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Introduction

Certainty is an essential part of medical image detection 
systems, in conjunction with accurate interpretation. 
The complexity of the images, differences in explanation 
approaches, subjectivity, accuracy, and throughput 
are prone to errors in medical diagnosis. The aim of 
automated medical image analysis is to help radiologists 
and clinicians improve the efficiency of diagnostic and 
treatment processes. But convolutional neural networks 

(CNNs) have the inherent capability to learn complicated 
characteristics directly from the source data, which is a 
significant advantage in the medical domain (1). Computer-
assisted detection systems (CADx) heavily rely on machine 
learning (ML) for various image analysis tasks such as tumor 
segmentation, cancer detection, image-directed treatment, 
pathological brain detection, medical image annotation, 
Alzheimer’s disease detection, diabetic retinopathy, and 
image capture. X-ray, computed tomography (CT), 
magnetic resonance imaging (MRI), positron emission 
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tomography (PET),  PET/CT hybrid,  and three-
dimensional ultrasound computed tomography (3D USCT) 
are examples of various hybrid modalities. Key parameters, 
including “accuracy”, “F-measure”, “precision”, “recall”, 
“sensitivity”, and “specificity” must perform well in medical 
imaging systems (2).

Several researchers have introduced different kinds of pre-
trained deep convolutional neural networks (DCNNs) such 
as AlexNet (3), ResNet (4), VGG (5), and GoogleNet (6). 
However, current DCNN models still do not completely 
handle ongoing segmentation and classification issues. The 
noise and illumination issues that are common to medical 
images also have an impact on these pre-trained CNN 
algorithms. Applying image pre-processing techniques 
can reduce noise, improve performance, and increase the 
predictability of CNN results (7).

It is important to evaluate uncertainty in CNNs in order 
to guarantee decisions. Nonetheless, despite the fact that 
DL algorithms typically outperform conventional methods, 
their mapping process is based on blind assumptions 
that frequently do not accurately represent real-world 
cases. Selecting factors that have an impact on producing 
a particular result requires careful consideration of 
uncertainty and interpretability. There is no built-in way to 
provide explanations for a specific result in a CNN-based 
decision support system. DL requires a massive amount of 
data for data training, with millions of parameters. It is a 
significant obstacle in many disciplines, such as the medical 
domain. Pre-trained CNN models from different domains 
and data augmentation are some ways to address the 
aforementioned problems, and they have produced amazing 
results. However, there is currently a need for research and 
development in this area, particularly when quantification 
uncertainty and interpretability are both improved (1).

This review aims to present the main inherent issues 
in CNN and what techniques can be used to solve these 
issues, making it easier for new researchers to understand 
the uncertainty in CNN. A new hybrid model using feature 
fusion techniques and Bayesian algorithms is proposed for 
classifying medical images to address above mentioned key 
issues with CNN. By enabling readers to learn more about 
current advancements in the medical image analysis field, this 
review will strengthen subsequent deep CNN innovations. 
Researchers would be free to choose the best course of action 
to select the more reliable alternatives in this field. Our 
contributions are outlined as follows: This review paper is 
prearranged in the following order: “Introduction” section 
includes future research gaps in CNN and the uncertainty of 

CNN, the significance of uncertainty quantification (UQ) in 
medical image analysis, and forms of UQ in CNN. “Literature 
review” section includes evaluation of deep earning and 
CNN. “Analysis of knowledge for UQ” section represents 
analysis of various methods with CNN for UQ. Finally, 
“Discussion” and “Conclusions” sections have been arranged.

Future research gaps of CNN and uncertainty of CNN

Despite CNN models having remarkable performance 
and ability for natural feature learning, CNN does not 
provide naturally accurate uncertainty estimates for their 
segmentation process. The need for uncertainty assessment 
in deep CNN-based medical imaging segmentation 
techniques is, therefore, essential (8). Despite CNN 
outperforming other ML approaches in terms of accuracy 
for image classification, its deterministic parameters 
prevent it from being able to provide any sort of measure 
of uncertainty in its prediction. Additionally, predefined 
CNN predictions could lead to erroneous results that, in 
the absence of a confidence estimate, could have negative 
implications. UQ is necessary to measure the confidence of 
predictions (9).

Thiagarajan et al. have shown that impossibility to 
determine how accurate CNN-based classification algorithms 
for histopathology images and unbalanced data might 
cause overfitting in CNNs. That has demonstrated how 
automatic regularization and UQ allows Bayesian-CNN to 
get over the above drawbacks (10). Since medical imaging 
technologies function as “black box” devices, medical experts 
may dismiss them because they cannot comprehend the 
calculations or how findings are created. To demonstrate to 
medical professionals how computations are done and how 
parameters can affect a computational outcome, visualization 
techniques like “Medical Imaging Interaction Toolkit” are 
necessary in this situation. With this program, users can 
manipulate images and see the results of computations as 
they are done. The issue of using these methods with ML in 
medical imaging still exists for further research (11).

Hussain et al. present a deep CNN model for brain 
tumor segmentation. After segmentation, some false 
positives may show up because of the frequency underlying 
the skull fraction. To minimize small false positives at 
the segmented image’s edges, the opening and closing 
morphological operators are used, which apply erosion 
and dilation operations consecutively. AI is a “black box”, 
meaning that while its input and output can be identified, 
its internal representations are not fully understood. It also 
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has an impact on medical image analysis. The noise and 
illumination issues present in medical images also have an 
impact on these technologies (8).

The significance of UQ in medical image analysis

A lack of confidence in each outcome that a ML system 
generates is “uncertainty”. It is difficult to create an 
algorithm that is 100 percent certain, so we need to 
understand what creates uncertainty, how to define it, and 
how to eliminate it. ML is now widely used in medical 
applications to predict diseases, arrange treatment, and 
evaluate performance. Due to the lack of necessary trust 
among practitioners, the application of this technology in a 
clinical environment is still very uncommon (11).

Estimating uncertainty is essential since deep learning 
(DL) tends to produce overly confident predictions. 
Overconfidence and erroneous predictions could be 
dangerous in important use cases like healthcare. In addition 
to providing findings, the model would also provide details 
regarding their level of uncertainty and whether or not it 
is low enough to warrant confidence in the output. The 
algorithm may request further data or input from a person 
to handle the decision-making process before providing an 
output with a high level of uncertainty. With these inputs, 
we want our model to be able to express a given quantity 
that is highly uncertain or lowly confident (12).

Sources of uncertainty and UQ in CNN

Uncertainty comes in two primary forms. They are model 
uncertainty or knowledge uncertainty [epistemic uncertainty 
(EU)] and data uncertainty [aleatoric uncertainty (AU)]. 
Predictive uncertainty (PU), or the level of confidence in 
a prediction, can then be created using AU and EU. AU 
results from noise and class overlap in the data and EU 
results from the inconsistency between the training and test 
sets of data.

AU occurs  due to complexity,  mult i-modal i ty, 
illuminations, corruptions, and unseen noise in the data. 
Since data uncertainty is a characteristic of the fundamental 
distribution that produced the data rather than a feature 
of the model, it is impossible to reduce it. Given specific 
conditions, probabilistic classification and regression 
models will automatically capture estimates of AU as a 
result of maximum likelihood training. However, it is more 
challenging to capture estimates of EU. Epistemic or model 
uncertainty refers to uncertainty in model predictions 

resulting from model ignorance or a lack of comprehension 
of the current input on which the model is building a 
forecast. Unlike data uncertainty, model uncertainty occurs 
due to the absence of features in the data. As knowledge 
uncertainty is a property of the model, it can be decreased 
by giving more information in the form of training data to 
the model (13). EU and AU are the two components that 
make up PU. PU can be expressed as the total of these two 
components: EU + AU = PU.

UQ in CNN is a crucial component of DL, and it is 
especially significant in the analysis of medical data since the 
diagnosis results from various approaches will directly affect 
actual life situations. In order to increase the effectiveness 
of ML and produce greater confidence in the results, 
accurate uncertainty estimations are necessary (14). Even if 
few models have been proposed for different UQ methods 
of CNN, it remains an unsolved problem yet.

Although CNN is more accurate than other ML 
algorithms at classifying images, its parameters are 
deterministic, so it is unable to provide any indication of 
the degree of uncertainty in its predictions. Furthermore, 
predictions made by deterministic CNNs may yield 
inaccurate findings, and as there is no evaluation of 
confidence in these results, these outcomes may have 
unfavorable effects (9). Model performance can be 
achieved by examining the contribution of each pixel to 
predict uncertainty and the drop-in prediction uncertainty 
following the removal of a noisy pixel from the input image.

Literature review

Evaluation of deep earning and CNN

The capability of the machine to extract features or 
knowledge from input and to learn from experience is 
known as ML. This technology allows computers to draw 
complicated conclusions based on the relationships in 
the data (14). Statistical analysis would be impractical for 
handling huge and complicated datasets, but ML can. It can 
construct predictive models without using predetermined 
coding rules (15). ML algorithms fall into three types: 
reinforcement learning, unsupervised learning, and 
supervised learning (1).

Feature engineering is the key component of ML 
algorithms. ML algorithms significantly rely on feature 
engineering. It is a method of applying statistical or ML 
techniques to transform unprocessed information into 
desired characteristics. To achieve the best results, the feature 
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selection process takes a lot of time and energy and features 
must retrieve pertinent information from massive amounts 
of different data. However, feature engineering is a difficult 
issue for ML algorithms in unstructured domains like 
computer vision, image processing, video and audio analysis, 
and natural language processing. To address these issues, a 
specific subfield of ML called DL, which is founded on the 
theory of artificial neural networks (ANNs) emerged (1).

The amount of hidden layers is the main distinction 
between DL and conventional ANNs (14). To investigate 
more complicated nonlinear patterns and discover meaningful 
links within the input dataset, DNNs employ many layers. By 
decreasing or even eliminating the requirement for feature 
engineering, DNN learns and creates unique characteristics 
from each subsequent hidden layer of neurons. Due to 
the last of these factors, DL techniques frequently do 
better than ML algorithms (16), innovating the field with 
successful performance and adaptability to input noise and 
inconsistency in a variety of tasks (17).

DNN architecture may be categorized into three main 
groups. They are feed-forward neural networks (also known 
as multi-layer perceptron, MLP), CNNs, and recurrent 
neural networks (RNN) (18). CNN is one of the most well-
known and significant developments in computer vision. DL 
algorithms are influenced by the neurobiological structure 
of the visual cortex and they are initially supported in image 
analysis (19). Artificial neurons in the convolutional layer 
compute a spatial convolution, capturing characteristics 
from minuscule sections of the input images while training.

Analysis of knowledge for UQ

Hybrid CNN architecture for UQ

This chapter provides a general overview of the field of UQ 
for discriminative parametric classification and regression 
models. Both epistemic and aleatoric uncertainties for deep 
CNNs have been researched recently. Researchers have 
developed a range of approximation techniques using the 
fundamental CNN design to reduce uncertainty (20).

CNN with Bayesian approach for UQ

This section examines the preliminary results of Bayesian 
neural networks (BNNs) and uncertainty varieties. 
Although the typical CNN approaches have been successful 
in resolving a number of real-world issues, they are unable 
to reveal any information regarding the accuracy of their 

forecasts. This issue can be solved by translating the model 
parameters using Bayesian deep learning (BDL). BDLs 
are very strong at overcoming uncertainty and over-fitting 
issues and can be trained on both minor and massive 
datasets (21). UQ models with unreliable predictions are 
necessary to establish the validity of segmentations. This 
model demonstrated that the Bayesian approach generates 
more believable confidence intervals on the segmentation 
than the Monte Carlo Dropout for CT images.

Future research will involve expanding our BCNN to 
semantic segmentation, separating AU and EU, and fusing 
our findings with other UQ methods like deep ensembles (22). 
BCNN accomplishes improved segmentation accuracy than 
MCDNs and outperforms MCDNs in recent uncertainty 
metrics. Future research should focus on creating metrics 
that gauge how well Bayesian models function based 
on segmentation output and uncertainty estimates (23).  
Table 1 lists some BCNN models with their model 
performance and drawbacks for future developments 
of BCNN. This analysis shows that BCNN alone can’t 
adequately solve the uncertainty issue in medical imaging.

CNN with other methods for UQ

Theoretically, a Bayesian approach allows for the effective 
execution of uncertainty reasoning. In addition to that, all 
key information is presented by probability distributions and 
various sources of information can be combined using the 
Bayesian formula. But still, this offers significant computing 
difficulties, particularly given the sophisticated models that 
have emerged in DL. The classical approximate inference 
approaches [such as Markov chain Monte Carlo (MCMC), 
Laplace approximation, and variational inference] as well 
as the more modern BNNs and Monte Carlo dropout 
have all been thoroughly addressed. Also, researchers have 
addressed how to quantify the sources of uncertainty and 
provided pertinent links to open-source implementations 
that are stored in GitHub repositories (29).

Stochastic variational gradient descent (SVGD) has 
proposed to perform approximate Bayesian inference on 
uncertain CNN parameters (30), adaptive MCMC method 
with CNN (31), Bayesian deep convolutional encoder-decoder 
networks for substitute modeling and UQ (30), deep ensembles 
with CNN for robust UQ (32). To investigate the location of 
test data, test-time augmentation for AU estimates has been 
presented. They compared and combined model (epistemic) 
and input-based (aleatoric) uncertainty sources to examine 
several forms of uncertainties for CNN-based medical 
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image segmentation. They developed an AU estimator 
for medical images based on test-time augmentation that 
considers the impact of both noise and spatial changes. 
However, its effectiveness for noise removal and medical 
image segmentation has not been thoroughly proven (33).

These various sorts of uncertainty were examined in this 
work for tasks involving the segmentation of 2D and 3D 
medical images at the pixel and structural levels using CNN. 
In addition, they suggested a test-time augmentation-
based AU to examine how various input image alterations 
affect the output of segmentation. Although test-time 
augmentation has been utilized to increase segmentation 
performance, it has not been developed within a coherent 
mathematical framework. As a result, a theoretical definition 
of test-time augmentation has been proposed by them, in 
which the probability of the prediction is calculated using 

Monte Carlo simulation using earlier distributions of 
parameters in an image-capturing model that includes noise 
and image modifications (34). Additionally, to overcome EU 
and AU, different types of integrated models using CNN are 
analyzed. In conclusion, taking into consideration the impact 
of both noise and spatial changes in images is crucial for 
developing AU and EU estimation for medical images (34).

Fusion methods with DL

Why are fusion techniques needed in medical image 
analysis?
Medical imaging diagnosis highly depends on the 
combination of clinical data from several sources in order 
to precisely interpret the imaging data and make a reliable 
diagnosis (35). Information fusion is initiated from data 

Table 1 Uncertainty quantification using BCNN model with strengths and drawbacks 

Study Strength Drawbacks and future developments

Diagnosis of blood cancer using 
microscopic images of blood 
samples (24)

Accuracy: 94%, offers helpful information 
regarding prediction uncertainty

CNN can be improved with more modern 
visualization techniques

Classifiers for breast 
histopathology image (10) 

Novel stochastic adaptive activation enabled 
BCNN. It can reduce the false negative and 
false positive predictions by 3% as compared 
to BCNN

These results need to be confirmed with bigger data 
sets

Guidance in robotic knee 
arthroscopy using 4D 
ultrasound images (25)

Improved segmentation accuracy when training 
with MRI and US-based data sets. It has 
improved the coefficient increase by 6% and 
8%, respectively

To improve the effectiveness of label propagation, 
implementing automatic feature-based MRI-US 
registrations will be considered

Tuberculosis identification using 
chest X-ray images (23)

Accuracy: 96.42% and 86.46% for both 
datasets (i.e., Montgomery and Shenzhen)

To remove uncertainty from the recognition of 
natural images, BCNN models will be used

Skin cancer classification (26) TWD theory, accuracy, F1-score, and AUC are 
90.96%, 91.00%, and 0.97

Noise detection evaluation and improvement of the 
effectiveness of the model’s decisions are needed, 
gap decision theory and a non-probabilistic decision 
theory, can be applied to enhance failure robustness

COVID-19 diagnosis using CT 
chest images (27)

Bayesian optimization is used to choose 
hyperparameters for each ML method. The 
diagnosis made using these hyperparameters, 
the DenseNet201 model, and the SVM 
algorithm gets the highest success rate of 
96.29%

Combining the features from various CNN models 
is intended to provide more robust features. Feature 
selection techniques will be used to select the best 
features from this large set

Diabetic retinopathy classification 
using CT images (28)

Binary class classification accuracy: 92% (less 
confident) and 81% (more confident), multi-
class model accuracy: 92% (more confident)

Future research should continue to optimize these 
models for CNN and BCNN

BCNN, Bayesian convolutional neural network; COVID-19, coronavirus disease 2019; CT, computed tomography; MRI, magnetic 
resonance imaging; US, ultrasound; TWD, Three-Way Decision; AUC, area under the curve; ML, machine learning; SVM, support vector 
machine; CNN, convolutional neural network.



Journal of Medical Artificial Intelligence, 2023Page 6 of 10

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2023;6:18 | https://dx.doi.org/10.21037/jmai-23-40

fusion. It can also be termed multi-sensor information fusion, 
feature fusion for combining different features (36). Data 
fusion is the combining of data from numerous sensors 
(either of the same or different types), whereas information 
fusion is the combining of data and information from 
sensors, human reports, and databases, in addition to a 
wide range of contextual data (36). Medical image fusion 
is the process of registering and integrating several images 
from one or more imaging techniques (such as X-ray, CT 
scan) to enhance there are three types of fusion models: 
early fusion, late fusion, and joint fusion. Early fusion is 
the combining of features or feature representations before 
feeding them into a model. The prediction probabilities of 
various single modality models are combined in late fusion, 
often referred to as decision-level fusion, to produce an 
outcome. Joint fusion takes learned feature representations 
from each modality and appends them as inputs to another 
model (35). Multi-modal medical Image Fusion is the 
technique of combining several medical images from 
various modalities into a single fused image. The primary 
goal of medical image fusion is to gather a large amount of 
acceptable information (i.e., features) in order to increase its 
quality and make it more informative for boosting clinical 
care for improved diagnosis and straightforward evaluation 
of medicine-related uncertainties (37). Several researches 
have shown that brain tumor and tissue anatomy can be 
successfully analyzed by removing noise (38) and extracting 
features (39) from CT and MRI images using fusion 
methods.

Image fusion method with DL
This section examines the preliminary results of fusion 
methods and medical image analysis with CNN. Although 
the typical CNN approaches have been successful in 
resolving a number of real-world issues, they are unable 
to reveal any information regarding the accuracy of their 
predictions. Table 2 indicates that the fusion method 
can provide high accuracy than Bayesian CNN. But a 
trustworthy model should have features of both accuracy 
and certainty.

Visualizing CNNs and evaluating trust in a model

Gradient-weighted class activation mapping plus (Grad-
CAM++) has been utilized to improve the features’ 
intuitiveness and the DL model’s interpretability (41). 
This model suggests the use of Grad-CAM++ (45). Grad-
CAM makes advantage of the gradient of the classification 

result in relation to the network’s convolutional features 
to decide which areas of the picture are most crucial for 
categorization (20). Hamza et al. proposed that visualization 
is carried out utilizing a Grad-CAM that draws attention 
to the area of the image that is affected. For the testing 
approach, three publicly accessible COVID-19 datasets are 
employed to be produced enhanced levels of accuracy of 
98.8%, 97.9%, and 99.4% (46).

In this study, researchers presented Ablation-CAM, a 
class-discriminative localization technique that can produce 
gradient-free visual explanations. They illustrate scenarios 
where Grad-CAM gives less accurate representations than 
Ablation-CAM. They demonstrate that Ablation-CAM 
has solved the drawbacks of Grad-CAM visualizations. 
Further research is done to demonstrate that Ablation-
CAM is class unfair and that it may be used to estimate 
model trust. This approach, in contrast to earlier ones, is 
“gradient-free” (47).

Optimization algorithm

An optimization method involves determining the best values 
for a system’s particular parameters to satisfy the system 
design as efficiently as possible. An optimization process 
refers to finding the optimal values for specific parameters 
of a system to accomplish the system design at the lowest 
cost. Numerous novel optimization techniques have been 
developed to improve the functioning of various systems 
and reduce computation costs. By adding to the various 
optimization techniques, the performance of the model can 
be enhanced even more (42). The arithmetic optimization 
algorithm (AOA) is developed in this study based on the 
actions of arithmetic operators in mathematical calculations. 
According to its mathematical presentation, AOA has an 
implementation that is simple and uncomplicated compared 
to the majority of the commonly used optimization 
algorithms, making it easy to modify to address new 
optimization problems. Except for the size of the population 
and stopping criterion, which are default parameters in 
all optimization methods, it doesn’t need to change many 
other settings (48). An innovative population-based 
optimization method called the Aquila Optimizer (AO) 
is inspired by the natural behaviors of Aquila as they 
seek their target (49). Intelligent algorithms that simulate 
the principles of the human immune system are called 
artificial immune systems (AIS). Gradient-based optimization 
techniques have demonstrated their effectiveness in learning 
over-parameterized and sophisticated neural networks from 
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non-convex objectives (42).

Discussion

For this analysis, 49 research articles from 2018 to 2023 
were examined. It concludes that, despite a number of 
unresolved technical and scientific issues, medical image 
fusion has improved the clinical validity for diagnosing 
and analytical purposes, and it is a field of study that has 
the capacity to grow significantly in the years to come. 

Accuracy in medical image analysis can be increased with 
certainty if Fusion and Bayesian approaches are combined 
with CNN.

Conclusions

This study suggests a novel approach and a justification 
for combining the Bayesian approach, the Feature Fusion 
method, and the Grad-CAM visualization in order to lower 
the degree of uncertainty in the predictions made by CNN 

Table 2 Fusion methods and CNN with strengths and drawbacks

Study Model methods Accuracy and strengths Further improvements and drawbacks

Categorize cases of PE using 
CT images (35)

Late fusion model, 3D CNN, 
and ElasticNet

95% Validation on an external test set from 
various organizations has to be done to 
better understand the generalizability of this 
model

Classifying numerous stomach 
disorders using endoscopy (7)

Fusion images, ResNet101, 
Deep transfer learning. 
Various modalities

99.46% Considering more clinical data and training 
a CNN model from scratch

Recognition of stomach 
diseases using endoscopy 
images (40)

Transfer learning using, 
dragonfly optimization, CNN 
models, feature fusion

99.8% To segment polyps and ulcers, the model 
will be trained from scratch. The feature 
concatenation necessitates an increase in 
computing cost

COVID-19 diseases prediction 
using X-ray images (41)

Deep feature fusion, 
EfficientNetV2, multiple-way 
data augmentation, Grad-
CAM++

99.89% It fails to express an opinion on the 
COVID-19 grade. It is unable to handle 
datasets created by combining CT and CXR. 
They have made suggestions for gamma 
corrections and noise reduction

COVID detection using CT 
and X-ray image set (42)

Feature fusion, CNN, Monte 
Carlo dropout, Grad-CAM++

99.08% and 96.35% 
for CT scan and X-ray 
datasets, model was 
generally robust to noise

Utilizing multi-modal data and incorporating 
an attention mechanism when merging 
features. Combining some cutting-edge 
data fusion techniques, such as decision-
level fusion

Breast cancer detection using 
mammographic images (43)

Feature fusion, ensemble 
learning

99.4% on the MIAS 
dataset, and 98.8% on 
the BCDR test set

Merging distinct layers of patterns with 
varying weights to produce high accuracy

COVID-19 detection using CT 
images (20)

GCN, DFF Better performance for 
DFF than GCN

Extend the model for X-ray and CT 
combination. Investigate further CNN and 
GCN fuse techniques. Try using deeper 
GCN and see if it makes a difference in 
performance

Telemedicine using CT and 
MRI (44)

Advanced CNN, multi-modal 
medical image fusion

Richer textual details, 
sharper edging 
information, and greater 
contrast

Integrate three or more modalities 
simultaneously

CNN, convolutional neural network; PE, pulmonary embolism; CT, computed tomography; COVID-19, coronavirus disease 2019; MRI, 
magnetic resonance imaging; Grad-CAM++, gradient-weighted class activation mapping plus; MIAS, Mammogram Image Analysis 
Society dataset; BCDR, breast cancer digital repository; GCN, graph convolutional network; DFF, deep feature fusion; CXR, chest X-ray.
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models for medical image analysis and increase accuracy.
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