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Background: Glioblastoma is an aggressive primary brain tumor with a poor prognosis. At present, time-
to-event machine learning (ML) approaches have been used for prognostication in neuro-oncology. The 
present study aimed to compare the predictive performances among Cox hazard regression, parametric 
survival regression, and time-to-event ML algorithms. In addition, the secondary objective was to deploy a 
personalized survival curve for each patient’s condition.
Methods: A retrospective cohort study was conducted on glioblastoma patients admitted between 
December 2007 and June 2021 in a tertiary center in Southern Thailand. Various clinical, radiological, 
and therapeutic characteristics were collected, and variables related to prognosis were analyzed using a 
backward stepwise technique. Therefore, a 70:30 data split was performed for the training model and testing 
performances among the Cox hazard regression, parametric survival models, and various time-to-event ML 
approaches. Time-to-event performance metrics were used for predicting main outcomes such as Harrell’s 
concordance index (C-index) and root mean square error (RMSE).
Results: There were 208 glioblastoma patients in this cohort, and three variables were used for developing 
the predictive model using various time-to-event approaches. The multilayer perceptron had the highest 
value of Harrell’s C-index, which was 0.659 [95% confidence interval (CI): 0.657–0.661], while Cox 
regression had a C-index of 0.648 (95% CI: 0.642–0.653). The random survival forest model had the lowest 
RMSE of 0.980 (95% CI: 0.979–0.981) for the estimated number of patients at risk over time, while Cox 
regression had RMSE of 1.006 (95% CI: 1.005–1.007). The personalized prognosis by the Kaplan-Meier 
curves could demonstrate the prognosis of the patients in each condition for the recommendation for 
personal treatment. 
Conclusions: Time-to-event survival approaches were designed to show the personalized survival curves in 
each condition for a physician to make a personal treatment recommendation. Therefore, choosing patients 
with a favorable prognosis would lead to cost-effectiveness management for high-cost standard treatment.
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Introduction

Glioblastoma is the most common malignant tumor and 
the most aggressive primary brain tumor in adults (1,2). 
While advances in the treatment of the disease have been 
extensively researched, the disease’s prognosis has remained 
poor. Maximum safe surgical resection, postoperative 
radiation, and temozolomide (TMZ) chemotherapy are the 
current gold standards for the treatment of this disease (3). 
Moreover, O-6-methylguanine-DNA methyltransferase 
(MGMT) promoter methylation has been the key molecular 
factor that could predict TMZ sensitivity (4). From previous 
studies, patients with the methylated MGMT promoter had 
significantly more survival benefits than the unmethylated 
MGMT promoter group that were treated with TMZ (5-8).

Although TMZ is the standard treatment following 
tumor resection, the cost-effectiveness of this chemotherapy 
has been debated in several countries (9-12). Wu et al. 

studied the economic outcome of the treatment strategies 
for glioblastoma patients and found that TMZ was not 
a cost-effective treatment choice in health resource-
limited settings (13). It has also been suggested to utilize 
individualized prognosis prediction to determine each 
patient’s treatment plan that could be one of the resource 
allocation methods (14,15).

At present, machine learning (ML) has been used for 
diagnosis and prognostication in various fields, particularly 
neuro-oncology (16-19). Priya et al.  distinguished 
glioblastoma from brain metastasis using ML methods (16), 
whereas Tunthanathip et al. used ML-based algorithms 
to predict a 2-year survival in glioblastoma patients 
and reported that the area under the receiver operating 

characteristic curve (AUC) was 0.81–0.82 (17). From 
the literature review, the binary classification of ML is 
commonly used for predicting prognosis at a certain time 
point, such as 2-year survival. However, Katzman et al. used 
time-to-event ML algorithms for prognostication, while 
only a few studies in the literature review used time-to-
event ML (20).

Because personalized prognostication is visualized as a 
survival curve for each patient by the time-to-event ML 
algorithms that have been challenged, it may assist the 
physician in deciding on an individual treatment approach 
as a concept of personalized medicine (17,20). Therefore, 
the present study aimed to compare the predictive 
performances among Cox hazard regression, parametric 
survival regression, and time-to-event ML algorithms. 
The secondary objective was to deploy a personalized 
survival curve for each patient’s condition. In addition, 
we present this article in accordance with the TRIPOD 
reporting checklist of prediction model development and 
validation (available at https://jmai.amegroups.com/article/
view/10.21037/jmai-22-98/rc).

Methods

Study designs and study population

The study design of the present study was a retrospective 
cohort study. All newly diagnosed glioblastoma patients 
were hospitalized between December 1, 2007 and June 
30, 2021 in a tertiary center in Southern Thailand. 
According to the 2021 World Health Organization’s central 
nervous system tumor classification (21), glioblastoma was 
diagnosed with histological findings found in microvascular 
proliferation or necrosis by pathologists or wild-type 
isocitrate dehydrogenase (IDH) gene (21,22). Hence, 
patients who lacked histological slides to confirm the 
diagnosis, comprehensive medical records, and the ability 
to assess an updated prognosis were excluded. For the data 
collection, computerized medical records were reviewed 
and obtained. Additionally, neurosurgeons reviewed the 
preoperative and postoperative imaging of individuals with 
glioblastoma.

Molecular analysis

As previously disclosed, the mutation of IDH  and 
methylation of the MGMT  promoter were studied 
following DNA extraction from the tumor specimens (23). 
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Specifically, methylated MGMT was defined as having at 
least 30% methylation (24).

Statistical analysis

The demographics of the present cohort were explained 
using descriptive statistics. In detail, the categorical variables 
were reported as percentages, and the mean and standard 
deviation (SD) were utilized for the continuous variables. In 
addition, several continuous variables were separated into 
categorical variables based on cut-off point from average 
value.

Survival outcomes were analyzed in the present study as 
follows: overall survival, survival probability, and median 
survival time. In detail, the time from surgery until death 
was referred to as overall survival that was shown by the 
Kaplan-Meier curves, whereas the proportion of units 
that survive beyond a specified time was referred to as the 
survival probability. Furthermore, the median survival time 
was defined as the length of time from the date of surgery 
that half of a group of glioblastoma patients were still  
alive (21-23).

Time-to-event was performed for estimating the 
prognosis and the overall survival with the survival 
probability in each time-point was analyzed on October 
31, 2022. In both the univariate and multivariable analyses, 
the prognostic variables were found using the Cox hazard 
regression with complete case analysis. In detail, the 
backward stepwise procedure was performed to select the 
potential predictors for the final predictive model that 
candidate risk factors with P<0.10 from the univariate 
regression analysis were entered into the multivariable 
regression model. As such, the Cox model assumption 
estimated that a patient’s variables were combined linearly 
to form the log risk of failure for that patient, which was 
known as the linear proportional hazards condition. P<0.05 
was accepted as being statistically significant. Moreover, 
the prognostic nomogram was developed for patients with 
glioblastoma was performed by R version 4.0.5 (The R 
Foundation for Statistical Computing; Vienna, Austria).

In addition, parametric survival models of the time-
to-event analysis were conducted for compared the 
performances with the Cox regression in two distinct 
distributions: Gompertz and Weibull. For hypothesis testing, 
the AUC formula was used to calculate sample size (25). The 
following parameters were used for estimation in previous 
studies: AUC of 0.82, alpha of 0.05, and estimation error of 
0.15. As a result, a sample size of 40 patients was required 

for validation.

ML for the time-to-event analysis

Using the same predictors as the Cox hazard regression, the 
following ML algorithms were performed for comparison 
with the Cox hazard regression: random survival forest 
(RSF), conditional survival forest (CSF), and multilayer 
perceptron (MLP). Training processes among various 
algorithms was performed with 5-fold cross-validation. 
Moreover, the optimum value of Harrell’s concordance 
index (C-index) was used to evaluate the hyperparameter 
tuning of ML models by the manual tuning method. In 
detail, the number of trees and node size of the leaf node 
were turned for the RSF and CSF models. For the MLP 
model, the activation function, optimizer, and number of 
hidden layers were turned for the best value of C-index. 
The ML was performed using the Python program version 
3.8.7 with the PySurvival package (26) (Python Software 
Foundation, USA).

Time-to-event performance metrics

The whole dataset was randomly split into a training dataset 
and a testing dataset with a 70:30 split. The training dataset 
was used to build the predictive model development by the 
Cox hazard regression, parametric survival model, and ML 
methods, while the testing dataset was used for performance 
validation. Therefore, the performances of the Cox hazard 
regression, parametric survival, and other ML models were 
compared using the following criteria: C-index, Brier score, 
and root mean square error (RMSE) (26).

Harrell’s C-index was used for the model’s predictive 
accuracy (27,28). The C-index is a measure of a model’s 
ability to forecast the sequence of patients’ deaths. 
Additionally, a C-index of 0.5 is the average for a random 
model, while a C-index of 1 is the best way to rank the 
times of death (27,28).

Brier score was used to estimate the accuracy of the 
predicted survival function with the censoring times among 
the models. Brier score of the model was below 0.25 
that was preferred as the useful model, while the RMSE 
was used to compare the predicted and actual number of 
patients at risk over time among the various predictive 
models (26).

Additionally, Cox hazard regression, parametric survival 
models, and ML algorithms were used to build the Kaplan-
Meier curves for showing the overall prognosis and creating 
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personalized survival curves for each condition (28,29).

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study was 
approved by institutional ethics committee board of the 
Faculty of Medicine, Prince of Songkla University (No. 
REC 63-372-10-1). Due to the nature of the retrospective 
study design, patients were not required to provide 
informed consent. However, before analysis, patient 
identification numbers were encoded.

Results

A total of 212 patients were initially diagnosed with 
glioblastoma. Two patients lacked a histopathologically 
proven diagnosis, and two patients’ medical records were 
incomplete. Hence, two hundred and eight patients were 
included for the analysis, as shown in Figure 1. Their 
demographic data are shown in Table 1. The mean age of 
patients was 50.79 years (SD =16.02) and more than half of 
the present cohort was male. Additionally, a preoperative 
Karnofsky Performance Status score of more than 70 was 
observed at 51.4%.

From the preoperative radiologic findings, the mean 
size of the tumor was 5.37 cm (SD =1.66) and more 
than half of all tumors had a tumor diameter of more 
than 5 cm. Glioblastoma was commonly involved in the 
frontal lobe and temporal lobe, while corpus callosal 
glioblastoma was observed in 12.7% of the total cohort. 
A frameless stereotactic biopsy was performed in 12.5% 
of the total cohort, while 26.4% of all operations were 
total tumor resections. After the operation, 35.1% of all 
patients received concurrent chemotherapy with TMZ 
because TMZ use would depend on the patients’ medical 
welfare in Thailand (30). Moreover, 3.4% of all patients 
had unmethylated MGMT promoters. After 70:30 data 
splitting, almost no differences in baseline characteristics 
were observed between the train and testing datasets. 
Although being considerably different between the train 
and test datasets in terms of tumor location, tumor size, 
and tumor volume, these parameters were not associated 
with prognosis after multivariable analysis of Cox hazard 
regression analysis.

Survival analysis

The mean follow-up time of 14.2 months (SD =16.8) and 
1-, 2-, and 5-year probabilities of survival in the present 

Figure 1 Workflow of the present study.
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Table 1 Baseline characteristics of glioblastoma patients (N=208)

Factor Total Trains Test P value

Age (years) 0.79

<50 96 (46.2) 67 (45.6) 29 (47.5)

>50 112 (53.8) 80 (54.4) 32 (52.5)

Mean age [SD], years 50.79 [16.02] 50.07 [15.10] 52.51 [18.06] 0.35

Gender 0.83

Male 117 (56.3) 82 (55.8) 35 (57.4)

Female 91 (43.8) 65 (44.2) 26 (42.6)

Frontal lobe 74 (35.6) 45 (30.6) 29 (47.5) 0.03

Temporal lobe 71 (34.1) 50 (34.0) 21 (34.4) 0.95

Parietal lobe 39 (18.8) 33 (22.4) 6 (9.8) 0.04

Occipital lobe 10 (4.8) 9 (6.1) 1 (1.6) 0.16

Corpus callosum tumor 26 (12.7) 15 (10.3) 11 (18.3) 0.11

Preoperative KPS 0.46

<70 101 (48.6) 69 (46.9) 32 (52.5)

≥70 107 (51.4) 78 (53.1) 29 (47.5)

Mean preoperative size (cm), mean [SD] 5.37 [1.66] 5.19 [1.66] 5.80 [1.59] 0.01

Mean preoperative volume (cm3), mean [SD] 55.23 [41.70] 51.34 [40.30] 64.61 [43.82] 0.04

Maximum diameter (cm) 0.01

<5 88 (42.3) 71 (48.3) 17 (27.9)

≥5 120 (57.7) 76 (51.7) 44 (72.1)

Tumor volume (mL) 0.14

<50 115 (55.3) 86 (58.5) 29 (47.5)

≥50 93 (44.7) 61 (41.5) 32 (52.5)

Extent of resection 0.10

Biopsy 26 (12.5) 14 (9.5) 12 (19.7)

Partial resection 127 (61.1) 91 (61.9) 36 (59.0)

Total resection 55 (26.4) 42 (28.6) 13 (21.3)

Gross total resection 0.28

Total resection 55 (26.4) 42 (28.6) 13 (21.3)

Non-total resection 153 (73.6) 105 (71.4) 48 (78.7)

Postoperative KPS 0.44

<70 128 (61.5) 88 (59.9) 40 (65.6)

≥70 80 (38.5) 59 (40.1) 21 (34.4)

Adjuvant therapy 0.85

Radiotherapy alone 135 (64.9) 96 (65.3) 39 (63.9)

Concomitant TMZ 73 (35.1) 51 (34.7) 22 (36.1)

MGMT promoter methylation >0.99

Unmethylation 7 (3.4) 3 (2.0) 4 (6.6)

Methylation 201 (96.6) 144 (98.0) 57 (93.4)

Data are shown as n (%) or mean [SD]. KPS, Karnofsky Performance Status; MGMT, O6-alkylguanine-DNA alkyltransferase; SD, standard 
deviation; TMZ, temozolomide. 
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study were 18%, 12%, and 1%, respectively. In addition, 
the median survival time was 11.7 months [95% confidence 
interval (CI): 9.22–12.77].

Factors associated with the prognosis of glioblastoma

Using the Cox hazard regression, a frontal tumor, temporal 
tumor, gross total resection (GTR), concomitant TMZ, 
and methylation of MGMT promoter had a P value of less 
than 0.1, as shown in Table 2. These factors were analyzed 
using multivariable analysis, and the remaining three 
factors associated with the prognosis were as follows: GTR, 
concomitant TMZ, and methylation of MGMT promoter. 
The traditional nomogram was built for prognostication of 
patients with glioblastoma, as shown in Figure 2.

Comparison of the performance metrics among various 
methods

Following the data split, 146 patients were used for the 
development of the ML model, and the remaining 62 
cases were used to assess the model’s performance. The 
shape of the Kaplan-Meier curves for training and testing 
the datasets was close, as shown in Figure 3A, while the 
Kaplan-Meier curves of other models were demonstrated in  
Figure 3B. The RSF and CSF had almost the same shape for 
the Kaplan-Meier curves from the Cox hazard regression.

After hyperparameter turning, the setting of the RSF 
and CSF in the present study was 200 trees contained in the 
forest with 20 minimum node size of the leaf node, whereas 
the MLP structure comprised 1-hidden layer with 150 
units and “Bent Identity” activation function. Therefore, 
the performances of the predictive models among various 
time-to-event methods were estimated by Harrell’s C-index, 
Brier score, and RMSE (Table 3). The predictive model of 
MLP had the highest value of Harrell’s C-index (P value 
of t-test <0.001), but the RSF model had the lowest RMSE 
and mean absolute error (P value of t-test =0.001 and 0.19, 
respectively).

A comparison of the predicted number of patients at risk 
over time among the various time-to-event approaches is 
demonstrated in Figure 4. The predicted graph of the Cox, 
CSF, RSF and MLP were close to the actual graph.

Personalized prognosis using the Kaplan-Meier curves

The prediction of the individual prognosis was performed 
according to the significant factors associated with the 

prognosis; therefore, eight possible conditions were 
estimated by the Kaplan-Meier curves (Figure 5). On 
ranking in the personalized prognosis, the poorest 
prognosis condition was patients with non-total resection, 
postoperative radiation alone, and an unmethylated MGMT 
promoter, while patients with total resection, postoperative 
radiation with TMZ, and methylated MGMT promoter had 
the longest survival time using the Cox hazard regression.

The rank of the survival curves by the MLP and 
parametric survival models were in concordance with the 
personalized survival curves by the Cox hazard regression, 
while several lines of personalized survival curves by the 
RSF and CSF models overlapped.

Discussion

The prognosis of glioblastoma was poor in the present 
study, and these findings were consistent with those of 
previous studies. Overall, the patients’ survival varied 
from 9 to 16 months, as found from the literature review  
(31-33). A longer survival time of patients with glioblastoma 
was associated with the extent of the resection, adjuvant 
chemoradiation, and molecular makers. The GTR, TMZ, 
and MGMT methylation were the prognostic factors in the 
present study, and these findings were consistent with those 
of previous studies (32-36). A clinical trial discovered that 
the median overall survival for TMZ with radiation and 
radiotherapy alone was 16.2 and 9.0 months, respectively (11). 
Additionally, TMZ plus radiation demonstrated a potential 
advantage in Stupp’s landmark clinical trial in 2005; this 
chemotherapy has since become the standard treatment in 
various countries (9,10,12). Nonetheless, the high price of 
TMZ would be a significant economic burden in a country 
with limited resources (33).

The cost-effectiveness of TMZ in a resource-constrained 
situation has been discussed, and it was noted that selecting 
patients and forecasting a good prognosis might increase 
the cost-effectiveness of standard treatment (13). Thus, 
various prediction tools have been developed and validated 
for prognostication in glioblastoma patients. Tunthanathip  
et al. used a nomogram and ML to predict the 2-year 
survival in glioblastoma patients and reported an acceptable 
AUC at 0.81–0.82 (17). However, the limitation of the 
binary outcome prediction showed unseen survival curves 
of each covariate for the oncologists’ decision of the 
appropriate treatment strategies. Therefore, prognostication 
by time-to-event analysis could more serve the physician’s 
decision-making than binary classification (20).
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Table 2 Factors associated with survival by Cox proportional hazard regression 

Factors
Univariate analysis Multivariable analysis

HR (95% CI) P value HR (95% CI) P value

Age, years

≤50 Ref

>50 1.09 (0.81–1.45) 0.55

Age, years

≤60 Ref

>60 1.22 (0.87–1.71) 0.23

Gender

Male Ref

Female 0.94 (0.70–1.25) 0.67

Frontal lobe 0.74 (0.54–1.005) 0.054

Temporal lobe 1.33 (0.98–1.81) 0.06

Parietal lobe 1.05 (0.72–1.52) 0.79

Occipital lobe 1.38 (0.72–2.61) 0.32

Corpus callosum tumor 1.19 (0.77–1.85) 0.42

Preoperative KPS score

<70 Ref

≥70 1.18 (0.88–1.57) 0.26

Maximum diameter, cm

<5 Ref

≥5 1.01 (0.76–1.36) 0.89

Tumor volume, mL

<50 Ref

≥50 0.89 (0.67–1.20)

Total resection

Total resection Ref Ref

Non-total resection 0.44 (0.31–0.62) <0.001 0.20 (0.09–0.44) <0.001

Postoperative KPS-score

<70 Ref

≥70 0.97 (0.72–1.31) 0.86

Adjuvant therapy

Radiotherapy alone Ref Ref

Concomitant TMZ 0.57 (0.42–7.84) <0.001 0.54 (0.39–0.73) <0.001

MGMT promoter methylation

Unmethylation Ref Ref

Methylation 0.17 (0.07–0.38) <0.001 0.20 (0.09–0.44) <0.001

CI, confidence interval; HR, hazard ratio; KPS, Karnofsky Performance Status; MGMT, O6-alkylguanine-DNA alkyltransferase; Ref, 
reference group; TMZ, temozolomide. 
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Figure 2 Nomogram for prognostication of patients with glioblastoma. To use the nomogram, make a straight line (black color line) 
upward from the TMZ (TMZ with RT or RT alone), GTR (total resection or non-total resection), and MGMT (methylated MGMT or 
unmethylated MGMT) to the upper points scale for scoring each predictor, and the sum of the scores of all predictors. Then, draw another 
straight line (red color line) downward from the scale of the total points through the predicted outcome scales to measure the probability 
of death each specific time point in an individual. GTR, gross total resection; MGMT, O-6-methylguanine-DNA methyltransferase; RT, 
radiotherapy; TMZ, temozolomide.

Figure 3 Kaplan Meier survival curves. (A) Survival curves from the train and test datasets (P value of log-rank test =0.47). (B) Survival 
curves of the overall survival from the various methods from the train datasets. Cox, Cox hazard regression; CSF, conditional survival forest; 
MLP, multilayer perceptron.
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Table 3 Average values of concordance indexes, Brier scores, and errors of the predicted number of event overtime among Cox, parametric, and 
ML approaches 

Approach
Harrell’s concordance 

index (95% CI)
Brier score (95% CI) RMSE (95% CI)

Median absolute error 
(95% CI)

Mean absolute error 
(95% CI)

Cox 0.648 (0.642–0.653) 0.168 (0.165–0.172) 1.006 (1.005–1.007) 0.637 (0.635–0.638) 0.855 (0.854–0.856)

CSF 0.640 (0.639–0.641) 0.169 (0.166–0.171) 1.032 (1.031–1.033) 0.693 (0.691–0.696) 0.859 (0.857–0.861)

RSF 0.640 (0.639–0.641) 0.169 (0.168–0.170) 0.980 (0.979–0.981) 0.666 (0.664–0.667) 0.815 (0.814–0.816)

MLP 0.659 (0.657–0.661) 0.149 (0.146–0.151) 1.001 (0.997–1.005) 0.588 (0.587–0.589) 0.848 (0.847–0.879)

Gompertz 0.649 (0.647–0.651) 0.158 (0.155–0.162) 1.572 (1.56–1.53) 0.853 (0.851–0.856) 0.954 (0.951–0.956)

Weibull 0.648 (0.644–0.652) 0.158 (0.155–0.162) 1.137 (1.136–1.138) 0.769 (0.768–0.770) 0.953 (0.952–0.955)

ML, machine learning; CI, confidence interval; Cox, Cox proportional hazard regression; CSF, conditional survival forest; MLP, multilayer 
perceptron; RMSE, root mean square error; RSF, random survival forest. 

Figure 4 The predicted number at risk overtime by the Cox hazard regression, ML algorithms, and parametric survival models. (A) 
Cox hazard regression; (B) conditional survival forest; (C) random survival forest; (D) multilayer perceptron; (E) parametric Gompertz 
distribution; (F) parametric Weibull distribution. Mean Abs Error, mean absolute error; Median Abs Error, median absolute error; RMSE, 
root mean squared error. ML, machine learning.
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Figure 5 The personalized prognosis from the potential conditions using the various approaches. (A) Cox hazard regression; (B) conditional 
survival forest; (C) random survival forest; (D) multilayer perceptron; (E) parametric Gompertz distribution; (F) parametric Weibull 
distribution. GTR, gross total resection; met, methylated; MGMT, O-6-methylguanine-DNA methyltransferase; RT, radiotherapy; TMZ, 
temozolomide; unmet, unmethylated.
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In the overall prognosis, the survival curve by Cox 
regression did not overlap with the actual survival curve, 
but the RSF had the closest to the actual survival curves. 
Moreover, this algorithm had the lowest RMSE for the 
prediction of the number of patients at risk over time 
during the follow-up. Furthermore, the RSF was one of 
the time-to-event algorithms that could manage right 
censored survival data and was used in prior studies. Li  
et al. (35) used the RSF for the recurrent prediction among 
breast cancer patients and found that the C-index was 0.936, 
whereas Qiu et al. (36) compared predictive progressive 
disease in high-grade glioma between the Cox hazard 
regression and the RSF. As a result, the C-index and Brier 
scores of the Cox hazard regression were 0.629 and 0.159, 
whereas the RSF model had C-index and Brier scores of 
0.611 and 0.174, respectively. Additionally, deep learning 
methods with various packages, such as DeepSurv (20),  
DeepHit (37), and DNNSurv (38) have been used for 
the survival prediction of several cancers. Katzman 
demonstrated that the deep learning model performed 
complicated relationships between a patient’s covariates 
and their risk of failure, so this approach could be used as 
personalized treatment recommendations in the future (23). 
In the present study, we used MLP, which was the neural 
network from the PySurvival package that revealed an 
acceptable performance.

For the implication, the personalized survival curves 
were useful to apply for creating treatment strategies 
according to the covariates. The survival curves created by 
the Cox hazard regression, parametric survival model, and 
MLP were separated into eight conditions; however, eight 
treatment strategies may be more complicated to apply 
in real-world practice. While personalized survival curves 
created by the RSF may be more simplified for implication, 
the personalized survival curves could be categorized 
into three groups of poor, average, and good prognosis. 
This would be one of the resource allocation methods for 
selecting patients who had a likelihood of cost-effectiveness 
of high-cost standard treatment (13,14,15,17).

To the authors’ knowledge, the present study was the first 
paper to compare the prognostication performance among 
various time-to-event analyses and ML for glioblastoma 
patients. Moreover, the present study demonstrated the 
personalized survival curves of each covariate through 
various survival analyses. However, the limitations of the 
present study should be acknowledged. A multicenter trial 
or meta-analysis should be conducted to increase the sample 

size in the current study. A larger sample size would aid in 
the investigation of predictors associated with survival time 
of glioblastoma patients (39,40). The ML model should be 
estimated with more unseen data to confirm generalizability, 
which would be a challenge for future prospective studies 
evaluating these models’ performances (41). Furthermore, 
the number of patients eliminated due to missing data 
could lead to biased results for the model’s predictive 
performance; however, fewer than 10% of patients were 
excluded in the present study, which was acceptable (42).

Conclusions

In summary, these time-to-event survival approaches were 
designed to show the personalized survival curves in each 
condition for a physician to make a personal treatment 
recommendation. Therefore, choosing patients with 
a favorable prognosis would lead to cost-effectiveness 
management for the high-cost standard treatment.
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