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Background: A tool trained to learn the complex features of bone and soft tissue attenuation to estimate 
bone mineral density (BMD) at the femoral neck from standard hand, knee, and pelvis X-rays has the 
potential to opportunistically screen for low BMD in individuals that undergo such X-rays for any clinical 
indication, which in turn could empower patients and their providers to initiate preventative treatment.
Methods: A retrospective study of the Osteoarthritis Initiative (OAI) dataset consisting of hand, knee, 
and pelvis X-rays and corresponding dual-energy X-ray absorptiometry (DXA)-derived femoral neck BMD 
(examinations done between 2008 to 2010) from 553 unique patients with osteoarthritis (OA) (51% male), 
aged between 48 to 83 years old. Participants were divided into training and test splits using a stratified 
random sampling procedure to ensure equal distribution of sex and age decade. A deep convolutional neural 
network (CNN) was trained to learn visual features from raw X-ray images, which were then combined with 
sex and age of the patients to estimate their femoral neck BMD. Agreement between methods at estimating 
BMD was assessed with Passing-Bablok regression and Bland-Altman analyses. Agreement between methods 
at classifying low BMD (T-score <−1) was assessed using receiver operating characteristic (ROC) curve 
analysis.
Results: Experimental results show superior performance of the deep learning (DL) model by using either 
hand, knee, and pelvis X-rays, compared to baseline models, and achieved sensitivities and specificities >75% 
in both females and in males. It is also shown that both the X-ray and co-variate data equally contribute to 
the model performance.
Conclusions: These results indicate that low BMD at the femoral neck can be opportunistically screened 
from routinely acquired X-rays of the hand, knee, or pelvis, i.e., even when the femoral neck is not included 
in the field of view.
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Introduction

Background

Osteoporosis affects 200 million lives globally (1). The 
prevalence of osteoporosis in the US, in adults over the age 
of 50 years is 15% and 4% in women and men, respectively, 
and its incidence and prevalence are rising with the aging 
population (2). In their lifetime, 50% of women and 
22% of men will suffer an osteoporotic fracture (3), and 
of patients who suffer an osteoporotic hip fracture, 30% 
die within 1 year (4). Osteoporosis is underdiagnosed (5)  
and preventable. If at-risk patients are identified, 
pharmacologic therapy and lifestyle modifications can 
decrease fracture risk by 70% within 1 year of initiation (6).  
Currently, osteoporosis is diagnosed by dual-energy X-ray 
absorptiometry (DXA). The United States Preventive 
Services Task Force (USPSTF) recommends bone mineral 
density (BMD) testing by DXA in women 65 and older, 
and younger women with certain clinical risk factors (7). 
Despite the recommendations, screening rates are low. In 
a study of over 1.6 million privately insured women, fewer 
than 25% of those over 65 years were screened (8). There 
are no recommendations for screening men, despite their 
higher mortality following an osteoporotic fracture (7,9). An 
opportunistic screen for low BMD from X-ray could alert a 
care provider to conduct a clinical fracture risk assessment, 

and refer for DXA if appropriate.

Rationale and knowledge gap

DXA is the gold standard approach to accurately measure 
BMD, and it achieves that by using X-rays at two energies 
to subtract the confounding soft-tissue X-ray attenuation 
from the overall attenuation. Multiple approaches have been 
proposed to classify osteoporosis or estimate BMD from 
X-ray images (10-14) but a simple model, without need 
for manual feature extraction, that could be implemented 
opportunistically, and that could operate on X-rays of 
multiple anatomical locations has yet to be developed.

Objective

Our objective was to train a deep convolutional neural 
network (CNN) (15) to learn the complex features of bone 
and soft tissue attenuation to estimate BMD from standard 
hand, knee, and pelvis X-rays. Such a tool has the potential 
to opportunistically screen for low BMD in individuals 
that undergo hand, knee, or pelvis X-rays for any clinical 
indication, which in turn could empower patients and their 
providers to initiate preventative treatment.

Methods

This retrospective study proposes a deep learning (DL)-
based model to predict femoral neck BMD, in order to 
classify patients as having low BMD, from X-rays of either 
hand, knee, or pelvis, and the patient’s sex and age. Femoral 
neck BMD will be referred to as BMD hereafter.

Dataset

A publicly available dataset collected as part of the 
Osteoarthritis Initiative (OAI) (16) was used. The OAI 
dataset (17) includes data from the multicenter, longitudinal 
study of 4,796 participants, 1,396 with symptomatic knee 
osteoarthritis (OA) of at least one knee, 3,278 with increased 
risk of developing symptomatic OA, and 122 without knee 
OA or other risk factors. Recruitment began in 2004, and 
the study was completed in 2011. Participants ranged in 
age from 45 to 79 years at the time of enrollment, and had 
fixed flexion radiographs of the hand, knee, and pelvis. A 
subset of participants had repeated X-rays at 1 or 2 years  
after baseline. The OAI was conducted in accordance 
with the Declaration of Helsinki defined in the 1964 and 

Highlight box

Key findings
•	 Low BMD at the femoral neck (used to diagnose bone loss and 

fracture risk) can be opportunistically screened from routinely 
acquired X-rays of the hand, knee, or pelvis, i.e., even when the 
femoral neck is not included in the field of view.

What is known and what is new? 
•	 Screening for low BMD from conventional X-rays has the 

potential to improve patient care.
•	 This manuscript presents an algorithm that can opportunistically 

identify patients with low BMD at the femoral neck without the 
need for segmentation or feature extraction.

What is the implication, and what should change now?
•	 Opportunistic screening for low BMD from conventional 

X-ray could help address the known care gap in osteoporosis 
management, i.e.,  under-screening and under-diagnosis. 
Radiologists can include a finding of suspected low BMD in 
their X-ray report to encourage referring physicians to conduct a 
clinical fracture risk assessment and refer their patient for DXA if 
appropriate.
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meets all amendments made after. OAI was approved 
by each site’s IRB: Memorial Hospital of Rhode Island 
(Pawtucket, RI, USA) Ohio State University (Columbus, 
OH, USA), University of Pittsburgh (Pittsburgh, PA, USA), 
and University of Maryland/Johns Hopkins University 
(Baltimore, MD, USA) and at the coordinating center 
(University of California, San Francisco, CA, USA; approval 
number 10-00532). All participants provided informed 
consent prior to participation. A de-identified subset of 
OAI data was used in this study for model development and 
testing, which included all available records of X-ray/DXA 
pairs (n=1,742) from 771 DXA exams coming from 533 
unique patients (51% male). All these patients came from 
the progression subcohort, meaning they had symptomatic 
tibiofemoral knee OA at baseline, both of the following in 
at least one knee at baseline: frequent knee symptoms in the 
past year, and radiographic tibiofemoral knee OA. Patients 
ranged in age from 48 to 83 years at the time of image 
acquisition. The prevalence of low BMD (T-score <−1) 
and osteoporosis (T-score <−2.5) vs. the general population 
was lower in males (27% and 1%, respectively, vs. 39 and 
4%) and in females (52% and 3%, respectively, vs. 66% 
and 15%) (2). Table 1 summarizes the characteristics of the 
subjects in the cohort.

Data provided by OAI included age, sex, height, weight, 
ethnicity, fixed flexion, plus some additional co-variate data 
(such as trabecular thickness, trabecular number, intact 
PTH level, 25-vitamin D level, trabecular spacing, and 
bone volume fraction), as well as radiographs of the hand, 
knee, and/or pelvis, and DXA-derived values for BMD, 
which is used as the ground truth. BMD was measured 
using identical Lunar Prodigy Advance systems (GE Lunar 
Corp., Madison, WI, USA) at each institution. BMD values 

from Lunar systems were converted to a Hologic base using 
clinically accepted methods.

Two different approaches were used to increase the 
number of samples. First, the bilateral hand and knee 
images are split into two separate left and right images, and 
the same BMD was used as the ground truth target for both 
images. This was also applied to the pelvis by splitting the 
X-ray into lower-left and lower-right images (see Figure 1  
for an example). Second, a fixed-length time window, t, 
was chosen around the date of a patient’s hip DXA exam, 
and the DXA BMD served as the target for all the X-rays 
taken within that window. The value of t was treated as a 
hyper-parameter and its best value was found through an 
optimization process.

The dataset was first split into separate body part 
datasets, and then each was split into training and test sets 
on a per-patient basis, using stratified random sampling 
by sex and age decade to ensure that each set had female 
composition and equal distribution by age decade. In the 
experiments, the training and test sets had 80% and 20% 
of the patients, respectively. The training set goes through 
a k-fold cross validation process, and the validation splits 
are used for final model tuning. Figures 2,3 show the 
distributions of patients and their age group and sex in the 
training and the test splits.

Proposed model

The proposed model architecture consisted of the image 
and the co-variate data backbones to respectively encode 
the raw X-ray images xi, and the co-variate data ci (i.e., age 
and sex). Intuitively, the backbones were feature extraction 
modules, whose weights were learned throughout the end-

Table 1 Characteristics of the subjects in the cohort for different body parts

Characteristics Hand Knee Pelvis

Number of unique patients 542 602 531

Number of unique DXA exams 890 3,614 661

Sex (male/female), n 280/262 302/300 272/259

Age (years), mean (SD) 65.0 (9.4) 64.5 (9.3) 65.0 (9.3)

Femoral neck BMD (g/cm2), mean (SD) 0.95 (0.15) 0.96 (0.15) 0.95 (0.15)

BMD status (normal/low), n 531/359 2,224/1,390 396/265

Number of unique DXA exams is greater than unique patients as (I) some patients had X-ray and/or DXA acquired multiple time points; 
and (II) images were split into two images (left and right) and considered separately. BMD status: low if T-score <−1. DXA, dual-energy X-ray 
absorptiometry; SD, standard deviation; BMD, bone mineral density.
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Figure 1 An example of how the bilateral knee X-ray is split into left and right knee images, and how the bottom left and bottom right 
regions of the pelvis X-ray are extracted.

Figure 2 Distribution of patients (left) and X-ray/DXA pairs (right) for (t=24 months) within different body part groups. Dark and light 
color shades show the training and the test splits, respectively. Note that the number of samples is slightly different from an 80%/20% split, 
because of the additional samples added through offline augmentation. DXA, dual-energy X-ray absorptiometry.

to-end training of the entire model. The extracted features 
were then combined to form the final vector from which 

the BMD ˆiy  was estimated. This was done through a fusion 
module, which was a regression head.

The following implementation of this architecture 
demonstrated the best performance in the experiments:
	 Image backbone was an InceptionV3 model pre-

trained on ImageNet with the classification layer 
replaced by a fully-connected layer of size 64.

	 The co-variate data backbone was the identity block. 
This means that the co-variate data were directly fed 
to the fusion module.

	 The fusion module received the concatenation of the 
two inputs of size 66 (64+2) and fed them to a multi-
layer perceptron (MLP) architecture of 5 fully-
connected hidden layers and rectified linear unit 
(ReLU) activation functions.

The details of the architecture and implementation of 
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the model are presented in Figure 4. Additional details can 
be found in Appendix 1.

Three independent training bundles (one for each body 
part) were used to train the proposed model. Each model 
was trained using the k-fold cross validation technique 
over patients (stratified by sex and age decade), with k=5. 
The window size was set to t=0 for the validation and test 
splits. The best model of each fold was selected based on 
the average L1 error of the validation split of that fold. 
Therefore, the final model was an ensemble of k models, 
which was then evaluated on the test split.

The input images were initially resized to (w × h)/0.9, 
and then random horizontal flips followed by a random crop 
of 90% of the image (yielding w × h crops) were applied as 
augmentation steps. Age of the patients were divided by 100 
and sex is encoded using binary encoding.

The loss function was chosen to be mean absolute 

error (MAE) ˆi ii
y y−∑  as it is one of the most common 

choices for regression problems. The network weights were 
optimized using Adam optimizer with the step learning  

rate scheduler.

Statistical analysis

T-scores were derived from BMD values using female 
peak bone mass from National Health and Nutritional 
Examination Surveys (NHANES) III (18). Area under the 
receiver operating characteristic (ROC) curve (AUROC) 
was employed to assess the “low BMD” (yes/no DXA 
T-score <−1) classification performance. Algorithm-
derived (predicted) T-score thresholds were chosen based 
on the ROC curves computed using the validation split of 
each fold.

The predicted BMD of the test set was calibrated using 
the k-fold cross-validation technique (19), and the T-scores 
were derived as described above. In the test sets, model 
performance at estimating continuous BMD vs. DXA 
ground truth were assessed with Passing-Bablok (20) and 
Bland-Altman (21). AUROC, accuracy, sensitivity, and 
specificity were employed to assess the “low BMD” (DXA 
T-score <−1) classification performance at the algorithm-

Figure 3 Distribution of age group and sex within the training and test splits (for t=24 months) for different body parts. DXA, dual-energy 
X-ray absorptiometry; F, female; M, male.
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Figure 4 The pipeline of the proposed model, and its best performing implementation. The inputs xi and ci are X-ray image, and a vector 
of raw co-variate data, along with their ground truth label yi. Forward and backward passes are shown in black solid and blue dashed lines. 
BMD, bone mineral density; MLP, multi-layer perceptron.

derived T-score thresholds obtained from the validation 
splits. Given the sex difference in the prevalence of low 
BMD (2), performance was assessed in males and females, 
separately. The R package cutpointr (22) was used to 
calculate the 95% confidence intervals on the area under 
the curve (AUC) using 4,000 bootstraps using in-bag values 
in the AUC_b column of the bootstrap results.

Results

Three independent training bundles, one for each body 
part, as well as three other baselines that were trained on 
all the co-variate data are presented below. Intuitively, the 
goal was to emphasize the positive impact of the features 
extracted from the X-ray images of different body parts 
through the proposed model, alongside the age and sex 
features. The four different categories of models with which 
we experimented were:
	 Baseline: group aggregation (BaseGA): BMD 

aggregation was applied on different age and sex 
combination groups. The resulting look-up table 
was applied on the samples in the test dataset to 
estimate BMD.

	 Baseline: regression (BaseBG): the best of the three 

different regression approaches of linear regression, 
Bayesian ridge regression, and support vector 
regression with RBF kernel was selected.

	 Baseline: decision tree (BaseDT): a model based on 
gradient boosting (23) was trained and the results 
were reported on the test split.

	 Proposed DL model: the network weights were 
initialized using ImageNet pre-trained weights, the 
image size is set to 1,024×1,024 for the hand model, 
and to 512×512 for the knee and pelvis models. 
All models were trained for 3,000 epochs using 
a 24-month window size, with the learning rate 
initialized at 0.0008 and decreased to 0.00008 after 
2,000 epochs.

BMD estimation performance

As presented in Figure 5, the DL model shows superior 
performance with the highest correlation between ground 
truth and predicted BMDs, lower standard errors, and 
narrower 95% confidence compared to all the baselines. 
Notably, all the knee models show better performance than 
the other body parts, which is hypothesized to be due to 
larger dataset size. The agreement analysis inferred by the 
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Bland-Altman regression plots in Figure 6 show that all the 
DL models have better agreement with the ground truth as 
depicted by the limit lines (−0.25 to −0.19 g/cm2 for hand, 
−0.21 to −0.19 g/cm2 for knee, and −0.14 to −0.18 g/cm2  
for pelvis), compared to those of the baseline models. 
Furthermore, while the agreement mean (blue line in the 
figure) is almost the same for all the baselines and the DL 
model, it is clear that the baseline model predictions are 
slightly more biased than the DL model. The bias is lowest 
on the DL model for pelvis, and it demonstrates the highest 
confidence (with limits of agreement being between −0.14 
to −0.18 g/cm2). Mean differences of all the knee models are 
closer to the zero line, which is hypothesized to be due to 
the larger dataset size.

Low BMD diagnostic performance

The classification results are summarized in Tables 2-4 
for the hand, knee, and pelvis models, respectively. The 
optimal T-score cut-off (lower false positive rate vs. 
higher true positive rate) are calculated directly from 
the ROC curve of each model, from which the predicted 
classification label (diagnosis) is assigned to the test 
samples, and further classification metrics are evaluated 
thereafter. The results show dominant performance of the 
DL model over the baselines on all of the classification 
metrics. There is a sizable difference between the DL 
model AUC and that of the baseline models for all of the 
body parts, with the exception of female hands, which 
results in superior accuracy, sensitivity, and specificity of 
the DL model.

Note that the only case where the DL model does not 
rank first is when diagnosing female patients using hand 
X-rays, where it comes second after BaseDT. It is shown in 
the complementary material that the extra covariate data 
contributed to better performance and removing those 
causes the BaseDT to perform worse.

The pelvis model had the best classification performance, 
which may be due to the fact that the pelvis X-rays the 
femoral neck, which will have a substantial contribution to 
the BMD estimate of the femoral neck, whereas the knee 
and hand X-rays do not.

Discussion

Key findings

This study showcases the potential of modern machine 

learning in identifying patients with low BMD from 
routinely acquired X-rays, even when the femoral neck is 
not included in the field of view. By comparing to baseline 
models, this study demonstrates that imaging data contains 
rich diagnostic information that can be extracted with 
modern machine learning approaches. A radiologist can 
detect osteopenia on conventional radiographs only when 
20–40% of bone mass has been lost (24). As an example, if 
someone had a BMD of 0.858 g/cm2 at the femoral neck 
[which is the mean BMD for a female aged 20–29 years 
from NHANES III (18)], then a loss of 30% of bone mass 
would correspond to a T-score of −2.1 [assuming the use of a 
female reference population as recommended by WHO (23)]. 
Similarly, if someone had a BMD of 1.064 g/cm2 at L1–L4 
[which is the mean BMD for a female aged 20–29 years from 
NHANES (25)], then a loss of 30% would correspond to a 
T-score of −3.0. As such, an algorithm that can identify the 
earlier stage of demineralization, at a T-score of −1, offers an 
advantage to the human eye.

Strengths and limitations

Strengths of the current method and study include the 
performance of the algorithm without the need for 
segmentation or manual feature extraction, and its ability 
to estimate BMD at the femoral neck, even when the 
femoral neck is not in the X-ray analyzed (i.e., in X-rays 
of the knee and hand). This study had several limitations. 
First, the dataset included only patients with OA, which 
could limit generalizability of the algorithms to patients 
without OA. Second, although the dataset was created from 
multiple centers, all the centers were in the United States. 
Third, only GE Lunar machines were used to determine 
the DXA-derived BMD, as such, claims cannot be made 
in predicting BMD derived from other DXA machines, 
although there are clinically accepted ways to convert BMD 
units across machines and T-scores also serve as a common 
unit. Finally, the study was a relatively small dataset which 
is known to be the ‘Achilles heel’ of DL approaches. 
Although small, this study employed commonly applied 
data augmentation strategies and relied on the assumption 
that BMD is relatively stable over a 24-month period (t) in 
order to increase the number of labeled samples available 
for training.

Comparison with similar research

A number of approaches to screen for osteoporosis from 
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Figure 5 Passing-Bablok regression plots of the predicted T-score vs. the DXA ground truth T-score for all the experiments for each body 
part. Male and female patients are shown in dark and light shades, respectively. Age group symbols are defined as triangle: 50–59 years, 
diamond: 60–69 years, circle: 70–79 years, square: 80–89 years, cross: 90 years and older. The red and blue dashed lines represent the 
identity and the regressed lines, respectively, and the blue band is the 95% confidence interval. DXA, dual-energy X-ray absorptiometry; 
DL, deep learning; BaseDT, baseline decision tree; BaseBG, baseline basic regression; BaseGA, baseline group aggregation.

Ground truth DXA vs. models predicted T-scores passing-bablok regression
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Figure 6 Bland-Altman analysis to assess agreement between model-derived and DXA-derived BMD for all the experiments for each body 
part. Mean BMD is derived from the model and from the ground truth DXA, and difference in BMD is: (predicted BMD from model − 
ground truth BMD from DXA). Male and female patients are shown in dark and light shades, respectively. Age group symbols are defined 
as triangle: 50–59 years, diamond: 60–69 years, circle: 70–79 years, square: 80–89 years, cross: 90 years and older. The blue line represents 
the mean of the difference in BMD, and the dashed red lines show the 95% confidence interval. DXA, dual-energy X-ray absorptiometry; 
BMD, bone mineral density; DL, deep learning; BaseDT, baseline decision tree; BaseBG, baseline basic regression; BaseGA, baseline group 
aggregation.
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Table 2 The classification results of the proposed method and the baselines for hand

Classification 
results

BaseGA BaseBG BaseDT DL

F M F M F M F M

AUC 0.70  
(0.58 to 0.82)

0.49  
(0.34 to 0.64)

0.78  
(0.67 to 0.88)

0.78  
(0.67 to 0.89)

0.83  
(0.72 to 0.92)

0.71  
(0.57 to 0.83)

0.86  
(0.76 to 0.94)

0.82  
(0.72 to 0.91)

T-score cut-point −1.38 0.33 −1.37 −0.16 −1.20 −0.17 −0.80 −0.35

True positive 15 9 17 11 18 10 18 12

True negative 18 19 20 24 22 22 22 25

False positive 9 16 7 11 5 13 5 10

False negative 8 8 6 6 5 7 5 5

Accuracy 0.66  
(0.54 to 0.76)

0.54  
(0.42 to 0.65)

0.74  
(0.64 to 0.84)

0.67  
(0.56 to 0.79)

0.80  
(0.70 to 0.88)

0.62  
(0.50 to 0.73)

0.80  
(0.70 to 0.90)

0.71  
(0.62 to 0.81)

Sensitivity 0.65  
(0.48 to 0.81)

0.53  
(0.33 to 0.73)

0.74  
(0.58 to 0.88)

0.65  
(0.45 to 0.83)

0.78  
(0.64 to 0.91)

0.59  
(0.38 to 0.79)

0.78  
(0.64 to 0.91)

0.71  
(0.50 to 0.89)

Specificity 0.67  
(0.52 to 0.81)

0.54  
(0.40 to 0.69)

0.74  
(0.60 to 0.88)

0.69  
(0.55 to 0.81)

0.81  
(0.68 to 0.93)

0.63  
(0.50 to 0.76)

0.81  
(0.68 to 0.93)

0.71  
(0.58 to 0.83)

Total number of patients: 102 (M: 52, F: 50). 95% CIs are shown in brackets. BaseGA, baseline group aggregation; BaseBG, baseline 
basic regression; BaseDT, baseline decision tree; DL, deep learning; F, female; M, male; AUC, area under the curve; CI, confidence 
interval.

Table 3 The classification results of the proposed method and the baselines for knee

Classification 
results

BaseGA BaseBG BaseDT DL

F M F M F M F M

AUC 0.69  
(0.57 to 0.80)

0.55  
(0.42 to 0.69)

0.83  
(0.74 to 0.90)

0.80  
(0.71 to 0.88)

0.78  
(0.68 to 0.87)

0.77  
(0.66 to 0.86)

0.87  
(0.79 to 0.94)

0.89  
(0.82 to 0.95)

T-score cut-point −0.98 0.22 −1.04 −0.30 −1.07 −0.26 −1.21 −0.71

True positive 17 13 21 17 19 16 21 19

True negative 23 29 28 38 27 34 29 43

False positive 15 24 10 15 11 19 9 10

False negative 10 11 6 7 8 8 6 5

Accuracy 0.62  
(0.52 to 0.71)

0.55  
(0.45 to 0.64)

0.75  
(0.66 to 0.85)

0.71  
(0.62 to 0.81)

0.71  
(0.62 to 0.80)

0.65  
(0.56 to 0.74)

0.77  
(0.68 to 0.85)

0.81  
(073 to 0.87)

Sensitivity 0.63  
(0.48 to 0.78)

0.54  
(0.38 to 0.71)

0.78  
(0.64 to 0.90)

0.71  
(0.56 to 0.86)

0.70  
(0.56 to 0.85)

0.67  
(0.50 to 0.83)

0.78  
(0.64 to 0.90)

0.79  
(0.65 to 0.92)

Specificity 0.61  
(0.47 to 0.73)

0.55  
(0.44 to 0.66)

0.74  
(0.61 to 0.85)

0.72  
(0.61 to 0.82)

0.71  
(0.58 to 0.83)

0.64  
(0.53 to 0.75)

0.76  
(0.64 to 0.87)

0.81  
(0.72 to 0.90)

Total number of patients: 142 (M: 77, F: 65). 95% CIs are shown in brackets. BaseGA, baseline group aggregation; BaseBG, baseline 
basic regression; BaseDT, baseline decision tree; DL, deep learning; F, female; M, male; AUC, area under the curve; CI, confidence 
interval.
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Table 4 The classification results of the proposed method and the baselines for pelvis

Classification 
results

BaseGA BaseBG BaseDT DL

F M F M F M F M

AUC 0.80  
(0.68 to 0.91)

0.54  
(0.37 to 0.69)

0.69  
(0.56 to 0.81)

0.77  
(0.64 to 0.88)

0.70  
(0.57 to 0.82)

0.62  
(0.47 to 0.78)

0.92  
(0.85 to 0.97)

0.88  
(0.79 to 0.96)

T-score cut-point −0.99 0.22 −0.97 −0.06 −1.15 −0.15 −0.85 −0.50

True positive 18 9 14 12 16 10 21 13

True negative 19 14 15 21 18 17 21 23

False positive 5 15 9 8 6 12 3 6

False negative 6 8 10 5 8 7 3 4

Accuracy 0.77  
(0.67 to 0.88)

0.50  
(0.37 to 0.61)

0.60  
(0.48 to 0.73)

0.72  
(0.61 to 0.83)

0.71  
(0.60 to 0.81)

0.59  
(0.48 to 0.72)

0.88  
(0.79 to 0.94)

0.78  
(0.67 to 0.87)

Sensitivity 0.75  
(0.60 to 0.89)

0.52  
(0.36 to .067)

0.58  
(0.42 to 0.75)

0.71  
(0.50 to 0.88)

0.67  
(0.52 to 0.82)

0.59  
(0.39 to 0.79)

0.88  
(0.75 to 0.97)

0.76  
(0.58 to 0.93)

Specificity 0.79  
(0.64 to 0.92)

0.47  
(0.27 to 0.67)

0.63  
(0.46 to 0.79)

0.72  
(0.58 to 0.86)

0.75  
(0.59 to 0.89)

0.59  
(0.43 to 0.74)

0.88  
(0.75 to 0.96)

0.79  
(0.67 to 0.91)

Total number of patients: 94 (M: 46, F: 48). 95% CIs are shown in brackets. BaseGA, baseline group aggregation; BaseBG, baseline 
basic regression; BaseDT, baseline decision tree; DL, deep learning; F, female; M, male; AUC, area under the curve; CI, confidence 
interval.

conventional X-rays have been proposed. The majority 
of these have used pelvic (11,12) or lumbar (14) X-rays, 
and have shown utility in predicting BMD of those body 
parts, given that osteoporosis is monitored at those sites. 
Other researchers have had success predicting BMD from 
chest X-rays (13). A large study recently extended the 
utility of a deep-learning algorithm to include fracture risk 
assessment (12). The current study shows similar results 
when estimating femoral neck BMD from the pelvic 
X-rays, but also estimates femoral neck BMD and T-score 
from X-rays of body parts that do not include the femur, 
namely the hand and knee. Fewer studies have estimated 
BMD from hand X-rays. Tecle et al. (10) trained a CNN to 
detect osteoporosis from hand radiographs which achieved 
a sensitivity and specificity of 82% and 95%, respectively, 
for classifying low BMD vs. normal BMD. The main 
difference between this method and ours is that it did not 
train using low BMD by DXA as the ground truth, rather 
it used second metacarpal cortical percentage (MCP) as an 
osteoporosis predictor (26). In another related work (27),  
the authors introduce a tool to detect and segment areas 
with low bone mass on hand and wrist radiographs using 
cortical radiogrammetry of third metacarpal bone and 
trabecular texture analysis of distal radius. This tool used 
engineered features and achieved lower classification 

accuracy as the DL model presented in this study.

Explanations of findings

The DL model showed more narrow limits of agreement 
with ground truth BMD by DXA than the alternative 
models. The AUC of the model was >0.80 for detecting 
low BMD from X-rays of the hand (0.85 in females, 0.82 
in males), knee (0.87 in females, 0.89 in males), and pelvis  
(0.92 in females, 0.88 in males), demonstrating the 
discriminating power of the model to identify patients with 
low BMD (T-score <−1).

Implications and actions needed

Routine X-rays are by far the most performed medical 
imaging test.  Incorporation of a DL modeling to 
opportunistically analyze X-rays could serve to screen 
the population for patients who would benefit from 
formal diagnosis with DXA. While the DL model will 
be unlikely to rival the accuracy and precision of DXA 
in the quantification of low BMD, an opportunistic 
screening approach is particularly attractive because it 
can help identify and prioritize patients who are currently 
overlooked. Osteoporosis has a known care gap (5). It 
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is prevalent, silent, and preventable with treatment. 
Radiologists can include a finding of suspected low BMD 
in their X-ray report to encourage referring physicians to 
conduct a clinical fracture risk assessment and refer their 
patient for DXA if appropriate.

Conclusions

These results indicate that low BMD at the femoral neck 
can be opportunistically screened from routinely acquired 
X-rays of the hand, knee, or pelvis, i.e., even when the 
femoral neck is not included in the field of view. Early 
identification of patients with low BMD is of tremendous 
value to both the patients’ wellbeing and to the healthcare 
system when considering the significant downstream costs 
associated with osteoporotic fractures.
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Appendix 1

Ablation study

The aim of ablation study is to justify the right choice for the two most important hyper-parameters contributing to the 
model performance: image resolution and the inclusion of the co-variate data. The best image resolution is found among 
square-scaled (1:1) of 128, 256, 320, 480, 512, and 1,024.

To speed up the ablation training sessions, only the 3rd fold of the cross-validation splits introduced in the dataset section of 
the paper is used to validate the model, assuming that the rest of the folds generalize to the same outcome. As a matter of fact, 
the results presented in this section, and those in the results section of the paper must not be compared.

Similar to the post-processing steps explained in the previous section, all the predicted BMDs are converted from Lunar 
to Hologic, and T-scores are derived from the calibrated BMDs using female peak bone mass from NHANES III (18). The 
AUROC metric is used to evaluate the trained models, and the impact of each hyper-parameter on the model performance 
is evaluated independent of one another, to only highlight that hyper-parameter. Finally, an iterative feature ablation 
process is done on the BaseDT model to demonstrate the contribution of every individual bone features on the model 
performance.

Choice of the image backbone architecture and the training strategy details

We treated the choice of the backbones and the fusion module architecture as additional hyper-parameters, and performed 
an extensive search, by using the validation split, to tune them to the best setting. Specifically, we limited our image backbone 
search to the commonly used architectures in the computer vision domain (with rich literature in medical applications) such as 
ResNet (28), EfficientNet (29), and InceptionV3 (30). In particular, InceptionV3 has proven its success in one of our previous 
research papers in (31). Moreover, we tested various MLP architectures for the co-variate data and the fusion module by 
trying different fully-connected layer sizes, activation functions, and the dropout probability.

We used transfer learning, i.e., the network weights were initialized with pretrained weights on the ImageNet dataset, 
mainly due to lack of sufficient data to train a model from scratch. As a common practice in transfer learning, the weights of 
the shallower blocks of the model were frozen, and the last 3 inception blocks of 7a, 7b, and 7c were fine-tuned using the OAI 
dataset. The initial learning rate was set to 1e-6, and it was scheduled to decrease by half at epoch 100. We trained the entire 
model for 500 epochs, while employing an early stopping technique that would terminate the training process if there was no 
significant decay in the validation loss for 20 consecutive epochs. This ultimately helped the model to generalize better to the 
test set samples. 

Contribution of the image resolution and the co-variate data 

Different image sizes are experimented by using only the X-ray images (not including the co-variate data). Then 6 models (for 
each image size) are trained, and their AUROC performance on the test dataset is evaluated. As it is depicted in Figure S1,  
both the pelvis and the knee models AUROC increases with increasing image size up to around 480 to 512, then it sharply 
declines at 1,024, which is due to the overfitting problem. However, the hand model shows a different trend with the image 
size 256 being the best one from where the AUROC starts to decline. One of the main reasons for this behavior can be 
attributed to the size of the hand X-rays dataset, which is smaller than the knee dataset, and almost the same as the pelvis 
dataset. Now the pelvis model trend is very similar to the knee model trend, although it has a similar number of samples to 
the hand dataset, it has learned the decisive features to predict the femoral neck BMD quite well, mainly because the femoral 
neck is in fact present in the X-ray image.

It was previously shown in the paper that the X-ray images play an important role in improving the model performance. 
Here, the contribution of the co-variate data (sex and age) to the performance of the model is studied by training knee, 
hand, and pelvis models with and without the co-variate data and comparing their AUROC. Table S1 summarizes the results. 
Interestingly, the performance of all the body parts models improves when the co-variate data are used.

Supplementary
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Extra co-variate data contribution to the BaseDT model

First, we show the correlation within the co-variate data features, and between the co-variate data features and the target 
feature, to find any high (positive or negative) correlation between any specific feature, and the target label. Figure S2 displays 
the heatmap calculated using the Pearson correlation coefficient (32). The correlation coefficients are between −1 (maximum 
negative correlation) and 1 (maximum positive correlation). Clearly, there is maximum positive correlation between 
interview_age (age in months) and ageyears (age in years) features, which is expected. Moreover, trth (trabecular thickness) 
and trn (trabecular number) show very high correlation between one another (0.79), and with bvf (bone volume fraction) too 
(0.93 with trth and 0.95 with trn). Most importantly, trn (trabecular number) and ageyears (age in years) show relatively high 
correlation (positive and negative, respectively) with the target feature, neckbmd (femoral neck BMD), which are definitely 
helpful as input features for any model to generate a more accurate prediction.

It is shown in Table S2 how these additional features cumulatively contributed to the performance of the BaseDT model 
for hand, on the female group. The BaseDT model was trained on varying subsets of features using 5-fold cross-validation on 
the same splits used to train the main model. As it is shown in Table S2, as the features are dropped in a random order from 
the list of features, the model sees a declining trend in accuracy, sensitivity, and specificity. In fact, the trabecular thickness (tth) 
and the trabecular number (tn) co-variate data, which are shown to boost up the overall performance of the BaseDT model 
significantly, are not included as additional co-variate data next to the X-ray images in the DL model.

Figure S1 The varying AUROC performance of the DL model with different image sizes. AUROC, area under the receiver operating 
characteristic curve; DL, deep learning.

Table S1 The AUROC performance of the knee, hand, and pelvis models with and without using the co-variate data

Body part Input source AUROC

Hand X-ray + co-variate data 0.8294

X-ray 0.7907

Knee X-ray + co-variate data 0.8765

X-ray 0.8537

Pelvis X-ray + co-variate data 0.9351

X-ray 0.9296

AUROC, area under the receiver operating characteristic curve.



Figure S2 The correlation heatmap within the co-variate data features (left), and between the co-variate data features and the target 
feature (right) using the Pearson correlation coefficient. interview_age, age in months; ageyears, age in years; trth, trabecular thickness; trn, 
trabecular number; vitdlev, vitamin D level; pthlev, intact parathyroid level; trsp, trabecular spacing; bvf, bone volume fraction; neckbmd, 
femoral neck bone mineral density.

Table S2 Declining performance of the BaseDT model as the number of co-variate data features decrease

Features Accuracy Sensitivity Specificity

g + ia + ay + hs + tth + tn + vl + pl + ts + bvf 0.80 0.7806 0.81

g + ia + ay + hs + tth + tn + vl + pl + ts 0.78 0.7371 0.81

g + ia + ay + hs + tth + tn + vl + pl 0.76 0.7371 0.77

g + ia + ay + hs + tth + tn + vl 0.74 0.6936 0.77

g + ia + ay + hs + tth + tn 0.74 0.6936 0.77

g + ia + ay + hs + tth 0.72 0.6936 0.73

g + ia + ay + hs 0.66 0.6067 0.69

g + ia + ay 0.68 0.6001 0.69

BaseDT, baseline decision tree; g, gender; ia, age in months; ay, age in years; hs, hipside; tth, trabecular thickness; tn, trabecular number; 
vl, vitamin D level; pl, intact pth level; ts, trabecular spacing; bvf, bone volume fraction.
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