 89.3%. The 
mean AUC was 91.6%, while average F1-score was 84%. 
Finally, the mean NPV was found higher than the average 
PPV (94% and 85.7%, respectively). A detailed report 
of all the performance measures for each study can be 

found in Table S3. Apart from providing evidence for their 
predictive performance, four studies took a step forward and 
compared the performance of their algorithms against that 
of benchmark diagnostic techniques or human evaluators, 
concluding that the automated algorithms can outperform 
the existing, traditional diagnostic approaches (38,46,64,65).

Additional information

Five out of the 43 studies were available only as not peer-
reviewed preprints, indexed in arXiv, medRxiv and bioRxiv 
(24,25,35,37,39). Most studies do not provide instructions 
for accessing the source code, with only 8 (19%) offering 
explicit directions (21,24,30,35,38,39,46,55). Of the 
overall 12 studies using non-publicly available datasets, 
only 4 of them (33%) provided instructions for accessing 
the source data (21,24,38,46). Finally, according to the 
16 studies (37%) offering information on the hardware 
infrastructure used, multi-core central (CPU) and graphic 
(GPU) processing units are used, with random access 
memory (RAM) capacity ranging from 8 to 224 Gigabytes  
(22,24,26,27,29,31-33,36,40,48,49,51,54,58,65).

Discussion

Summary of evidence and insights

The explosive growth in research is evident, even when 
restricting the included models by applying narrow 
eligibility criteria (aforementioned criteria, including 12-
lead only models, raw ECG as inputs, clinical entities as 
output and other). Relevant studies display significant 
heterogeneity in many aspects. At first, several different 
performance metrics are used across studies, hampering a 
comparative analysis at a certain extent. Moreover, there are 
numerous different datasets employed, comprising either 
publicly available databanks or private data collections, 
which, in turn, also determine the associated classification 
labels. Most importantly, different projects vary greatly 
with regard to the algorithmic types they use. While  
28 studies (65%) employ a strictly DL approach, 7 studies 
(16%) follow more traditional approaches with simple ML 
classifiers based on extracted features as inputs. Finally, 
another 7 works (16%) employ mixed techniques (feature 
extraction and NN), while 1 study does not report the 
underlying algorithm in detail.

This trend toward DL approaches can plausibly be 
attributed to the recent release of numerous publicly 
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Figure 1 Algorithm types (x-axis) along with the most frequently 
used performance metrics (y-axis for metric value, dot color for 
metric type) and label sizes (dot size). ACC, accuracy; F1, F1-score; 
AUC, area under the curve; SEN, sensitivity; DL, Exclusively 
Deep Learning methods; Mi, Mixed methods; sML, Simpler 
Machine Learning methods; N/A, not available. 
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available ECG databanks, leading the way for developing 
trainable, “data-hungry” DL models. From the MIT-BIH 
database (two-lead signals by 47 subjects) published in 
2005 (66) and the PTB database (549 12-lead records from 
290 subjects) released in 2004 (60), developers can now 
exploit tens of thousands of annotated, complete 12-lead 
ECG lines, obtained by various contemporary databanks 
(17,18,20,67). Recent ECG analysis contests, such as the 
“PhysioNet/Computing in Cardiology”, the “First China 
ECG Smart Competition” and the “China Physiological 
Challenge”, have fostered new attempts and boosted related 
research. Moreover, modern advances in the DL field, such 
as attention layers, residual blocks, bidirectional LSTM/
GRU and other structures, as well as the improvement of 
computer hardware, have also made feasible the analysis 
of large chunks of high-dimensional ECG data. Although 
deep NN usually demand considerably larger data sizes 
than simpler ML techniques, they can achieve remarkably 
high performances, even when dealing with multi-class 
problems (many clinical entities). On the contrary, simpler 
models are usually constrained to fewer classes in order to 
reach a satisfactory performance (e.g., binary classification 
between AF/non-AF). Indeed, strictly DL and mixed 
models use an average of 158,577 samples for training, 
while the same figure for simpler ML techniques (no NN) 
is 14,940 (these values were obtained by multiplying the 
whole dataset size with the percentage used for training, 
after any segmentation of ECG lines into frames/heartbeats 
had already taken place during pre-processing). However, 
the former models are able to “ingest” many more labels 
(7.7 on average), while the latter usually support only binary 
or few-label classification (4.6 labels on average). This 
intuitive tradeoff among algorithm type, dataset size, label 
size and predictive performance can be seen in Figure 1.  
Subsequently, DL approaches seem to prevail, despite 
their computational and data demands, partially due to 
the current existence of abundant data (public databases, 
digitization and automated storage of ECGs by novel 
ECG machines), but also due to the ongoing increase in 
computational power.

A critical point not to be missed is the interpretation 
of model performance in the medical scene. Although a 
slight difference of 0.5% in sensitivity might seem trivial 
as a number, when applied to the diagnosis of patients 
with a severe condition, for example, a MI, it means that  
5 persons out of 1,000 will go undiagnosed when suffering 
from a possibly fatal heart attack. Therefore, sensitivity, 
in particular, is a crucial measure that should not be 

overlooked, in the case of a reassuringly high accuracy, F1-
score or other metric. On the other hand, sacrificing PPV 
for the sake of sensitivity, will unnecessarily impose an extra 
burden on the already heavy workload of the clinicians, 
as it might accumulate overdiagnosed, healthy individuals 
in the emergency rooms. This example demonstrates the 
practical significance of optimizing diagnostic algorithms 
when applying them in such situations. Achieving a golden 
balance, but also excellence in particular metrics, is of 
absolute importance, but still seems an unreached goal 
that cultivates doubt among clinicians. Consequently, 
clinicians seem to consult automated ECG analysis reports 
for reaching a diagnosis, but still not to trust it over human 
judgment (4,68).

Generalizability and transparency are major concerns 
here, as they generally are in ML/DL development  
projects (69). Although novel algorithms have achieved 
impressive performance records, even in multi-label 
problems, most of them are predominantly trained and 
tested in the same, common databases, and predominantly 
in publicly available ones (Table 2). This raises the issue 
of external validity when dealing with real data from the 
worldwide pool of patients. In essence, such models might 
display satisfactory performance within the study setting, 
but may prove incapable of predicting accurately external 
data, as they might differ from those used for training 
in various aspects that had not been accounted for. One 
of the main reasons of limited diagnostic accuracy and 
compromised generalizability is the quality of the ECG 
signals. Raw 12-lead signals can be affected by several 
factors such as muscle movement, electrode placement, 
and interference from other devices, which can affect the 
accuracy of the model (70). Additionally, the quality of 
the signal can be affected by noise and artifacts, which can 
result in incorrect feature extraction and subsequently lower 
performance (71). Furthermore, the lack of diversity in 
the dataset used for training ML models can impact their 
external validity, making it difficult to generalize the results 
to other patient populations (21). Finally, the choice of 
ML algorithm can also impact the accuracy. For instance, 
DL-based models have shown great potential in ECG  
analysis (72), but they require significant computational 
power and large datasets.

Careful consideration of these factors is necessary to 
design accurate and reliable ML models for automated 
ECG analysis of raw 12-lead signals in cardiac diagnosis. 
Additionally, another possible solution to the problem of 
low generalizability could be the massive deployment of 
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developed models through convenient means, e.g., mobile 
applications, so that they become accessible to clinicians 
worldwide. This could facilitate their validation by 
independent researchers, testing them on their own private 
collections of real ECG data. Furthermore, policies that 
compromise transparency should also be flagged. Only 33% 
of the projects using internal datasets, provided instructions 
on how to obtain the anonymized data, while only 19% of 
the overall studies offered guidance for accessing the source 
code. Preventing the specialized reader from examining 
and understanding the “inner workings” of the proposed 
models, hinders their further improvement and restricts 
scholars to comparing different approaches merely by their 
self-reported metrics, depriving them of the opportunity for 
an in-depth analysis. These facts indicate that transparency 
and reproducibility are problems still to be addressed.

Strengths and limitations

We assume that this review can add value to the existing 
knowledge since it summarizes the novel advances in ECG 
automated analysis models, focused on the narrow domain 
of 12-lead standard ECG practice. Its reproducibility is 
enhanced by explicitly reporting all the analysis steps, as well 
as by the adoption of the PRISMA standards. Insights on 
the application of different algorithmic approaches, along 
with their requirements and their benefits (trade-off among 
data size, predictive performance and label size “ingestion”) 
are provided and justified with evidence. We deem that 
this review fosters a solid ground for future research, by 
attempting a golden balance between technical aspects 
useful for data analysts/developers, and clinical viewpoints, 
meaningful to healthcare experts. In this report, we decided 
to narrow down the spectrum of examined applications to 
the standard 12-lead ECG setting. While integrating more 
subfield orientations [for example, Holter signals with long 
durations but few leads (16), or even single-lead wearable 
devices destined for patient self-monitoring (14,15)] would 
possibly make the provided information more inclusive, it 
would result in a report of limited practical usability and 
applicability, as the outcomes would stem from highly 
heterogenous underlying settings. Despite any variations 
among the model structures, the studies included in this 
review apply to the same setting, enabling their outcomes to 
be directly comparable. Finally, by applying inclusive search 
terms and scanning a variety of databases, we esteem that 
our findings are as up-to-date as possible.

However, this work is better understood within the 

spectrum of its limitations. A general drawback of reviews 
in this field is that they quickly become outdated. Indeed, 
the ability to build such models with only a commodity 
computer and adequate data, as minimal requirements, has 
led to a remarkable bloom in related research. “New waves” 
of attempts are typically triggered with release of every new 
database. To handle this enormous amount of entries across 
“time” and “space”, we restricted our search to studies 
published within the past 5 years, that focused specifically 
on 12-lead ECG models. In this way, we ensured that only 
contemporary approaches are included, we enhanced the 
clinical usability of the results and secured their longer 
“life-span”, however, with the inevitable cost of possibly 
omitting neighboring subdomains, such as Holter signal 
analyses, that might offer additional insights. Nevertheless, 
comparative analyses of single- vs. multi-lead models 
have shown a slight, yet clinically important, difference in 
performance that favors the latter (30,58). Additionally, the 
considerable, multilevel heterogeneity in studies (among 
algorithms, datasets, metrics and labels) makes it difficult to 
construct a standardized way for grouping and comparing 
studies, not to mention identifying any superior approach. 
It seems that there is no “one-to-rule-them-all” solution, 
but many “try-and-error”, domain-specific attempts. 
Furthermore, the presentation of the very fine details of 
every model’s structure was impossible, leading to some 
loss of possibly significant information from the developer’s 
point of view, especially regarding the deep NN architecture 
(for example, window size, stride and other aspects of every 
convolution layer). To compensate for that, we created an 
illustrated, semantic representation of the basic structure 
of each model, presented in Table S1, and we also provided 
full references to all related studies. Finally, we were not 
able to reproduce the workflow and results of each model, 
since very few studies provided access to their source 
code and data. Given this, the need for policies fostering 
reproducibility and transparency must be highlighted.

Conclusions 

Despite having a long-standing presence since the 1950s, 
automated ECG analysis exhibits unprecedented growth 
nowadays. Modern analytic techniques (mainly employing 
DL approaches), newly released, publicly available datasets, 
and the improvements in computational power, may be 
considered as the driving factors of this progress. Several 
studies, experimenting with novel approaches in this field, 
report performance measures close to 100%. Although 

https://cdn.amegroups.cn/static/public/JMAI-22-94-supplementary.pdf
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encouraging, these outcomes should be interpreted with 
caution, always minding the underlying heterogeneity 
of relevant attempts, as well as any generalizability, 
transparency and reproducibility issues.

Overcoming these issues is still a challenge and a call 
for future research. Deployable models, for example 
through mobile or web applications, could not only sharply 
increase the usability of the various models, but also 
validate their high predictive value on real-life ECG data, 
obtained from the worldwide medical community. Room 
for improvement also exists in the number and type of 
clinical entities employed, as classification labels. In order 
to serve supportively, or even to substitute clinicians, in 
diagnosing heart conditions from ECG, automated models 
must not only provide high performance metrics for their 
tasks, but also adopt tasks of true value. This means that 
binary classification between individuals presenting with a 
specific disease (e.g., AF) and those who do not, particularly 
when this disease is easily detectable by the human eye, 
is of limited clinical value. On the contrary, models that 
can distinguish among a variety of different conditions, 
especially when they are typically hard to spot (e.g., ST-
segment depression that might have various underlying 
causes), could be much more appreciated and utilized by 
clinicians. Fortunately, modern ECG databanks, with 
adequately large numbers of entries, and rich, nearly 
complete annotations, exist to support this aim and bring 
us one step closer to fully automated, reliable ECG 
interpretation.
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Table S1 Details on the architecture of each model, along with relevant comments 

Study Architecture† Details and comments‡

(64) N/A Previously trained and validated algorithm by Attia, 2019; LVSD validated 
with echo; Superior to NT-proBNP (AUC: 0.80)

(21) I-{CBReP}x6CBRe{DBReDr}x2So-O Explicit “Temporal – spatial” architecture; LVSD validated with echo; Patients 
without diagnosed LVSD but positive for model-screening, had a 4-fold 
higher risk for future LVSD

(22) I-{{{BRCBC}//{CP}}x3Dr}x3CBReDrDSo-O Explicit “Temporal – spatial” architecture; Future AF by current SR ECG; 
Combined AF/Atrial flutter vs. other labels; AF validated by trained personnel

(58) I-{C//C//C}{SE}Cx2{SE}Cx4{SE}Cx6{SE}
Cx4PDSi-O

{SE}: I-{PDReDSi}//{}-O; AF validated by expert cardiologists; Also two other 
experiments: AF vs. non-AF, AF vs. normal vs. non-AF

(30) I-{CCP}x5GbABDSi-O Adequate performance also for 476 patients with combined arrhythmias; 
Slightly worse for single-lead ECG

(29) LSTM structure Also compared against GRU and vanilla RNN models; No details about other 
blocks; LSTM seems superior to vanilla RNN and GRU alternatives; ACC is 
balanced (BACC); 549 ECGs, further segmented to 12,359 data points

(54) I-DTW-DDSo-O 10 cluster centers by 40 typical samples; Superior to other traditional 
methods; Low training - High testing time

(31) I-A{{CReBPDrCReBPDrA}//{GbBDrA}}BDrD-O First detect MI (ACC=0.96), then locate it (ACC=0.63); Metrics for inter-
patient analysis (intra-patient: ACC=0.99); Beat-based

(49) WT - feature selection - SVM Beat-based

(40) I-{CRe//}x12C{CReBCReB}x3CBPDSo-O Also compared against I-WT-PCAx4-3layerNN-O; Results slightly lower 
for hierarchical classification (WT-PCA-NN); 549 ECGs divided into 5,968 
segments

(47) I-{CBReP{Db}x3CBReP{Db}x3CBReP{Db}
x3CBReP{Db}x3ALSo}//{{CBReP{Db}
x3CBReP{Db}x3CBReP{Db}x3CBReP{Db}x3}//
{CBReP{Db}x9}}-O

{Db}: I-{CBRe{{CBRe}//{ABRe}}-O; Complex, ensemble structure;

(41) I-{CBP{Res}x4FDDrD}//2-DDrDDrDSi-O {Res}: I-{CBCB}//{}Si-O; One module for irregularity and one for P detection 
(in parallel); Developed with internal data, validated on external data; 
Performance reported for PTB-XL

(28) n.a. Not provided; Copyrighted algorithms for each step (not provided); Validated 
on CSE

(48) I-CPCP{Inc}x2P{Inc}x5P{Inc}x2P{G}x2DrSo-O {Inc}: I-{CBR//CCBRe//CCBRe//PCBRe}-O; Also tested against external 
databases (custom set of 6,500 and PhysioNet set of 500 samples); Metrics 
from the external PhysioNet databank

(50) WT - 228-feature selection (Relief) - KNN Rule-based; Also compared against other classifiers (SVM, ANN, DA) with 
suboptimal results

(33) I-{CBPCBPCBPP}//12-Lb//12-D-O Beat-based

(34) I-{{CBReP}x3DDrRe}//{Lb}-{DDrRe}x3So-O Lb only for lead II

(65) I-CBReP{CReP}x3DrDBReDrDSi-O Superior to cardiologists’ performance; Better results against lower resolution 
ECG images or fewer leads

(63) n.a. No details on how signals are segmented into 1 sec intervals

(35) I-Lbx2DSo-O

(59) WT delineator (4 -level) - split - {CSP} - kNN {CSP}: Custom trainable filter for extracting features; Beat-based; Training of 
the CSP filter (2-fold) and the kNN classifier (10-fold cross-validation); Train/
test sets formed after WT

(37) I-CP{Res}x3CAPDDSi-O {Res}: I-{{{Sc}B}//{CB{Sc}BCB}Sw}-O; {Sc}: Custom module, similar to DWT; 
Dr added in between layers; Modified metric (CinC2020 guidelines)

(51) WT - SVD - SVM Segmented to beats to form frames; The ACC for detecting MI only is 0.953

(23) I-{GA}//12ADSo-O {GA} for every lead, then A for inter-lead mixing

(24) I-{CReB{I}x4CReBP}//8{DRe}x3DSi-O {I}: {CReB}//3P; Patients positive for algorithm result had a 7.2-fold higher 
risk for developing AF over 30 years; Downsized to 8 from 12 leads

(38) I-CBRe{Res}x4DSi-O {Res}: I-{{PC}//{CBReDrC}}{{BReDr}//{}}-O; No “normal” class is reported; 
Sigmoid activation to account for multi-labeled cases; Outperforms human 
evaluators (F1-score)

(25) I-{{MB}Si{MB}P}//8-{{GbDr}//{Dr}}-
ReDrABReDrDSi-O

{MB}: {{CReCRe}//{CReDr}}; Modified metric (CinC2020 guidelines); 
Downsized to 8 from 12 leads

(42) I-{CP}x6So-O

Table S1 (continued)

Supplementary
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Table S1 (continued)

Study Architecture† Details and comments‡

(55) I-{CNN}-HMM-heuristic-GBM-O {CNN}: CNN with C, B, D layers for delineation (features of ECG); HMM 
(Hidden Markov Model) and a heuristic used for optimizing the delineator; 
CNN finds meaningful segments (e.g.,: P wave) and features [725] which are 
“fed” to a GBM (Gradient Boosted Machine) classifier; CNN trained on 170 
manually annotated ECGs

(52) Phase alteration features (WT) - fuzzy kNN

(53) WT/FT - SVM

(56) I-FT/WT-CRePDDSo-O Beat-based

(57) WT/FT - NN

(43) I-{segm}-{C{{DB}BErCDrP}x3{DB}BReP}//10-
DrFDSi-O

{segm}: Segmentation to 10 pieces of 10 sec each (with overlapping); {DB}: 
I-{{BReCDr}//{}}-{{BReCDr}//{}}-O

(44) I-{Net1}//{Net2}//{Net3}-Ensemble-O {Net1}, {Net2}, {Net3} represent 3 different networks ensembled: They have 
different architectures (including CBRe, P, D, etc. layers) and receive 12 
single-lead and one 12-lead signals.; Beat-based; Averaged metrics for each 
class

(26) I-{CoB}//12-Lx2-ASo-O {CoB}: I-CCPCCPCCCPCCCPCCCP-O; Beat-based

(45) I-{{FE}//{CBRe{CBReCBRe}x16{P//P}}}-DSo-O {FE}: Morphological feature (QRS, RR, etc.) extraction

(27) I-Gb//8ReDSo-O Beat-based; Downsized to 8 from 12 leads

(36) I-{{CRe}x3Dr}x5-LbReDrABReDrD-O

(73) I-CBReP{Res}x4PDSi-O {Res}: I-{{CBReDrCB}//{}}Re-O

(32) I-{C{As}{At}}x5-GbPSo-O {As}: I-{P//P}DD{P//P}Si-O; {At}: I-{P//P}CSi-O; “Spatio-temporal” attention 
mechanisms

(62) WT - PFA - Bagged Tree Tensorization with WT (3rd order) to produce 36 features

(46) I-CBReP{{CoB}P{IDEN}}x4PF{DReDr}x2Si-O {CoB}: I-{{CBReCBRe}//{CB}}Re-O; {IDEN}: I-{{CBRe}//{}}Re-O; Outperforms 
human experts

†, I, input; O, output; C, convolutional layer; F, flatten layer; G, gated recurrent unit (GRU) layer; Gb, bidirectional GRU layer; L, long-short 
term memory (LSTM) layer; Lb, bidirectional LSTM layer; B, batch normalization layer; A, attention layer; Re, ReLu activation layer; P, 
pooling layer; D, dense (fully connected) layer; Dr, dropout layer; So, Softmax activation; Si, Sigmoid activation; x, number of layer/module 
consecutive repetitions, e.g., Cx3 means 3 convolutional layers one after the other; {}, wraps a module/block; //, in parallel (if accompanied 
by a number, e.g., //3, it indicates the number of same modules running in parallel); QRS, QRS complex (ECG feature); HMM, Hidden 
Markov model; kNN, k-nearest neighbor; SVM, support vector machine; GBM, Gradient Boosting Machine; FT, fourier transformation 
variant; WT, wavelet transformation variant; n.a., not available. ‡, MI, myocardial infarction; PCA, principal component analysis; NN, neural 
network; CNN, convolutional NN; RNN, recurrent NN; RR, RR interval (ECG feature); Sw, Swish activation (x*Si(x)); sec, seconds; EF, 
ejection fraction; LVSD, left ventricle systolic dysfunction; echo, echocardiogram; proBNP, pro B-type natriuretic peptide (heart failure 
biomarker); AUC, area under the curve; AF, atrial fibrillation; SR, sinus rhythm; CSE, Common Standards for Electrocardiography database; 
PCinC2020, Physionet/Computing in Cardiology challenge 2020; ACC, accuracy.



© AME Publishing Company. https://dx.doi.org/10.21037/jmai-22-94

Table S2 Clinical conditions used as classification labels across 
studies

Abbreviation Clinical condition Frequency

MI Myocardial infarction 21

AMI Anterior MI 10

IMI Inferior MI 10

ALMI Anterolateral MI 8

ILMI Inferolateral MI 8

ASMI Anteroseptal MI 7

IPLMI Inferoposterolateral MI 4

PMI Posterior MI 2

IPMI Inferoposterior MI 2

PLMI Posterolateral MI 2

oMI old MI 1

EMI Early progression of MI 1

AcMI Acute MI 1

CMI Chronic MI 1

AF Atrial fibrillation 16

I-AVB 1st degree atrioventricular block 12

RBBB Right BBB 12

PAC Premature atrial contraction 11

PVC Premature ventricular contraction 11

LBBB Left BBB 7

Tc T-wave change 6

STD ST-segment depression 5

STE ST-segment elevation 5

LAFB Left anterior fascicular block 4

ER Early repolarization 4

LVSD Left ventricular systolic dysfunction 2

II-AVB 2nd degree atrioventricular block 2

BBB Bundle branch block 2

ST Sinus tachycardia 2

LVHV Left ventricle high voltage 2

STc ST-segment change 2

HMD Heart muscle defect 2

LVH Left ventricular hypertrophy 2

VT Ventricular tachycardia 2

SRa Sinus-rhythm arrhythmia 1

Lad Left axis deviation 1

WPW Wolf-Parkinson-White syndrome 1

Afl Atrial flutter 1

hyperK Hyperkalemia 1

VpES Ventricular pre-excitation syndrome 1

SVT Supraventricular tachycardia 1

LAtH Left atrial hypertrophy 1

– Hypertrophy 1

CAD Coronary artery disease 1

PAH Pulmonary arterial hypertension 1

HyC Hypertrophic cardiomyopathy 1

CA Cardiac amyloidosis 1

Table S2 (continued)

Table S2 (continued)

Abbreviation Clinical condition Frequency

MVP Mitral valve prolapse 1

– asystole 1

Frequencies pertain to the number of appearances of each 
clinical condition in the included studies. These clinical terms 
are stated as reported in each study. The MI superclass includes 
all the specific MI subcategories (indented). 
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Table S3 Detailed performance metrics reported in each study

Study AUPRC AUC ACC F1 SEN SPE PPV NPV

(64) 0.89 0.86 0.74 0.87 0.4 0.97

(21) 0.93 0.86 0.86 0.86

(22) 0.87 0.79 0.39 0.79 0.8

(58) 0.99 0.99 0.99 0.99

(30) 0.91 0.97 0.84

(29) 0.98 0.96 0.98 0.98 0.96

(54) 0.74 0.76 0.75 0.74

(31) 0.63 0.64 0.63

(49) 0.93

(40) 1 1 1

(47) 0.87

(41) 1 0.99 1 0.99 0.91 1

(28) 0.75 0.87 0.92

(48) 0.93 0.9 0.9 0.98 0.9

(50) 0.82 0.79 0.88

(33) 0.93 0.94 0.86 0.97

(34) 0.88 0.86 0.88

(65) 0.88 0.81 0.82 0.86 0.76 0.79 0.85

(63) 0.99 0.99 0.99

(35) 0.74

(59) 1 1 1

(37) 0.72

(51) 0.98

(23) 0.98 0.98 0.99

(24) 0.21 0.83

(38) 0.93 0.93 1 0.92

(25) 0.57

(42) 0.93 0.9 0.94

(55) 0.87

(52) 0.86

(53) 0.98

(56) 1

(57) 1 1 1

(43) 0.86

(44) 0.95 0.96 0.95

(26) 0.85 0.81 0.8 0.83

(45) 0.88

(27) 1

(36) 0.95

(73) 0.97 0.97 0.81 0.81 0.82

(32) 0.87 0.84

(62) 0.99 1 1

(46) 0.98 0.89 0.87 1

AUPRC, area under the precision-recall curve; AUC, area under the curve; ACC, accuracy; F1, F1-score; SEN, sensitivity; SPE, specificity; 
PPV, positive predictive value; NPV, negative predictive value.
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