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Background: Skin lesion classification through dermatoscopic images is the most common method 
for non-invasive diagnostics of dermatologic conditions. Feature extraction through deep learning (DL) 
based convolutional neural networks (CNNs) provides insight into differential attributes of skin lesions 
that may pertain to its malignancy. In this study, we sought to improve the performance of standard CNN 
architectures in skin lesion classification by providing a machine learning (ML)-derived risk score from 
patient demographic data. 
Methods: We isolated 1,340 patients (n=2,200) from the HAM10000 dataset with ground-truth diagnoses 
of either melanoma or benign keratosis-like lesions. Images were split into train, validation, and test, with 
equal representation of each class in each phase. Baseline CNN performance was established by training  
5 DL network architectures (Ni) with 3-fold cross-validation (CV); each of which employed leave-one-out 
CV and an early stopping criterion. Learning rate (LR) and weight decay (WD) were optimized to yield 
networks with the highest area under the receiver operating characteristic curve (AUC). For ML training, 
one-hot encoding was applied to demographic variables (age, sex, localization of lesion). This risk score was 
added as an additional feature in the final convolutional layers while training CNNs, yielding deep ensemble 
networks (Ei); all optimized parameters were the same as Ni. 
Results: Amongst 7 ML classifiers, the random forest algorithm (MRF) yielded the highest test AUC 
of 0.710. No significant difference was observed in test AUCs across DL networks (Ni=0.81±0.04) and 
ensemble networks (Ei=0.88±0.03), demonstrating network architecture did not significantly influence 
performance. A statistically significant increase in AUCs was observed in Ei compared to Ni (P=4.23E−3), 
indicating a significant contribution with the inclusion of a demographic risk score. Furthermore, activation 
maps generated for network visualization of test set images show higher specificity of differential features to 
inform network prediction in Ei. Average predictions on Dholdout are significantly closer to true values in Ei 
compared to Ni.
Conclusions: The ensemble inclusion of a ML risk stratifier from demographic data may improve DL 
binary classification of dermatoscopic lesions. 
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Introduction

To this day, skin cancer remains as one of the most 
prevalent and deadly forms of cancer, worldwide (1). 
The onset of this widespread ailment can be significantly 
increased by a multitude of factors, including one’s genetic  
predisposition (2), ultraviolet and sun exposure (3), 
smoking (4), age (5), and various other factors (6,7). Some 
of the more widespread skin cancers include squamous 
cell carcinoma (SCC), basal cell carcinoma (BCC), and 
malignant melanoma (MM).

In standard clinical practice, dermatologists inspect 
the superficial changes in nevi over time, using the widely 
used metric of reviewing asymmetry, irregular borders, 
multiple colors, large diameter, and evolving nature of nevi, 
also known as the ABCDEs (Asymmetry, Border, Color, 
Diameter, Evolution) of melanoma (8,9). While some 
experts can confidently determine the nature of a nevus by 
tracking superficial changes, the gold standard to confirm its 
identity would be through the microscopic determination of 
the intrusiveness of the melanocytes. Dermatopathologists 
prepare a microscopic slide of the lesion to establish any 
atypical features of the sample.

Following pathology-confirmed biopsy requires various 

treatment options depending on the severity and stage of the 
skin cancer, including surgical excision, superficial radiation 
therapy (10), Mohs surgery (11,12), or immunotherapy 
for metastasized lesions (13). While moderate-to-high 
efficacy rates have been demonstrated by these treatments, 
long-term cosmetic and phenotypic outcomes prove to 
be unfavorable to patients. The bottleneck of requiring a 
fast turnaround time for early detection and management 
of skin cancers is exacerbated by the limited number of 
dermatopathologists relative to the number of positive 
diagnoses. Furthermore, it is imperative to confirm the 
severity of nevi in the early stages in hopes of providing the 
least harmful and invasive outcome.

This may prove to be difficult for some, due to skin lesions 
being inconsistent in how they present. Benign lesions 
such as seborrheic keratoses (SK) can mimic SCC (14),  
a highly intrusive and prevalent non-melanoma skin cancer 
(NMSC). However, such benign lesions have been proven 
to adopt neoplastic activity through an aggregation of 
various genetic and environmental factors (15). Without 
constant monitoring of suspicious benign lesions, these 
can present with malignant features and can often go 
undetected, leading to many downstream complications.

Currently, biopsies prove to be the gold standard for 
obtaining and preparing samples for dermatopathology 
confirmation; these take the form of superficial shave 
excisional biopsies and deeper punch biopsies (16). Over 
the years, this method of obtaining samples has proven 
highly effective at collecting samples, yet it can present with 
some disadvantages. Biopsies are an invasive technique that 
often leaves a cosmetically-unappealing scar on the patient. 
Additionally, the nature of a biopsy depends on clinician 
preference and may result in the margins of a lesion not 
being included in a dermatopathology report. The time 
taken for pathologists to confirm the nature of a skin lesion 
can further delay treatment, potentially resulting in further 
malignancies. As such, non-invasive measures for skin 
cancer are in high demand.

The recent onset of artificial intelligence (AI) is 
becoming increasingly appealing as a non-invasive means 
of supplementary diagnostic measures. It combines the 
exponential increase in computational capabilities with 
complex algorithms to optimize learning given a dataset. 
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Highlight box

Key findings
• The addition of a machine learning risk score derived from 

demographic data as an extra feature can aid in deep learning (DL) 
binary lesion classification of dermatoscopic images.

What is known and what is new? 
• Specialized convolutional neural network (CNN) architectures 

provide robust lesion classification and segmentation performance.
• Demographic data can differentially predispose some patients to 

skin cancer given constant environmental conditions.
• This study demonstrates that the inclusion of a risk score from 

demographic features may increase the performance of DL binary 
lesion classification challenges.

What is the implication, and what should change now? 
• While standard DL models are highly accurate in classification 

tasks, their performance may be increased by supplying ensemble 
information as features in their final convolutional layers.
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AI has established breakthroughs in a multitude of 
fields, including the automobile industry (17), consumer  
lifestyle (18), and finance (19), to name a few. In particular, 
AI serves as a cornerstone to increase efficiency within 
healthcare, as its applications can assist physicians in making 
diagnoses, and its resources be spread globally for minimal 
financial costs.

In particular, deep learning (DL) is a branch of AI that 
utilizes algorithms and statistical weighting to recursively 
train and output a variety of predictions. The branch of DL 
utilizes convolutional neural networks (CNNs) to mimic 
the processing techniques of the human brain: it gathers 
significant features from its input and assigns weights to 
inform a final decision.

There exists a myriad of studies that have compared 
various network architectures and have proven great 
success in identifying the nature of suspicious- and benign-
appearing skin lesions via intricate computer vision 
algorithms. In a study by Brinker et al., the performance 
of a ResNet50-based CNN was measured against 157 
dermatologists on the classification of melanoma from 
the MClass-D skin cancer classification challenge. The 
results of this study indicated their CNN outperformed 
136 out of 157 dermatologists (86.6%) in both sensitivity 
and specificity of classification (20). Similar results were 
obtained by Maron et al. in a multi-class skin cancer 
classification challenge, where CNN proved either higher 
or similar sensitivity and specificity relative to experienced 
dermatologists to an array of seven different classes of skin 
lesions (21).

Additionally, a study conducted by Hsu et al. (22) 
compared state-of-the-art DL models with the incorporation 
of their novel loss function HAC-LF for multi-class 
classification of skin lesions in the International Skin 
Imaging Collaboration (ISIC) 2019 Challenges Dataset. 
Utilization of their novel loss function prompted increased 
sensitivity metrics on minority classes amidst an imbalanced 
dataset. Furthermore, overall sensitivity, specificity, and 
accuracy loss metrics were greatly improved with HAC-
LF, thus increasing the performance of DL models in the 
multi-class classification of skin lesions. Another study led 
by Zunair et al. highlighted the efficacy of implementing 
inter-class mapping to correct generalized data imbalance 
of multiple underrepresented skin lesions with their novel 
DL architecture, MelaNet. When compared to other 
Visual Geometry Group (VGG)-based CNNs, MelaNet 
outperformed the relatively standard methods achieving an 
AUC of over 0.81 and a specificity score of 0.92 (23).

Similarly, one particular study utilizing 71 different 
machine learning (ML) architectures achieved a sensitivity 
rating of 85% and a specificity rating of 86%. Yet despite 
these high accuracy rates of the model’s capability to 
differentiate between benign nevi and MM, the predictions 
made lacked external confirmation and validation from 
trained professionals (24).

Ensemble learning (EL) is a technique that combines 
the outputs of multiple ML and/or DL models to improve 
the accuracy of predictions and can be applied in various 
ways in medical imaging diagnostics. Multiple models can 
be trained on different datasets, and their outputs can be 
combined to account for variations in image quality, patient 
population, and other factors that may affect the accuracy 
of the diagnosis. EL has been applied to medical imaging 
diagnostics with promising results. One study published 
in the Journal of Medical Systems in 2020 evaluated the 
performance of an ensemble model for the detection of 
COVID-19 from chest X-ray images. The ensemble model, 
which combined the outputs of multiple CNNs, achieved 
an accuracy of 0.96, compared to 0.85 for the best single 
model (25). By combining the outputs of multiple deep and 
ML models, EL can augment traditional DL algorithm 
responses in medical imaging diagnostics.

Skin cancer prevalence is multifactorial; diagnosis must 
take into account both superficial dermatoscopic data and 
demographic factors, such as age, sex, ethnicity, and location 
of a lesion (26). Various ML models have been implemented 
to stratify the risk of an individual based on such 
characteristic factors. Yet, to the best of our knowledge, few 
have used such ML risk stratifiers in conjunction with DL 
networks to inform the nature of a particular skin cancer 
lesion. The application of EL in the diagnosis of skin lesions 
from dermatoscopic and demographic data may prove to 
increase the performance of traditional DL networks.

The goal of this study was to compare the effectiveness 
of an adjunctive ML risk stratification model on DL skin 
lesion classification. We aim to determine if the addition of 
an ML-based risk probability as an independent channel in 
a DL network’s decision tree will aid in the performance of 
skin cancer classification.

Methods

HAM10000 dataset

For this study, we utilized the HAM10000 (Human 
Against Machine with 10,000 training images) dataset (27),  
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a public dataset consisting of n=10,015 de-identified 
dermatoscopic images of skin lesions coming from N=7,470 
patients. Images were collected from the Department 
of Dermatology at the Medical University of Vienna, 
Austria, and the skin cancer practice of Cliff Rosendahl in 
Queensland, Australia. Over 50% of lesions had ground-
truth diagnosis confirmed by pathology, while the rest 
were confirmed by either subsequent follow-up, expert 
consensus, or in vivo confocal microscopy. For the purposes 
of this study, all data was included regardless of the method 
for ground-truth diagnosis.

Lesion classes included in this study were actinic 
keratoses, BCC, benign keratoses (a general term to include 
SK, lichen planus keratoses, solar lentigines, and various 
other benign lesions), dermatofibroma, melanocytic nevi 
(a general term to include dark, symmetrical, benign 
neoplasms of melanocytes that present in contrast to 
melanoma), melanoma, and vascular skin lesions (a 
general term to include benign blood-related growths 
including cherry angiomas, angiokeratomas, and pyogenic 
granulomas).

To report data in the setting of a binary classifier, 
only lesions of classes benign keratoses and melanoma 
(N=1,341, n=2,200) were retained for further testing due 
to their similar presentation and equal representation 
in the HAM10000 dataset. One-hot encoding assigned 
binary labels to benign keratoses [0] and melanoma [1]. A 
distribution of the number of lesions can be observed in 
Table 1.

Finally, included in the dataset was demographic 
information of patients such as age, sex, and lesion 
location. Images from the original HAM10000 dataset had 
segmentation masks available, but these were not used for 

this study.

Pre-processing

Lesions belonging to melanoma or benign keratoses was 
split into train (Dtrain; 49%), validation (Dval; 21%), and test 
(Dholdout; 30%), with an equal distribution of both classes in 
each phase (Figure 1).

Images were resized to a 224×224×3 pixel size and 
retained in traditional RGB format. Various artifacts such 
as hair and dead skin occluded some lesions of interest. The 
DullRazor algorithm (28) was implemented to remove such 
artifacts prior to further pre-processing. Figure 2 depicts the 
clarity observed across several lesions after noise removal 
was performed.

Data augmentation

Isolating patients with diagnoses of either melanoma or 
benign keratoses resulted in a total of 2,212 lesions across 
1,341 patients. Multiple images of the same lesion were 
included, as they were taken from different magnifications, 
angles, and camera qualities. To further augment the training 
data available, each image was subjected to vertical flip, 
horizontal flip, random color shifts, and random rotation 
(Figure 3). A 4-fold augmentation was performed on each 
training set image, increasing Dtrain to a total of 5,415 lesions.

ML algorithms

Decision tree
The decision tree algorithm in ML is among the most 
common, robust, and customizable models. It recursively 
iterates through features in the data until a criterion is 
met. Trees are composed of nodes and leaves, with the 
higher nodes indicating branch points of highly differential 
features. Leaves represent specific features that can be used 
to separate data. Seeing as users can manipulate the number 
of nodes and leaves present in models, this simple algorithm 
is among the most variable, thereby serving purposes 
ranging from classification to regression (29).

Gradient boosting
Gradient boosting is a common application in ML models 
to fine-tune hyperparameters within a model to isolate 
the unique combination yielding greatest performance. 
The promise of gradient boosting comes from its ability 
to aggregate several decision trees and assign weights 

Table 1 Distribution of lesions in HAM10000 dataset

Diagnosis Count

Melanocytic nevi 6,705

Melanoma* 1,113

Benign-keratosis lesion* 1,099

Basal cell carcinoma 514

Actinic keratosis 327

Vascular skin lesion 142

Dermatofibroma 115

*, lesions included in this study. HAM10000, Human Against 
Machine with 10,000 training images Dataset.
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to generate a composite prediction. Its performance is 
characterized by the performance of multiple poorly 
performing decision trees to create an ensemble algorithm 
that finetunes its weights with successive training iterations. 
Seeing as gradient boosting often adjusts a multitude of 
parameters across multiple decision trees, it is among 

the more computationally intensive algorithms, but has 
demonstrated incredible performance in data clustering and 
image classification challenges (30).

Naive Bayes
Naive Bayes is a common ML algorithm used in multi-
categorical tasks, most prevalent being sentiment analysis 
in natural language processing. It assigns classes to features, 
assumes independence of those features, and determines 
an overall probability using the aggregate sum of the 
different classes included in the training set. While it can 
be informative in discrete classification tasks, this algorithm 
places a high importance on individual features, making it 
sensitive to outlier data (31).

Random forest
A random forest algorithm is a commonly used supervised 
learning algorithm that samples a random set of data 
from the training set and constructs a decision tree for 
each sample. A process similar to voting occurs through 
averaging all the individual decision trees; higher weighted 
values become the final prediction output. This usage of 
multiple different models is called EL that utilizes bagging, 
which is creating various training sets for each model, as 
well as boosting, which is combining models together to 
produce an even more accurate model (32).

Support vector machine (SVM)
A SVM algorithm aims to define an optimal hyperplane 

Train

n=1,071

n_aug=5,415

n_mel=2,700 n_bkl=2,715

Validation

n=465

n_mel=249 n_bkl=216

Lesions with diagnosis of either melanoma or benign keratosis lesion

n=2,200

Lesions included in HAM10000 parent study

n=10,015
Excluded (n=7,815): 

• Lesions with diagnosis of melanocytic nevi, 

basal cell carcinoma, actinic keratosis, vascular 

skin lesion, dermatofibroma 

• Lesions missing demographic features  

(age, sex, location)

Test

n=664

n_mel=324 n_bkl=340

Figure 1 Patient inclusion criteria and distribution into train, validation, and test. HAM10000, Human Against Machine with 10,000 
training images Dataset.

Figure 2 DullRazor algorithm effectively isolates the lesion while 
removing artifacts (hair, keratin debris).

 Original DullRazor
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Figure 3 Example of natural and computational augmentations used to increase training data in Dtrain. (A) Natural augmentations from 
different camera angles. (B) Random horizontal and vertical flipping, rotations, and color shifting on all lesions in Dtrain. Dtrain, Train Dataset. 

A

B

in a given space that classifies data points. Support vectors 
are data points with the closest proximity to the defined 
hyperplane. They hold the greatest weight in determining 
the position and orientation of the hyperplane classifier. 
By maximizing the distance between the support vectors 
and the hyperplanes, or margins, the SVM will be able to 
accurately distinguish between two classes of data (33).

Logistic regression
The main purpose of logistic regression algorithms is to 
predict the probability of data classes based on dependent 
variables. Using the sigmoid function, the algorithm labels 
certain outcomes with a probability between 0 and 1, with 
1 indicating a high similarity to a compared class. The 
algorithm fits an equation aimed at determining a threshold 
to separate classes. As a result of the function’s output being 
between 0 and 1, this method is almost exclusively used for 
binary classification tasks (34).

k-Nearest Neighbors (KNN)
The KNN is a supervised algorithm that excels at data 
classification and discriminant analysis when there is little 
prior knowledge of the database of interest. When plotted, 
categorical training data can cluster into discernable groups. 
Testing data, with no assigned output, can be classified 
based on the number of nearest neighbors to the datapoint. 
k is the hyperparameter that defines the number of nearest 
neighbors to classify a point of interest. With k=1, the 
unknown datapoint is grouped into the category with the 

nearest neighbor. Higher k allows for more neighboring 
datapoints to be included in the classification task. The 
unknown datapoint is classified by the category with the 
greatest amount of nearest neighbors. However, overly-
elevated k can result in the over-representation of a category 
with few samples. KNN is an efficient algorithm for small-
scale data but has a high sensitivity to outliers and large 
categories (35).

DL network architectures

D L  m e t h o d o l o g i e s  c a n  v a r y  s i g n i f i c a n t l y  i n  
performance (36). While factors such as learning rate (LR), 
weight decay (WD), and structure of the main classifier 
function can yield different results, the inherent structure 
of DL networks plays an important role in classification 
performance. In particular, the recent advancement 
of CNNs has provided many breakthroughs in image 
segmentation (37) and classification challenges (38). 
They rely on recurrent neurons for feature extraction, 
proving themselves to be an efficient means for identifying 
heterogeneous features amongst complex datasets. Among 
the best-performing CNN architectures historically 
include AlexNet, DenseNet, MobileNetV2, ResNet, and 
SqueezeNet.

AlexNet
AlexNet is a CNN that preserves lightweight functionality 
with in-depth performance. It consists of eight layers of 
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trainable weights, including five convolutional layers and 
three fully connected layers. AlexNet uses ReLU activation 
functions, local response normalization, and dropout to 
prevent overfitting. It also employs data augmentation 
techniques during training to improve generalization. 
Initially adapted to the ImageNet challenge (39), it has the 
option to use pretrained weights in the training process (40).

DenseNet
DenseNet is a deep neural network architecture that is 
unique due to each layer being interconnected between each 
other. Layers are connected in a feedforward fashion, and 
each layer receives the feature maps of all preceding layers 
as input. While the vast number of connections between 
layers results in a larger memory size and greater length of 
training, it allows for feature propagation and reduces the 
number of parameters in the network. DenseNet has shown 
strong performance in a variety of image classification tasks 
and has been used as a base architecture for many other 
computer vision models (41).

MobileNetV2
MobileNetV2 is a deep neural architecture adapted for the 
purpose of lightweight training, initially with the intention 
to train on mobile devices with less computational power. 
Its lightweight framework utilizes depthwise separable 
convolutional layers, effectively separating the filtering and 
combining of inputs into one output with separate layers; 
standard convolutional layers perform this task in one layer. 
Multiple pretrained model weights exist using ImageNet 
challenge training data and are utilized for more niche 
image classification tasks (42).

ResNet
ResNet is among the most widely used deep neural network 
architectures in image classification tasks. Its unique 
means of optimizing backpropagation of weights enables 
accurate training. Additionally, its implementation of skip 
connections (43) allows this network architecture to pass 
information from earlier layers to later layers, effectively 
reducing the incidence of overfitting data. Use cases of this 
architecture have been used in a wide range of computer 
vision tasks such as image classification, object detection, 
and segmentation, with deeper variants demonstrating 
greater performance (44).

SqueezeNet
SqueezeNet is a lightweight neural network that boasts 

fifty times fewer parameters than the traditional AlexNet 
framework. Its lightweight architecture results in faster 
training time and reduced intensive computational load. 
One distinguishing feature is its use of fire modules, which 
consist of a squeeze layer and expand layer to achieve 
similar performance as other models without increasing 
model complexity (45).

Network training

Batch training was conducted on Google Colab (46) to 
efficiently determine optimal parameters for downstream 
testing. Google’s free-to-use cloud GPU service granted 
limited access to Nvidia K80 or Nvidia T4 GPUs which 
were accessible through a Jupyter Notebook kernel. Model 
generation was conducted on a 2021 Macbook Pro with 
the M1 Pro chip and 16 GB of RAM. The Apple Metal 
Performance Shader (MPS) was the compute engine to 
generate the final models once the optimal parameters were 
established.

Statistical analysis

Confusion matrices
In binary classification, the true positive (TP) and true 
negative (TN) is defined as the number of positive and 
negative classes, respectively, correctly predicted by a model. 
Conversely, the false positive (FP) and false negative (FN) 
are the number of incorrectly attributed cases compared to 
the ground truth. A visual interpretation of these results can 
be seen in a confusion matrix.

Receiver operating characteristic (ROC) curves
A ROC curve is a visual representation of assigning a 
metric to the accuracy of predictive output in classification 
tasks. The ROC curve plots sensitivity {Eq. [1]} versus 1 − 
specificity {Eq. [2]}.

TPSensitivity
TP FN

=
+

 [1]

TNSpecificity
TN FP

=
+

 [2]

Maximal area under the ROC curve (AUC) indicates 
greater agreement between network predictions and ground 
truth values, taking the value of 1.0. In contrast, a network 
operating without distinguishability between classes would 
have an AUC of 0.5, indicating it may be operating on 
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random chance. AUC values ranging from 0.8–1.0 are 
considered to have high predictive power.

Student’s t-test
The Student’s t-test is a widely used metric to compute 
whether there exists a statistically significant difference 
between the means of two groups, sample 1 and sample 2.  
The test calculates a t value based on the mean (x1, x2), 
standard deviations (s1, s2), and sample sizes (n1, n2) {Eq. [3]} 
and compares this value to a t distribution. A corresponding 
probability, or P value (P), is calculated from the area of the 
t value in the t distribution and this probability determines 
the likelihood of the results occurring through chance.

1 2
2 2
1 2

1 2

x xt
s s
n n

−
=

+

 [3]

Ethical statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). An ethics 
review board was not necessary for this project due 
to the nature of public datasets being used and no 
direct interaction with animal tissue. Patient data was 
confidentially stripped of identifying features in the public 
dataset through the institution’s proprietary means.

Experimental design

Experiment 1: comparison of multiple DL architectures 
on skin cancer image classification performance
Five total networks (Ni: NA, ND, NM, NR, NS) were trained in 
this experiment using PyTorch. All networks utilized weights 
from pre-trained ImageNet challenges. Solely pre-processed 
images from Dtrain were passed through the networks. An 
early-stopping criterion was implemented with leave-one-
out cross-validation (CV) to prevent overfitting with a 
patience of 15 epochs. Models continued training until the 
lowest validation loss was achieved after evaluating on Dval, 
of which, the model was preserved for further comparison. 
Parameters such as LR, WD, and custom classifier functions 
were fine-tuned to save the model with the highest validation 
AUC, which was preserved for further downstream testing. 
A 3-fold CV was applied and the reported metrics were the 
average values of the models.

Network predictions were extracted on Dholdout and 
subsequent AUCs were generated to assess network 

performance. Furthermore, gradient-weighted class 
activation maps (Grad-CAM) (47) were generated on Dholdout 
to visualize differential features that networks perceived 
as contributing to decisions. For each model within the 
3-fold CV, Grad-CAM images were generated and averaged 
together to generate a consensus heatmap of network 
importance. The complete flowchart of execution can be 
found in Figure 4.

Experiment 2: evaluating the change in performance 
with the addition of a ML risk stratifier on DL skin 
cancer image classification
Demographic data provided by the HAM10000 dataset used 
for this study included age of the patient, the biological 
sex of patients, and location of lesions. One-hot encoding 
was implemented on biological sex and location of lesions 
to numerically categorize the classes included for training 
(Tables 2,3). Subjects were excluded (n=12) if they had a 
missing value in either of the three demographic factors, 
following the same decision criteria represented in Figure 1.

ML algorithms (Mi) tested included random forest 
(MRF), gradient boost (MGB), decision tree (MDT), k-Nearest 
Neighbor (MKNN), linear regression (MLinReg), logistic 
regression (MLogReg), Gaussian Naive Bayes (MGNB), 
multinomial Naive Bayes (MMNB) and support vector 
machine (MSVM). Various parameters specific to individual 
ML models were adjusted and optimized in the training 
phase. After pre-processing the tabular data to enumerate 
all values, data was split into train and test following the 
same splits as Experiment 1. However, the nature of ML 
algorithms does not require a validation set. As such, 
validation data was included in the training set (Dtrain, 

ML) with a holdout test set (Dholdout) for evaluation. The 
algorithm within Mi with the highest AUC on Dholdout was 
preserved for further experimentation.

During ensemble training of DL and ML models, all 
parameters (LR, WD, and custom classifiers) for DL 
networks were kept the same as in Experiment 1. Mi was 
trained on the tabular demographic data first. As patient 
images were fed into DL training and validation networks, 
a predictive risk was generated by Mi given the patient’s 
demographic data. Augmented image data in Dtrain had the 
same demographic features as the parent image, meaning 
the patient’s original demographic data was used for their 
augmented images in the train set. The risk score was 
passed into the DL network as an additional feature. We 
modified the last convolutional layers within the feature and 
classifier layers of the DL networks to incorporate the extra 

https://www.zotero.org/google-docs/?adAgQ9
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Figure 4 Pipeline of training and testing binary classification capabilities of deep networks using solely pre-processed dermatoscopic image 
data. CNN, convolutional neural network; AUC, area under receiver operating characteristic curve; TPR, true positive rate; FPR, false 
positive rate; CV, cross-validation. 
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remove artifacts

Images resized to  
(224, 224) CNN training

Table 2 One hot encoding breakdown of sex

Sex Numerical assignment

Male 0

Female 1

Table 3 One hot encoding breakdown of lesion location

Location Numerical assignment

Abdomen 0

Acral 1

Back 2

Chest 3

Ear 4

Face 5

Foot 6

Genital 7

Hand 8

Lower extremity 9

Neck 10

Scalp 11

Trunk 12

Upper extremity 13

feature being passed into the networks and continued to 
output a singular classification value.

Subsequent training after the modification proceeded 
similarly to Experiment 1, where leave-one-out CV was 
employed to isolate the ensemble networks with the lowest 
validation loss. Five total EL models (ensemble referring 
to DL networks being informed by dermatoscopic image 
and ML risk stratification from demographic data) were 
generated via PyTorch (Ei: EA, ED, EM, ER, ES), with each 
architecture receiving a 3-fold CV. Further testing was 
performed on Dholdout, where the ML model provided a risk 
stratification based on Dholdout demographic data and was 
included as a feature in Ei during evaluation. Predictions 
were reported as the average of the 3-fold CV generated for 
each network architecture. Averaged Grad-CAM images 
were generated to highlight differential features being 
observed by models. The complete flowchart of execution 
can be seen in Figure 5.

Results

Experiment 1: comparison of multiple DL architectures on 
skin cancer image classification performance

The primary metric to denote network performance was 
the AUC value calculated from prediction outputs and 
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Figure 5 Pipeline of training and testing binary classification capabilities of deep ensemble networks using solely pre-processed 
dermatoscopic image data. (A) Training pipeline for ML models. (B) Training and testing pipeline for DL models with integration of Mi risk 
score. Dx, diagnosis; mel, melanoma; bkl, benign-keratosis lesion; M, male; F, female; RF, random forest; SVM, support vector machine; Mi, 
all ML models; ML, machine learning; EL, ensemble learning; AUC, area under receiver operating characteristic curve; TPR, true positive 
rate; FPR, false positive rate; CV, cross-validation; DL, deep learning.

ground-truth classification of lesions. Table 4 demonstrates 
the performance of various network architectures on the 
predictive performance of the hold-out test set. Network 
AUCs throughout Ni had little variance (F=0.0, P=1.0), 
indicating there were no significant  differences in 
performance across the network architectures used.

Experiment 2: evaluating the change in performance with 
the addition of a ML risk stratifier on DL skin cancer 
image classification

Out of the nine ML models trained (Mi), the random forest 
classifier (MRF) yielded the highest test AUC of 0.710  
(Table 5). Due to Mi being trained on three demographic 

variables (age of patient, biological sex, and location of 
lesion), lower AUCs were expected as compared to traditional 
datasets with an abundance of demographic features.

Preserving all parameters from Experiment 1, the risk 
score generated by MRF on patients’ demographic data 
was included as an additional feature when training Ei. 
Table 6 depicts the performance of Ei on Dholdout. Similar 
to Experiment 1, AUCs across networks in Ei yielded no 
significant differences (F=0.0, P=1.0).

Evaluation of performances between deep and ensemble 
networks

The average runtime across the three-fold CV was 

Dx Age (years) Sex Location

mel 63 M Trunk

mel 71 F Chest

bkl 53 F Abdomen

bkl 69 F Trunk

bkl 42 M Back

mel 46 F Foot

bkl 84 M Face

Dx Age (years) Sex Location
1 63 0 11

1 71 1 2

0 53 1 0

0 69 1 11

0 42 0 1

1 46 1 5

0 84 0 4

Train 

Test

Original data

Images loaded DullRazor algorithm 
to remove artifacts

Images resized to 
(224, 224)

ML risk score EL training

Model with highest AUC 
preserved

ML risk scoreHold-out test set 
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Statistics
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computed for each network architecture in Ni and Ei 
(Figure 6). The endpoint was determined after models 
completed leave-one-out CV with a patience of 15 epochs. 
This analysis was conducted with the models generated 
using the MPS compute engine. Throughout all network 
architectures, Ei yielded longer runtimes (F=0.99, 
P=0.0029), indicating the ML prediction of demographic 
data and inclusion of an extra feature in deep ensemble 
training can significantly increase training time. The 
average difference in training and validation time between 
Ei and Ni was 16.4±6.84 minutes.

The average network performance across Ni yielded 
a mean test AUC of 0.8134 while the mean test AUC of 
Ei was 0.878. A statistically significant increase (F=0.47, 
P=0.0042) in performance was observed with EL for the 

binary classification task of skin lesions (Figure 7).
Upon evaluation of the performance differences 

between individual models, all EL networks demonstrated 
a significant increase in classification compared to their 
DL counterparts, with the exception of the SqueezeNet 
architecture. This architecture is known for its lightweight 
nature and significant performance in classification 
tasks. Given the notably fewer parameters required for 
SqueezeNet training, the relative weight of an additional 
ML risk feature may not have influenced the performance of 
the architecture as compared to other denser architectures 
tested. For instance, the ResNet50 architecture utilizes 
a particularly parameter-heavy approach with skip 
connections in certain training cases avoiding overfitting. 
This architecture demonstrated a difference of AUCs of 
0.1 between NR and ER, the greatest difference observed 
between all other architectures.

Though AUCs demonstrate the classification of 
networks, visualizing network predictions through Grad-
CAM images can provide insight into certain differential 
features that networks use to inform classification 
decisions. Grad-CAM images were generated for all 
networks (Ni and Ei) on Dholdout. Figure 8 demonstrates 
the regions of significant features observed by each model 
architecture across both DL and EL modalities. Though 
there were inherent variations in the agreeability of 
differential features across architectures, networks in Ei 
demonstrated a higher degree of specificity and accuracy 
when isolating regions to inform network decision-
making.

In Figure 8A, both modalities of the SqueezeNet 
architecture deliver promising activation maps, yet NS 
has a broader range of highlighted features that span 
into seemingly healthy-appearing skin. However, when 

Table 5 Performance of ML algorithms on patient demographic 
data

Model type Test AUC

Random forest 0.710

Gradient boost 0.704

Decision tree 0.670

KNN 0.621

Linear regression 0.560

Logistic regression 0.560

Gaussian naive bayes 0.551

SVM 0.547

Multinomial naive bayes 0.498

ML, machine learning; AUC, area under receiver operating 
characteristic curve; KNN, k-Nearest Neighbors; SVM, support 
vector machine.

Table 4 Performance of network architectures in Ni with 3-fold 
CV on Dholdout

Architecture Learning rate Weight decay AUC

AlexNet 1.00E−05 1.00E−05 0.823

DenseNet 1.00E−05 1.00E−05 0.797

MobileNetV2 1.00E−05 1.00E−03 0.822

ResNet50 1.00E−05 1.00E−02 0.772

SqueezeNet 1.00E−05 1.00E−05 0.853

Ni, all deep networks; CV, cross-validation; Dholdout, Holdout 
Test Dataset; AUC, area under receiver operating characteristic 
curve.

Table 6 Performance of network architectures in Ei with 3-fold CV 
on Dholdout

Architecture Learning rate Weight decay AUC

AlexNet 1.00E−05 1.00E−05 0.910

DenseNet 1.00E−05 1.00E−05 0.853

MobileNetV2 1.00E−05 1.00E−03 0.881

ResNet50 1.00E−05 1.00E−02 0.872

SqueezeNet 1.00E−05 1.00E−05 0.876

Ei, all deep ensemble networks; CV, cross-validation; AUC, area 
under receiver operating characteristic curve; Dholdout, Holdout 
Test Dataset.
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Figure 7 Comparison of AUCs across deep and ensemble methods of skin lesion classification on Dholdout. AUC, area under receiver 
operating characteristic curve; DL, deep learning; EL, ensemble learning; Ni, all deep networks; Ei, all deep ensemble networks; Dholdout, 
Holdout Test Dataset.

Figure 6 Average runtime analysis of Ni vs. Ei, shown in minutes. (*) denotes the statistically significant increase in average runtimes noted 
across Ei compared to Ni. DL, deep learning; EL, ensemble learning; CV, cross-validation; Ni, all deep networks; Ei, all deep ensemble 
networks.

observing the activation map produced by ES, the same 
general regions are highlighted, but the outline takes a more 
defined shape to the lesion. Furthermore, the primary body 
highlighted refers to a significantly more hyperpigmented 
and irregular component of the nevus. This difference 
indicates ES informs its decision on differential features 
that are characteristic of melanoma, including the 
hyperpigmented nature and irregular borders of the nevus.

A different story is demonstrated in Figure 8B, where 
Ni highlights the benign lesions while sparing surrounding 
healthy skin. Upon analyzing the activation map generated 

by ND, the most notable region highlighted on the image 
of the benign keratosis is the lesion itself. When looking 
at the activation map produced by its counterpart, ED, 
regions of healthy tissue are increasingly highlighted while 
the lesion itself is seen as significantly benign. This pattern 
can be seen with all networks in Ei, where the benign 
lesion contains less highlighting relative to the surrounding 
healthy skin. The result is a more composite prediction that 
takes into account features present throughout the image in 
Ei, marking the nevus itself as benign.

In the setting of implementation of the ML risk stratifier 
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Figure 8 Grad-CAM outputs outlining regions of differential features contributing towards network classification of malignant features. EL 
networks more accurately isolate key regions of nevi that serve as markers of malignancy. (A) Grad-CAM images of Ni and Ei on melanoma 
lesions. (B) Grad-CAM images of Ni and Ei on benign keratosis-like lesions. DL, deep learning; EL, ensemble learning; Grad-CAM, 
gradient-weighted class activation mapping; Ei, all deep ensemble networks; Ni, all deep networks. 

as an additional feature involved in decision-making, Ei 
makes accurate decisions by highlighting specific features 
of the nevus. On the other hand, Ni yielded notable 
classification performance, but the Grad-CAM images 
demonstrate less specificity of malignant features to inform 
a decision. More importantly, however, ensemble networks 

in Ei demonstrate the capability of informing a holistic 
decision by taking into account the features of the entire 
image.

A one-sided Wilcoxon test (48) was employed to assess 
significant differences between network predictions on 
Dholdout for Ni and Ei. Paired prediction data for Ni and 
Ei was compared to generate two-tailed differences in 
prediction. Across all network architectures, we noticed a 
significant increase in the diagnostic accuracy of predictions 
on Dholdout by Ei (Table 7).

We tracked network agreeability across Ni and Ei by 
evaluating the Pearson’s correlation coefficient (R) of 
pairwise network predictions on Dholdout. On average, there 
was a moderate correlation between both modalities, with 
a pairwise correlation across Ni (RDL) of 0.621 and across 
Ei (REL) of 0.658 (Figure 9). While there was no significant 
difference in the average pairwise correlation of predictions 
(P=0.581), certain pairs of networks demonstrated 
prominent differences in correlation. For example, the 

Table 7 One-sided Wilcoxon test demonstrates a significant 
increase in Ei predictions compared to Ni predictions on Dholdout

Model P value

AlexNet 2.07E−19

DenseNet 1.27E−05

MobileNetV2 7.91E−07

ResNet50 1.49E−75

SqueezeNet 7.77E−04

Ei, all deep ensemble networks; Ni, all deep networks; Dholdout, 
Holdout Test Dataset.
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Figure 9 Heatmap of correlation between pairs of network predictions on Dholdout. (A) Correlation of predictions between models in Ni. (B) 
Correlation of predictions between models in Ei. Dholdout, Holdout Test Dataset; Ni, all deep networks; Ei, all deep ensemble networks.
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largest difference in correlation between the two modalities 
was seen across DenseNet and MobileNetV2, where the 
pairwise correlation of ED and EM was 0.2 less than the 
correlation of ND and NM.

Additionally, across both modalities, the ResNet50 
model had the poorest pairwise correlation compared to 

the rest of the network architectures. Upon analyzing 
predictions, this is due to the higher false positive rate 
in NR and ER. Regardless, the ResNet50 architectures 
demonstrated no significant difference in AUC compared 
to the other networks of the same modality, indicating that 
performance was not impaired despite the stark decrease in 
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pairwise correlation.

Discussion

While CNNs have recently demonstrated astronomical 
increases in the performance of image classification 
(49,50) and segmentation (51), there is an increasing need 
to provide parameters to augment their performance. 
Techniques such as pre-processing (52) and batch 
normalization (53) have been mainstays in standardizing 
image quality when passing into CNNs. The relatively new 
emergence of EL provides a unique modality to increase 
CNN performance. EL utilizes the outputs of separate 
networks specific to individual tasks to generate a composite 
output informed by highly specific networks (54).

Recently, applications of EL networks have shown 
another dimension of promise in augmenting DL 
performance for medical imaging diagnostics. Xiao et al. 
developed a series of deep classification algorithms, each 
specialized to extract differential features of pulmonary 
nodules within a region of interest and weighted 
predictions to determine the malignancy of chest computed 
tomography scans. Their proprietary integrated classifier 
yielded a testing accuracy of 93.10%±2.4% when using 
this ensemble deep network (55). The work of Dmitriev  
et al. proved to be very similar to our approach, where they 

combined the output of a Bayesian random forest algorithm 
trained on demographic data with a novel CNN to classify 
the four most common pancreatic cysts from computed 
tomography images. Their novel approach underwent  
10-fold CV to yield a testing accuracy of 83.6% (56).

The application of EL for dermatoscopic skin lesions 
proved to have a significantly increased binary classification 
accuracy when compared to the performance of DL. In 
the dermatology community, the prevalence of skin cancer 
cannot only be determined by superficial, phenotypic 
features; demographic factors play a significant role in this 
classification challenge. We conducted feature importance 
extraction for the localization of lesions on MRF (Figure 10). 
From this data, the highest prevalence of melanoma was 
observed on the back, with lesions on the upper extremity 
having a similar level of importance extracted from 
MRF. This result can only be applied to the HAM10000 
dataset and more clinical data would be needed to form a 
conclusion.

This study served as a baseline in demonstrating the 
improvement of classification performance of melanoma 
with the inclusion of a ML risk score as an additional 
feature in deep ensemble training. We utilized historically-
stable classification networks to test our hypothesis.  
EfficientNet (57) is a novel network architecture that 
has demonstrated impressive capabilities in classification 
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Figure 10  Relative importance of localization in informing MRF classification of melanoma. MRF, Random forest machine learning model. 
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challenges. Ali et al. demonstrated its diagnostic accuracy 
with EfficientNet base networks and modified derivatives 
yielding AUCs ranging from 0.96–0.98 (58). Jeyakumar 
et al. (59) tested five modern DL architectures for multi-
class classification of the HAM10000 dataset, exemplifying 
the classification performance of the GoogleNet (60) 
architecture. The novel architecture yielded an AUC of 
0.98, granting near-perfect predictive capabilities. A study 
conducted by Dr. Orman Salih analyzes the proficiency of 
reducing the computational burden on any given CNN 
via implementing the genetic algorithm that eliminates 
noise generated from other hyperparameters during model 
hypertuning as well as using a Fully Connected Network-
based model, achieving an accuracy of 99% when tested 
on the HAM10000 dataset (61). Furthermore, lightweight 
networks, such as the DeepSkinNet by Abhiram et al. 
have demonstrated exceptional multi-class classification 
performance on the HAM10000 dataset (62). Their 
novel network yielded a testing classification accuracy of 
0.9734 while having significantly fewer parameters than an 
industry-standard AlexNet. We are motivated to further 
test the capabilities of integrating demographic data into 
modern DL architectures in the hopes of augmenting 
performance through EL.

Due to the HAM10000 dataset including three 
demographic features  for  ML risk strat i f icat ion, 
performance was relatively poor, achieving maximum 
test AUCs of 0.710 with the best-performing model. In 
actuality, clinical data may present more demographic 
features that can help inform ML performance, leading 
to more algorithms being developed for skin cancer 
risk stratification. For example, prior literature suggests 
ethnicity, quantification of sun exposure, and genetic 
predispositions (63) play active roles in a patient’s incidence 
of melanoma. Additionally, testing was only performed on 
the holdout test set taken from the HAM10000 dataset. 
Being able to test these networks on an independent 
institution’s dermatoscopic data would allow us to quantify 
the generalizability of our models.

Conclusions

The use of deep EL in medical diagnostics is one of 
increasing interest. To the best of our knowledge, this 
remains the first instance of utilizing a ML risk stratifier to 
inform CNN decisions for the classification of melanoma 
using dermatoscopic data. By including the risk stratification 
of a random forest model as an additional feature in the 

last convolutional layer within CNNs, we observed a 
statistically significant increase in multiple performance 
metrics, including AUC and Wilcoxon signed rank test 
of predictions, for most deep network architectures. A 
moderate-to-strong pairwise correlation existed across all 
networks within each modality of training. Most notably, 
however, the inclusion of a demographic risk stratifier 
increased the specificity of features used to inform a decision 
by networks. We noticed fine-tuned isolation of differential 
features in Grad-CAM images generated by ensemble 
networks for melanoma lesions and holistic inclusion of 
healthy skin to deliver a prediction in benign lesions. While 
the networks used were standard CNNs, this is a significant 
first step in delivering non-invasive diagnostics for skin 
lesions using patient demographic data and dermatoscopic 
lesions. Though the use of AI as the gold standard in 
medical diagnostics is far from becoming a reality, it has 
the potential to play breakthrough roles in healthcare. 
Computer vision applications can provide affordable risk 
stratification to rural populations or to patient populations 
whose lifestyle does not allow for regular physician visits. 
Especially in the field of dermatology, where skin cancer 
prevalence is multifactorial in nature, mobile solutions to 
determine the malignancy of certain nevi can serve as a 
beneficial tool for the vast patient population. We aim to 
further broaden the results of integrating a ML risk stratifier 
in DL skin cancer classification by integrating a multi-class 
classification. Additionally, we intend on collaborating with 
clinics to obtain more demographic data for more robust 
ML performance to inform CNN decision-making. Finally, 
the integration of deep EL to improve state-of-the-art 
network architectures may further increase classification 
performance and we intend to test this hypothesis in future 
studies.
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