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Background: Machine learning (ML) has emerged as a promising tool to assist physicians in diagnosis 
and classification of patient conditions from medical imaging data. However, as clinical applications of 
ML become more common, there is concern about the prevalence of ethnoracial biases due to improper 
algorithm training. It has long been known that cancer outcomes vary for different racial/ethnic groups. 
Methods: We reviewed 84 studies that reported results of ML algorithms compared to radiologists for 
cancer prediction to evaluate if algorithms targeted at cancer prediction account for potential ethnoracial 
biases in their training samples. The search engines used to extract the articles were: PubMed, MEDLINE, 
and Google Scholar. All studies published before May 2022 were extracted. Two researchers independently 
reviewed 115 articles and evaluated them for incorporation and inclusion of demographic information in the 
algorithm. Exclusion criteria were if an inappropriate imaging type was used, if they did not report benign vs. 
malignant cancer results, if the algorithm was not compared to a board-certified radiologist, or if they were 
not in English.
Results: Of the 84 studies included, 87% (n=73) reported demographic information and 38% (n=32) 
evaluated the effect of demographic information on model performance. However, only about 11% (n=9) 
of the articles reported racial/ethnic groups and about 4% (n=3) incorporated racial/ethnic information 
into their models. Of the nine studies that reported racial/ethnic information, the specified racial/ethnic 
minorities that were included the most were White/Caucasian (n=9/9) and Black/African American (n=8/9). 
Asian (n=4/9), American Indian (n=3/9), and Hispanic (n=2/9) were reported in less than half of the studies. 
Conclusions: The lack of inclusion of not only racial/ethnic information but also other demographic 
information such as age, gender, body mass index (BMI), or patient history is indicative of a larger 
problem that exists within artificial intelligence (AI) for cancer imaging. It is crucial to report and consider 
demographics when considering not only AI for cancer, but also overall care of a cancer patient. The findings 
from this study highlight a need for greater consideration and evaluation of ML algorithms to consider 
demographic information when evaluating a patient population for training the algorithm.
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Introduction

Background

Machine learning (ML) has emerged as a promising tool 
to assist physicians in diagnosis and classification of patient 
conditions from medical imaging data. ML algorithms have 
been used to diagnose many conditions including breast 
cancer (1), diabetes (2), heart disease (3), Parkinson’s (4), and 
Coronavirus Disease 2019 (COVID-19) (5). However, as 
ML has become more common, so has more attention been 
directed to the impact of racial biases due to imbalanced 
datasets (6). A recent study found that despite the evident 
differences in how diabetes affects different populations, 
artificial intelligence (AI) algorithms often did not take 
racial/ethnic differences into account or even report what 
percentages persisted in their training sets (7). This is 
important as it has been well documented that health 
disparities and complications within diabetes exist for 
minority subgroups (8). A recent study found that diabetes 
occurs earlier and at lower body mass index (BMI) in Asian, 
Hispanic, and Black/African American populations than 
in White populations, indicating the need for increased 

screening (9). Results from ML studies are increasingly 
emphasizing the need for proper racial evaluation of models 
and datasets, as many studies including different racial/
ethnic groups into their models are showing significant 
variation in performance by race, increasing the likeliness of 
potential biases and disparities in care (10-12).

Rationale and knowledge gap

It has long been known that cancer outcomes vary for 
different racial/ethnic groups (13). For example, there are 
known disparities in cancer outcomes for Black/African 
American and Hispanic minorities suffering from breast 
cancer (14-16), prostate cancer (17), lung cancer (18), 
colorectal cancer (19), and pancreatic cancer (20). Beyond 
racial/ethnic status, there are known disparities by gender 
for cancers such as liver cancer, where men die at a much 
higher rate than women (21). It has been found that health 
disparities amongst racial/ethnic subgroups can be further 
exacerbated due to socioeconomic status (SES) (22), English  
proficiency (23), environmental pollution based on 
community locations (24), cultural diets and habits (25), and 
genetic factors (26). Lack of inclusion of minority subgroups 
in ML models for cancer diagnoses can have an even more 
direct impact on decreased performance and further health 
disparities. For example, ML provides opportunities for 
early detection of skin cancers such as melanoma, which 
allows for optimal efficacy of treatment (27). However, 
recent studies have found an underrepresentation of certain 
demographic groups such as Black/African American 
patients in dermatological predictive models which can lead 
to models unable to accurately predict cancers for darker 
skin types (28,29).

Objective

We previously conducted a review of 61 articles that 
compared the performance of radiologists to ML 
algorithms in regard to cancer diagnoses and prediction (30). 
It is important to also consider if algorithms targeted at 
cancer prediction account for different racial/ethnic groups 
present in their training samples and the adequacy of those 
samples. We surveyed literature regarding ML prediction 
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Highlight box

Key findings 
•	 This study found a lack of inclusion of racial/ethnic and other 

important demographic information in cancer literature comparing 
artificial intelligence (AI) to radiologists.  

What is known and what is new?  
•	 Machine learning (ML) holds promise in aiding diagnosis of 

patient conditions. However, studies are increasingly highlighting 
racial/ethnic biases in ML models despite evidence showing 
variation in condition status amongst different population groups.

•	 This study evaluates if AI algorithms targeted at cancer prediction 
account for ethnoracial biases in their model training.

What is the implication, and what should change now? 
•	 Cancer outcomes and diagnoses show significant disparities across 

races. ML algorithms need to consider demographic information 
when training on a patient population. AI built on datasets that 
ignore race may lack generalizability to other patient populations. 
It is important to not only report this information for AI for cancer 
imaging, but to also consider it when training a model.
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of cancer and its performance compared to a radiologist’s 
prediction to see if these articles also reported any racial/
ethnic information. Cancer outcomes can vary greatly based 
on different racial/ethnic groups; as such, it is important 
to draw attention to the need for more diversity and better 
reporting within ML datasets. The study is presented in 
accordance with the PRISMA reporting checklist (available 
at https://jmai.amegroups.com/article/view/10.21037/jmai-
23-31/rc) (31).

Methods

Literature review

Online literature databases (PubMed, MEDLINE, and 
Google Scholar) were searched for studies that reported 
results of ML algorithms compared to radiologists for 
cancer prediction. Literature search was conducted by 
two independent researchers and any variations were 
subsequently resolved. All studies published before 
May 2022 were considered. Papers were excluded if an 
inappropriate imaging type was used to train a model 
[such as dual energy X-ray absorptiometry (DEXA) to 
identify breast cancer], if they did not report results on 
prediction of cancer (benign vs. malignant), if they did not 
compare algorithm to a radiologist, if they did not use a 
board-certified radiologist, or if they were not in English. 
Key terms used to identify literature are summarized in 
Table 1. Papers were independently reviewed by the same 
two researchers for demographic and other reported 
information.

Quality assessment of literature

Alongside the quality assessment of reported patient 
information in this study, manuscripts were assessed for 
completeness and overall quality through a modified 
CLAIM checklist pertaining to ML within radiology 
(30,32). Manuscripts were reviewed for quality of ML 
algorithm, results, reported data, and risk of bias through 
an evaluation of reported metrics, use of correct validation 
datasets and methods, and reproducibility. Manuscripts 
were specifically searched for reported metrics [area under 
the receiver operating characteristic curve (AUC), accuracy, 
positive predictive value (PPV) negative predictive value 
(NPV), etc.], inclusion of a separate training and testing set 
and cross validation or hold-out sample, features included, 
and whether sufficient information was provided for 
replication. Manuscripts were assessed for image quality 
analysis, including whether it was conducted, mentioned, 
or if images were excluded or included based on quality 
assessment. Information regarding the quality assessment of 
literature is reported in Table S1.

Meta analysis

Studies included in this meta-analysis were evaluated 
for inclusion of demographic information in addition to 
information of algorithm and radiologist performance. 
Total papers identified, imaging type, and cancer site were 
summarized. Studies included in this review are cited in 
Table S2.

This study considered demographic information to be 

Table 1 Key terms used to identify literature included in this meta-analysis of literature

Subject Key terms

Article type Clinical study, clinical trial, controlled clinical trial, journal article, randomized controlled trial

Machine learning keywords Machine learning, artificial intelligence, neural networks (NN), support vector machine (SVM), naïve 
Bayes, logistic regression, convolutional neural network (CNN), deep learning, random forest, decision 
tree

Clinical keywords Cancer, radiologist, physician, clinician

Exclusion criteria Does not contain prediction of benign vs. malignant histology, not in English, does not use board 
certified radiologist, does not compare algorithm to a radiologist

Additional filters Radiologist deemed imaging technology inappropriate for type of cancer diagnosis (e.g., DEXA for 
breast cancer)

DEXA, dual energy X-ray absorptiometry.

https://jmai.amegroups.com/article/view/10.21037/jmai-23-31/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-23-31/rc
https://cdn.amegroups.cn/static/public/JMAI-23-31-Supplementary.pdf
https://cdn.amegroups.cn/static/public/JMAI-23-31-Supplementary.pdf
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age, racial/ethnic status, and gender. This study also looked 
to see if additional history or patient information (such 
as smoking status or BMI) was reported by the original 
publication. SES was not considered for this meta-analysis 
due to the overall lack of reporting in literature. Papers were 
evaluated first for inclusion of any demographic information 
regarding the patient population in the study overall. 
Papers were then evaluated for incorporation and inclusion 
of demographic information in the algorithm. A study was 
considered to have included demographic information into 
a model if an analysis was performed that looked at the 
statistical impact of at least one demographic variable on the 
algorithm performance (for instance, if the study included 
a table of P values for demographic information). For 
demographic information to be considered included in the 
model, the study had to include demographic information 
as a variable input, had to report a P value regarding 
performance of the demographic subgroup on the model, 
or had to evaluate model performance by demographic 
subgroup.

Literature that reported racial/ethnic information 
was evaluated for total makeup of patient population and 
inclusion of which categories of reported information.

Statistical analysis

Statistical analysis was performed to determine the 
prevalence and distribution of studies categorized by various 
reported demographic information. For studies presenting 
racial/ethnic information, we conducted further analysis to 
examine the frequency and distribution of each racial group. 
Manuscripts that incorporated racial/ethnic information 
into the algorithms were then reviewed for presence of 
statistical analyses regarding demographic variables and 
appropriate use of chosen statistical tests.

Results

Literature search results

The literature search resulted in 115 studies (Figure 1) (31). 
After screening for full text eligibility based on the inclusion 
criteria, 31 studies were excluded. The remaining 84 
studies were identified for inclusion in this meta-analysis. 
Information regarding total studies, cancer sites, and 
imaging type are reported in Table 2. The most common 
cancer site identified in the review was the breast (26 
studies), and the most common imaging method utilized 

was magnetic resonance imaging (MRI) (35 studies).
Breakdown of total demographic information reported 

and type of demographic information reported is 
summarized in Figure 2. A total of 73 studies reported 
demographic information, and 32 evaluated the effect of 
demographic information on model performance.

Only nine reported racial/ethnic groups, and only three 
of those studies incorporated racial/ethnic groups into their 
models. Of the nine studies that reported this information, 
the specified racial/ethnic minorities that were the most 
included were White/Caucasian (n=9/9) and Black/African 
American (n=8/9). Asian (n=4/9), American Indian (n=3/9), 
and Hispanic (n=2/9) were reported in less than half of the 
studies. Percentage of racial/ethnic minorities included in 
each patient population and which racial/ethnic minorities 
were reported are summarized in Figure 3.

Two of the three studies that incorporated racial/ethnic 
status into the studies’ respective analyses reported statistical 
significance of race on the algorithm performance. Yala  
et al. demonstrated that inclusion of race/ethnicity caused 
significant diagnostic improvements for breast cancer of a 
hybrid deep learning model built on mammogram imaging 
and traditional risk factors (33). Performance of this deep 
learning model was improved compared to the current 
clinical standard for breast cancer risk prediction: the Tyrer-
Cusick model. Yala et al. also evaluated the differences in 
the model improvements for different racial subtype groups. 
Inclusion of race/ethnicity caused statistically significant 
increases in the AUC for White/Caucasian (P<0.001) and 
Black/African American (P<0.001), which resulted in a 
model that performed well for both ethnicities.

In contrast, Beig et al. found that race was not a 
statistically significant factor in algorithm performance 
(P=0.97) (34). Incorporated demographic variables 
and reported P values for Yala et al. and Beig et al. are 
summarized in Table 3.

Additionally, Schaffter et al. did not report any statistical 
testing of race on algorithm performance (35). Schaffter  
et al. instead used a stratified sample for training the model 
that ensured racial groups were evenly distributed amongst 
training and testing groups.

Discussion

Key findings

The majority (73/84) of the manuscripts reviewed in 
this meta-analysis included some form of demographic 
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•	 Databases (n=352)

Records removed before screening:

•	 Duplicate records removed (n=0)

•	 Records marked as ineligible by 

automation tools (n=0)

•	 Records removed for other 

reasons (n=0)

Records excluded

(n=237)

Reports not retrieved

(n=0)
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•	 No comparison (n=19)

•	 Inappropriate imaging type/

method (DEXA) (n=4)

•	 Inappropriate outcome (n=8)

•	 Not in English (n=0)
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Reports sought for retrieval

(n=115)

Studies included in review

(n=84)

Reports of included studies

(n=84)

Reports assessed for eligibility

(n=115)

Figure 1 PRISMA flow diagram of the selection of studies to be included in the meta-analysis. DEXA, dual energy X-ray absorptiometry.

Table 2 Total studies, type of cancer, and type of imaging identified in studies included in this meta-analysis

Cancer site Total (n=84)

Imaging method

CT Mammogram MRI
Shear wave 

elasticity images
Ultrasound X-ray

Breast 26 1 8 6 0 9 2

Central nervous system (brain, 
spine)

8 0 0 8 0 0 0

Gastrointestinal 9 4 0 4 1 0 0

Genitourinary (prostate, bladder, 
kidney, adrenal)

11 5 0 6 0 0 0

Gynecology (ovaries, uterus) 9 0 0 9 0 0 0

Head and neck (lymph thyroid) 7 1 0 0 0 5 1

Sarcoma (soft tissue, fatty tissue) 4 1 1 2 0 0 0

Thorax (lungs, chest) 10 7 0 0 0 0 3

CT, computed tomography; MRI, magnetic resonance imaging. 



Journal of Medical Artificial Intelligence, 2023Page 6 of 9

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2023;6:25 | https://dx.doi.org/10.21037/jmai-23-31

90

80

70

60

50

40

30

20

10

0

To
ta

l s
tu

di
es

Reported information

Reported race/ethnicity, 9 Incorporated race/ethnicity
into model, 3

84
68

6
3

64

29

Total Some demographic 
information reported  

(age, gender, 
history, race)

Incorporated 
demographic 

information into 
model

Reported patient 
history  

(smoking status, 
prior cancer, etc.)

Reported BMIReported 
gender

Racial/ethnic minorities by total studies

12

10

8

6

4

2

0

To
ta

l s
tu

di
es

100%

89%

67%

44%

33%

22%

2
3

4

6

8
9

White/
Caucasian

Black/African 
American

American Indian HispanicAsianOther

information. However, only nine of these attempted to 
describe racial/ethnic information for the reported patient 
population. The lack of inclusion of information of not 
only race, but also demographic information such as age, 
gender, BMI, or patient history is indicative of a larger 
problem that exists within AI for cancer imaging. There are 
significant disparities in cancer outcomes and diagnoses for 
different races. Additionally, it has been shown that patient 
race can be identified from medical imaging (36). Many 
algorithms do not consider information such as race within 

consideration of prediction of clinically significant cancer. 
However, race is often correlated with different physical 
attributes such as BMI, which makes evaluation of race as 
a unique demographic variable important for downstream 
treatment of a patient as well. It is important to report and 
consider demographic information when considering not 
only AI for cancer, but overall care of a cancer patient. ML 
algorithms need to consider demographic information when 
evaluating a patient population for training the algorithm. 
AI built on datasets that do not consider race may be built 

Figure 2 Demographic information reported by studies in this meta-analysis. BMI, body mass index.

Figure 3 Distribution of racial/ethnic minorities by number of studies that reported racial/ethnic information.
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entirely on homogeneous patient populations that do not 
generalize well to other datasets.

Implications

It is vital to account for racial/ethnic groups in ML models 
as carefully addressing these disparities can lead to improved 
treatment outcomes (chemotherapy, radiation therapy, etc.), 
reduction of inequalities present in the lack of technology 
access of certain minorities, prevention of biases, and 
further integration of relevant social determinants of 
health. Race has been shown to affect outcomes of cancer 
treatment such as chemotherapy (37) and radiation therapy 
(38,39); further, patient attributes that matter to treatment 
such as BMI are often strongly correlated with race/
ethnicity status. By not including multiple races/ethnicities 
into the modeling process, the lack of heterogenous genetic 
information in open source datasets can further exacerbate 
a lack of access of certain races/ethnicities to personalized 
medicine and treatments. Improper training of models 
on non-representative datasets can cause racial biases that 
skew performance (40). Algorithms try to maximize overall 
prediction accuracy by optimizing for those individuals 
which appear frequently in the training data. This can cause 
variable performance for different racial/ethnic groups. 
Additionally, the performance of the predictors used in the 
models could substantially vary across different populations. 
There is a need to establish a diversity standard and 
prioritization of racial and social determinants of health data 
collection as well as the need for thorough evaluation of ML 

algorithms in race subgroups before clinical deployment to 
reduce bias. ML algorithms should be carefully designed to 
be ethical and reliable so that all demographic populations 
obtain equal benefit, with equal performance amongst 
groups and proper allocation of resources during clinical 
usage.

Limitations

This study was limited in that it only evaluated manuscripts 
that compared an AI to a radiologist. Many of these were 
feasibility studies that also did not report more information 
regarding the algorithm itself. Additionally, this study 
only evaluated demographic information for manuscripts 
evaluating AI for cancer. A broader review might reveal 
even more problems with demographic reporting present in 
the wider AI for medicine community.

Conclusions

An evaluation of 84 manuscripts regarding AI in cancer 
found that only 9 reported racial/ethnic information for the 
patient population involved in the study. Only 3 of these 
studies incorporated racial/ethnic information into the final 
model. It is important to not only report this information 
for AI for cancer imaging, but to also consider it when 
training a model.
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Table S1 Overview of quality assessment of literature 

Subject of assessment Number of studies

Total abstracts reviewed 352

Total full articles retrieved 115

Total studies included 84

Used training/testing set 82

Did not use or mention training/testing set 2
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Algorithms compared across accuracy only 9

Algorithms compared across AUC only 25

Algorithms compared across sensitivity/specificity only 3

Did not mention image quality 45

Lack of image quality assessment 11

Evaluated and excluded images 22

Evaluated but included poor quality images 6
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