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Background: Postoperative management of the neonate following the Norwood operation is among the 
most complex and challenging in pediatric critical care and high mortality remains. Artificial intelligence 
(AI) is poised to assist in monitoring of this complex population to improve clinical care, evaluation and 
outcomes. 
Methods: In a dedicated Pediatric Cardiac Intensive Care Unit in a quaternary Children’s Hospital, 
a convolutional neural network (CNN) model was developed and trained on electrocardiogram (ECG) 
waveforms from 45 neonates after the Norwood procedure. Waveforms from the first two postoperative days 
(critical) and the day prior to transfer from the intensive care unit (ICU) (stable) were used for training. The 
model was evaluated on a separate cohort of 10 neonates following the Norwood procedure. Models were 
compared to traditional machine learning algorithms on non-waveform data, and then combined in a final 
model. Retrospective clinical observation scoring was completed for comparison.
Results: The CNN model yielded an area under the curve of the receiver operating characteristic (AUC-
ROC) of 0.97 (±0.02). The final model combining the CNN, random forest (RF) on vital signs, and logistic 
regression achieved an AUC-ROC of 0.98 (±0.02) and an AUC of precision recall (AUC-PR) of 0.97 (±0.04) 
for distinguishing critical from stable. Clinical observations to assess patient stability agreed with the final 
model 78% of the time. This suggests that opportunities exist to improve the assessment of overall clinical 
state through the implementation of an AI based data monitoring tool.
Conclusions: This novel, combined AI models can accurately detect changes in clinical status as patients 
progress from critically ill to stable following the Norwood procedure. This work provides the basis of 
a novel bedside monitoring tool and suggests new ways AI may influence clinical care beyond predicting 
deterioration events. 
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Introduction

Postoperative management of the neonate following 
the Norwood operation is among the most complex and 
challenging clinical in pediatric critical care. Despite 
advancements, one-year mortality following the Norwood 
operation remains 26–36% (1). Following the Norwood 
operation with systemic-to-pulmonary artery or ventricle-
to-pulmonary artery shunt, the patient has an intensive care 
unit (ICU) and hospital course that is extremely variable 
in terms of length and cost (2). Therefore, an opportunity 
exists to develop clinical decision support that improves 
mortality and decreases utilization of resources, both in 
terms of cost and inpatient capacity.

Clinicians rely on a variety of data sources when 
managing the post-Norwood patient in the ICU (3). 
Continuous monitoring of electrocardiogram (ECG), 
invasive arterial blood pressure (ABP), central venous 
pressure or right atrial pressure (CVP), pulse oximetry 
[peripheral blood oxygen saturation (SpO2)], cerebral near-
infrared spectroscopy (NIRS), and multiple temperature 
sites is common. Intermittent data such as laboratory 
values, medications administered, ventilator settings, 
advanced diagnostic tests, and clinical observations 
are also important. Given the velocity and volume of 
data generated for each patient, there is risk of failing 
to detect subtle changes in data that may be revealing 
clinical progress or setbacks (4,5). Diagnostic errors and 
safety events are common in modern ICUs and may be 

preventable with improvements in the environment of care 
or cognitive aids for providers (6-9).

Artificial intelligence (AI) and machine learning 
(ML) for healthcare applications are exploding areas of 
medical research that hold promise in improving patient 
outcomes, decreasing costs, and improving utilization of 
scarce healthcare resources (10-12). Convolutional neural 
networks (CNNs) are a type of deep learning model that 
are particularly well-suited to recognize patterns in images 
and waveforms (13). For high-risk patient populations, 
a great deal of effort is focused solely on the prevention 
of significant clinical deterioration events. There is very 
limited ability to detect or quantify subtle changes in 
clinical status (both positive and negative) in a patient’s 
clinical status over time. The primary outcome of this 
study was to derive a model utilizing a CNN algorithm 
applied to continuous waveforms to accurately detect 
changes in a patient’s clinical status over the period of 
their ICU stay and compare this algorithm to traditional 
ML techniques such as logistic regression (LR) and 
random forests (RFs) that are mostly applicable to discrete 
clinical data. The secondary outcome of this study was 
to retrospectively compare the CNN model to a clinical 
evaluation of the patient status. We present this article in 
accordance with the STARD reporting checklist (available 
at https://jmai.amegroups.com/article/view/10.21037/
jmai-22-35/rc).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). The study 
was approved by Children’s Healthcare of Atlanta (CHOA 
IRB #372) and Georgia Institute of Technology (GA Tech 
IRB #H18163) Institutional Review Boards and a waiver 
of informed consent was granted as all data would be 
retrospective and de-identified. All patients who underwent 
the Norwood operation at Children’s Healthcare of Atlanta 
between October 1, 2016 and September 30, 2019, were 
included for analysis during their first post-operative ICU 
course (n=55, Table 1). Of the 55 patients, 40 completed 
a usual ICU course with complete data, 3 had >1 day of 
missing waveform data, 6 had an unplanned reoperation, 
and 6 expired (Figure 1).

Data description

Continuous waveform data from ECG leads I, II, and III 
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Table 1 Patient demographics and characteristics

Variables All (n=55) RVPAS (n=17) BTS (n=38) P value

Age at Norwood procedure (days) 5.0 (4.0–8.0) 5.0 (4.0–6.0) 6.0 (3.3–9.8) 0.1

Gestational age (weeks) 38.6 (37.9–39.1) 38.6 (38.0–39.0) 38.7 (37.9–39.1) 0.37

Postmenstrual age at Norwood procedure (weeks) 39.6 (38.7–40.0) 39.4 (38.4–39.7) 39.6 (38.9–40.0) 0.14

Weight at Norwood procedure (kg) 3.0 (2.6–3.3) 2.8 (2.6–3.2) 3.1 (2.8–3.3) 0.15

ICU length of stay (days) 12.0 (8.0–21.5) 13.0 (8.0–30.0) 11.0 (8.0–19.0) 0.33

Sex 0.22

Male 31 (56.4) 7 (41.2) 24 (63.2)

Female 24 (43.6) 10 (58.8) 14 (36.8)

Anatomy 0.39

HLHS 45 (81.8) 13 (76.5) 32 (84.2)

Unbalanced AVSD 4 (7.3) 2 (11.8) 2 (5.3)

Other 6 (10.9) 2 (11.8) 4 (10.5)

HLHS sub-type 0.28

MS/AS 15 (33.3) 6 (35.3) 9 (23.6)

MS/AA 9 (20.0) 4 (23.5) 5 (13.2)

MA/AA 18 (40.0) 2 (11.8) 16 (42.1)

MA/AS 3 (6.7) 1 (5.9) 2 (5.3)

Chromosomal abnormalities syndromes 0.14

CHARGE syndrome 1 (1.8) 1 (5.9) 0

DiGeorge syndrome 1 (1.8) 1 (5.9) 0

Other chromosomal abnormalities 7 (12.7) 3 (17.6) 4 (10.5)

Required ECMO immediately post-operatively 3 (5.4) 0 (0.0) 3 (7.9) 0.58

Cardiac arrest  6 (10.9) 1 (5.9) 5 (13.1) 0.74

Disposition from ICU 0.15

To stepdown cardiac unit 43 (78.2) 14 (82.4) 29 (76.3)

Deceased 6 (10.9) 3 (17.6) 3 (7.9)

Return to OR 6 (10.9) 0 6 (15.8)

Median (25th–75th percentiles) are reported for continuous variables and a two-sided Wilcoxon rank-sum test is used to compare two 
populations. Frequencies (percentages) are reported for categorical variables and a Chi-square test is used to test their independence 
in the contingency table. RVPAS, right ventricle to pulmonary artery shunt; BTS, Blalock-Taussig shunt; ICU, intensive care unit; HLHS, 
hypoplastic left heart syndrome; AVSD, atrioventricular septal defect; MS, mitral stenosis; AS, aortic stenosis; AA, aortic atresia; MA, mitral 
atresia; ECMO, extracorporeal membrane oxygenation; OR, operating room.

were collected from the ICU bedside monitors using the 
BedMaster system (Excel Medical Electronics, Jupiter, FL, 
USA), which is a third-party software connected to the 
hospital’s Philips monitors. There were 24 patients who 
had waveforms recorded at 125 Hz (prior to October 2017), 

which were resampled using interpolation to 250 Hz (14), 
and 31 patients were recorded at 250 Hz. Average missing 
data in leads I, II, and III per patient are 30.2%, 23.1%, 
and 35.0% respectively. Details regarding data quality 
are summarized in Table 2. Heart rate (HR), mean blood 
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2 days

Binary classification
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30-sec ECG clips (1×7,500) via labels

CNN

Figure 1 Label definition and data segmentation for the patients in this study. Post-op, post-operative; CICU, Cardiac Intensive Care Unit; 
OR, operating room; ECG, electrocardiogram; hr, hour; CNN, convolutional neural network; sec, second.

Table 2 Data statistics

Variables Training cohort (n=45) Test cohort (n=10)

Percentage of missingness in ECGs, mean (min, max) 45.1 (2.4, 100.0) 2.8 (2.5, 3.2)

Lead I 27.2 (1.9, 91.8) 2.7 (2.5, 3.2)

Lead II 51.3 (2.4, 100.0) 10.8 (2.5, 44.9)

Lead III 45.1 (2.4, 100.0) 2.8 (2.5, 3.2)

Number of non-empty samples, n (% labeled as 1)

Lead-I 30-sec clips 162,692 (24.7) 71,342 (26.6)

Lead-II 30-sec clips 224,217 (22.6) 71,364 (26.7)

Lead-III 30-sec clips 124,224 (35.0) 60,785 (31.3)

ECG, electrocardiogram; min, minimum; max, maximum; Lead, electrocardiogram lead; sec, second.

pressure (MBP), diastolic blood pressure (DBP), systolic 
blood pressure (SBP), and SpO2 were sampled from the 
BedMaster system once per second, whereas blood pressure 
data was first sampled from the arterial line data when 
available and then from non-invasive blood pressure values 
(i.e., after the arterial line removed). Laboratory values of 
pH, lactic acid, and base deficit were acquired from the 
electronic medical record (EMR) database.

Data preparation

The patient data was observed as a binary classification 
task where critically ill was defined as class 0 and stable as 
class 1. For model training, the patient data in the first two 
postoperative days were class 0 and the last day prior to 
transfer out of the ICU was class 1. Each lead’s waveform 
data was segmented into 30-second clips, resulting in vectors 
that are labeled as either a 0 or 1 depending on the day of 
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the sample as described (Figure 1). The data was split into 
a training cohort (n=45) and test cohort (n=10). Makeup of 
the cohorts can be seen in Table S1. To ensure robust data, 
the first and last 30 minutes of data were omitted from the 
analysis to eliminate periods where the patient was being 
changed to different monitoring equipment. Data clips 
were removed where the entire 30 seconds was not captured 
(i.e., missing values) from that lead but clips from other 
leads from the same time period were retained. Waveform 
missingness and total included samples are summarized in 
Table 2. In total, the length of ECG signals for training was 
more than 15 million seconds and contained over 3.8 billion 
numerical values. It forms a sufficiently large training set of 
170 thousand samples (i.e., 30-second ECG clips) per each 
lead for model fitting of CNNs.

Raw ECG clips were zero padded if any values were 
missing. Vital signs and laboratory values, which are non-
continuously recorded, were aligned with continuous 
waveform data and each instance was set to the most 
recently recorded intermittent vital sign or laboratory 
value. Each intermittent value at each point in time was 
associated with a variable to indicate whether the value 
was inherited or new. All data were transformed through 
minimum-maximum normalization with the minimum and 
maximum values computed globally per each feature in the 
training set (15).

Algorithm development and training

The 10-layer CNN designed for use in this study is based 
on ResNeXt architecture which is a state-of-the-art CNN 
derived from ResNet (16,17). Its architecture was adapted 
for one-dimensional (1D) physiological streams inputs, 
rather than the two-dimensional (2D) streams, as originally 
designed. To accomplish this, the kernel in the convolutional 
layer (Conv) was modified to be a 1D stripe rather than a 2D 
patch and the model was trained de novo rather than utilizing 
existing, pre-trained models. The CNN was trained on 
30-second ECG clips separately for each lead such that binary 
cross-entropy loss in the training data was minimized. The 
CNN layers contain a Conv, 4 aggregated residual blocks, 
a densely connected layer, and the final softmax activation. 
An aggregated residual block contains 32 paths, where input 
tensors are divided into 32 channels, each running through 
two successive convolutional and normalization layers and 
are concatenated together at the end.

The structure of the developed CNN is presented in 
Figure 2. In detail, the kernel size in each Conv is set to 

16; the number of kernels is set to 64 in the first Conv 
layer and then identical in the residual blocks. Inputs are 
down-sampled by a factor of two at every two blocks by 
setting stride to 2 in Conv layer and max pooled (Pool) 
for the skip connections. To improve the training process, 
the normalization layer was set as a combination of batch 
normalization (BN), rectified linear unit (ReLU), and 
dropout (DO), so called BN-ReLU-DO normalization 
(18-20). DO rates were set to 0.5. The output, or final 
predictions, were made by a fully connected dense layer and 
softmax activation.

Adam optimizers with back-propagation were used for 
training the CNN developed as above (21). Learning rate 
was initially set to 10−3, and then reduced by a factor of 10−1 
if the training loss has stopped decreasing. Batch size was set 
to 28. We tuned hyperparameters such as the kernel size in 
each Conv between {8, 16, 32, 64, 128} and the number of 
residual blocks between {2, 4, 8, 16}, by randomly selecting 
85% of the training cohort for training and the rest 15% 
data for validation. Number of epochs in training was 
initially set to 20, but was stopped early when validation loss 
started increasing. By picking the model having the least 
validation error, we chose a kernel size of 16 and 4 residual 
blocks in our final model, as presented in Figure 2. We used 
3-fold cross-validation to grid search the hyperparameters 
of traditional ML algorithms [i.e., L-1 regularizer in LR, 
depth in decision tree (DT), and number of trees in RF].

Definition of method groups for comparison

This study compared four methods of training AI and ML 
for their predictive value. Group 1 is the CNN model 
developed for this study and was trained on waveforms 
from ECG leads I, II, III, or a unified model combining all 
three. Group 2 utilized traditional ML algorithms and were 
trained on discrete vital sign and lab result data for the same 
binary classification task as the CNN. Group 3 utilized the 
same traditional ML algorithms and were trained based on 
15 HR variability features, extracted from the lead-II ECG 
waveforms utilizing toolbox BioSPPy 0.6.1 in Python 3 (22). 
Group 4 combined the CNN models from Group 1 with 
the traditional ML algorithms from Group 2 by averaging 
their predictions.

Due to the much lower sampling frequency of vital sign 
and laboratory data, compared with waveform data, the data 
windows for the traditional ML algorithms applied to vital 
signs had to be longer. To yield a length of 300 points (1 vital 
sign sample per second), a window length of 5 minutes was 

https://cdn.amegroups.cn/static/public/JMAI-22-35-Supplementary.pdf
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Figure 2 The network structure of the novel convolutional neural network developed in this study. Conv, convolutional layer; Norm, 
normalization layer; N, batch size; Concat, concatenation; ⊕, element wise addition.
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used. Ten predictions, based on 30-second data windows, were 
averaged from Group 1, the CNN group, to yield a 5-minute 
window comparable to the traditional ML algorithms in 
Groups 2, 3, and 4.

Comparison to retrospective clinical observations

The models developed in this study compute time-varying 
scores which are the predicted probabilities of becoming 
stable (class 1) based on the observed trajectory of the 
patient’s changes of status (i.e., class 0—critical, class 1—
stable). For each of the ten patients in the test cohort, the 
patient’s clinical stability was scored by a physician who 
was blinded to the results of the automated analysis. The 
score was recorded by retrospective chart review every 2 
hours for the duration of the ICU stay into one of four 
categories: critical [1], moderate illness [2], mild illness [3], 
or stable [4]. Patients who were intubated, on more than 
one inotrope, require continuous anti-hypertensive agents, 
or had a lactate ≥3 mmol/L were classified as critical illness. 
Patients who were extubated on non-invasive positive 
pressure ventilation or high flow nasal cannula, on one 
inotrope, or had mild acidosis with lactate 2–3 mmol/L  
were classified as moderate illness. Patients who were 
extubated on high flow nasal cannula >3 L/minute, on no 
inotropic support, tolerated some feeds, and with lactate  
<2 mmol/L were classified as mild illnesses. Patients who 
were on no continuous infusions, on nasal cannula, on high 
flow nasal cannula <3 L/minute, and tolerating full feeding 
were classified as healthy. The study team developed 
these scores and are considered institutional norms for 
categorizing these patients.

Statistical analysis

All statistical analyses were performed using package SciPy 
1.4.0 in Python 3 (14). For all continuous variables we 
report median (25th–75th percentiles) and utilize a two-sided 
Wilcoxon rank-sum test while comparing two populations. 
The predictive value of each AI algorithm was assessed 
utilizing the area under the curve (AUC) of the receiver 
operating characteristic (ROC) and the AUC of precision 
recall (PR) on each algorithm’s predictions of critical or 
stable (i.e., negative class 0 or positive class 1) for each 
patient in the test cohort (23). Precision calculates the 
percentage of positive predictions that were truly positive, 
whereas recall calculates the percentage of true positives 
that were correctly identified by the model. The scores for 

each patient were computed and presented in aggregate as 
mean (± standard deviation).

Results

The average ICU length of stay (LOS) in this study was 
18.6 days (range, 7–85 days). A total of 43 patients (78.2%) 
were successfully discharged from the ICU to a general care 
cardiac telemetry unit, 6 (10.9%) expired, and 6 (10.9%) 
returned for re-operation (Figure 1).

Performance of the novel CNN and ML algorithms on the 
test cohort

Detailed performance data is presented in Table 3. For 
Group 1, the CNN deep learning model AUC-ROC 
values on the test cohort were 0.83 (±0.28), 0.93 (±0.09), 
and 0.87 (±0.15) based on data from ECG leads I, II, and 
III respectively. For Group 2, RF outperformed LR and 
DT with all non-waveform data, except laboratory data, 
where LR was superior. The best performing model in 
Group 2 was blood pressure, SpO2, and laboratory data 
taken together by averaging predictions from RF and 
LR which achieved an AUC-ROC of 0.95 (±0.03). For 
Group 3, the AUC-ROC was 0.62 (±0.15) utilizing RF 
on the HR variability data. For Group 4, the combination 
of CNN applied to ECG three-lead waveform data, 
RF applied to discrete vital sign data, and LR applied 
to lab results performed the best. This model ensemble 
approach naturally takes in different input modalities at 
different paces and with different missingness, and it often 
outperforms single models in predictions. Overall, this 
ensemble approach yielded an AUC-ROC of 0.98 (±0.02) 
and AUC-PR of 0.97 (±0.04). The AUC-ROC results are 
summarized graphically in Figure 3.

The ensemble model from Group 4 was performed on 
the test cohort to generate a value between 0 (critical) and 1 
(stable), termed the Clinical Stability Score (CSS). Figure 4A  
demonstrates the CSS over the course of an ICU stay 
for patient (b) in the test cohort. In the test cohort, 7 of  
9 patients (78%) who were transferred to the floor had 
a CSS of ≥0.5 at the time of transfer. Figure 4B is a 2D 
projection of the CNN-transformed ECG embeddings.

The CSS of the ten test patients was compared to the 
clinical observation score from retrospective chart reviews, 
where Spearman’s rank correlation was computed between 
the two ranked scores. They were closely correlated 78% 
of the time throughout their ICU stay (24). Figure 5 shows 
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Table 3 Prediction results of machine learning algorithms by group and included data

Group Method AUC-ROC AUC-PR Accuracy Precision Recall

1 Lead I 0.83 (±0.28) 0.79 (±0.26) 0.36 (±0.07) 0.34 (±0.03) 0.99 (±0.01)

Lead II 0.93 (±0.09) 0.82 (±0.18) 0.86 (±0.14) 0.74 (±0.121) 0.87 (±0.27)

Lead III 0.87 (±0.15) 0.87 (±0.16) 0.77 (±0.12) 0.49 (±0.49) 0.30 (±0.38)

2 HR 0.63 (±0.14) 0.45 (±0.16) 0.61 (±0.09) 0.43 (±0.17) 0.42 (±0.18)

SpO2 0.66 (±0.06) 0.45 (±0.06) 0.64 (±0.03) 0.45 (±0.07) 0.31 (±0.08)

HR + SpO2 0.68 (±0.16) 0.52 (±0.20) 0.68 (±0.09) 0.49 (±0.23) 0.34 (±0.22)

BP + HR + SpO2 0.81 (±0.14) 0.71 (±0.20) 0.75 (±0.10) 0.74 (±0.19) 0.45 (±0.25)

Labs 0.85 (±0.15) 0.61 (±0.30) 0.69 (±0.12) 0.36 (±0.29) 0.57 (±0.46)

BP + HR 0.82 (±0.12) 0.73 (±0.17) 0.75 (±0.09) 0.74 (±0.16) 0.48 (±0.23)

BP 0.87 (±0.07) 0.81 (±0.10) 0.82 (±0.06) 0.87 (±0.12) 0.55 (±0.14)

BP + SpO2 0.89 (±0.07) 0.82 (±0.12) 0.84 (±0.07) 0.89 (±0.07) 0.58 (±0.17)

BP + SpO2 + Labs 0.95 (±0.03) 0.92 (±0.05) 0.85 (±0.09) 0.92 (±0.07) 0.63 (±0.32)

3 HRV 0.62 (±0.15) 0.51 (±0.14) 0.68 (±0.03) 0.53 (±0.22) 0.28 (±0.19)

4 3-lead 0.97 (±0.04) 0.93 (±0.140 0.88 (±0.11) 0.79 (±0.14) 0.88 (±0.27)

3-lead + BP 0.98 (±0.03) 0.95 (±0.07) 0.93 (±0.08) 0.91 (±0.10) 0.88 (±0.27)

3-lead + BP + SpO2 0.98 (±0.03) 0.95 (±0.08) 0.92 (±0.09) 0.91 (±0.10) 0.89 (±0.24)

3-lead + BP + SpO2 + Labs 0.98 (±0.02) 0.97 (±0.04) 0.92 (±0.09) 0.93 (±0.08) 0.85 (±0.30)

Data are presented as mean (± standard deviation). AUC-ROC, area under the curve of the receiver operating characteristic; AUC-PR, 
area under the curve of precision recall; Lead, electrocardiogram lead; HR, heart rate; SpO2, peripheral blood oxygen saturation; BP, blood 
pressure; Labs, pH, lactic acid, and base deficit; HRV, heart rate variability.

plots of the CSS and clinical observation scores over time 
for each of the ten patients in the test cohort.

Discussion

The results of this study demonstrate a novel application 
of AI in ICU medicine. The final model demonstrated 
precise discrimination between a critically ill patient and 
stable patient with an AUC-ROC of 0.98 (±0.02), accuracy 
of 92%, and precision of 93% (Table 3). Clinical assessment 
of neonates following the Norwood procedure is difficult 
and tools to help discriminate between a critically ill patient 
and stable patient are still needed. Such tools could prove 
invaluable in preventing critical events as well as predicting 
those patients who are ready to progress clinically. 
Monitoring patients more accurately for clinical progression 
could decrease ICU LOS and hospital LOS which would be 
impactful for patients, families, and the healthcare system.

Clinical prediction models have been developed for 
use in critical care to provide automated scores based on 

aggregated data in the EMR (25-27). One study, completed 
in 25 children after stage-1 surgical palliation for single 
ventricle heart disease, created an AI model optimized to 
detect impending clinical deterioration events (27). The 
AUC-ROC was 0.91 with good performance of the model 
noted 1–2 hours prior to the deterioration event. Another 
study in 1,445 pediatric ICU patients utilized seven vital 
signs as well as patient age and weight at ICU admission 
to develop a CNN predicting mortality 6–60 hours ahead 
of events (28). The AUC-ROC for prediction of mortality 
was 0.97 at 6 hours and 0.89 at 60 hours. The results of 
the present study achieved an AUC-ROC of 0.98 that 
focused on discriminating between clinical wellness and 
clinical instability, rather than focusing on detecting only 
deterioration events. 

Close correlation between the CSS and the clinical 
observation score 78% of the time is interesting, and the 
periods where the two did not correlate merit further 
discussion as this is where the model may provide additional 
insights into clinical status. In Figure 5, patient (a) had 
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Figure 3 Comparison among the four different approaches to algorithm development. Group 1 was the novel CNN developed in this study 
based on leads I, II, III of ECG waveforms. Group 2 were the different models developed based on discrete vital signs data and laboratory 
data utilizing traditional machine learning algorithms. Group 3 was the model developed based on heart rate variability utilizing a random 
forest algorithm. Group 4 was the combination of CNN on ECG waveforms with traditional algorithms on discrete vital signs data and 
laboratory data. AUC-ROC, area under the curve of the receiver operating characteristic; HRV, heart rate variability; HR, heart rate; SpO2, 
peripheral blood oxygen saturation; BP, blood pressure; Labs, pH, lactic acid, and base deficit; Lead, electrocardiogram lead; All, HR + SpO2 
+ BP + Labs; ECG, electrocardiogram; CNN, convolutional neural network. 

an excellent correlation between the CSS and clinical 
observation score. Patient (a) demonstrated improvement 
in the CSS for 12–24 hours before inotropes were weaned 
or the patient was extubated. Though patient (e) did not 
correlate perfectly, the CSS was noted to decline at the 
time or just before the change in clinical observation score. 
Patient (e) had feeding intolerance intermittently that 
changed the clinical observation score but the CSS, which 
does not include feeding information, also demonstrated a 
decline in patient status at those times. Though the clinical 
observation score remained at 4 (i.e., ready to transfer), 
the patient was not transferred to stepdown until the CSS 
increased consistently to above 0.6, which suggests that 
some clinical uncertainty remained about this patient’s 
readiness for transfer that was captured by the CSS but 
not by clinical observation. Patient (i) was noted to have a 
clinical observation score of 0.4 at the time of transfer to 
stepdown, but the CSS had observed a decline in patient 
status, and this patient ultimately was readmitted to the 
ICU for heart failure six days after transferring out.

The goal, therefore, of adapting this AI model to a real-time 

assessment at the bedside would be to indicate wellness as a 
prompt to progress clinical care, as well as indicate deterioration 
as a prompt to investigate possible changes to clinical care that 
are needed. This represents a novel application compared to 
most existing clinical applications of AI.

Limitations

This model was designed for a very specific population 
of critically ill neonates in the cardiac ICU. Therefore, 
this model only applies to that population. Generalizing 
this model would require a broader training data set that 
would likely include additional variables such as primary 
cardiac diagnosis which is not needed in a model where the 
training set contains only one primary cardiac diagnosis. 
The developed model is able to recognize differences 
between the ECG waveforms from the critical and stable 
time periods, but this method does not provide any 
interpretable clinical insights in the waveforms due to the 
lack of interpretability in CNN models. The algorithm was 
trained on the data set from a single center and is subject to 
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Figure 4 Full postoperative course of patient (b) from the test cohort in two projections. (A) Linear transformation of the progression from 
critical to stable over the course of intensive care unit stay using the combined model developed in Group 4. (B) A 2-dimentional projection 
of the convolutional neural network transformed electrocardiogram embeddings (x and y axes denoting the two dimensions output from 
the t-SNE transformation) with 200 predictions from class 0 (critical) in red and 200 predications from class 1 (stable) in green and 30 
segmentations plotted from patient (b) every 6 hours in blue. Post-op, post-operative; hr, hour; min, minutes; t-SNE, t-distributed stochastic 
neighbor embedding.
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Figure 5 Performance of the final model for each patient in the test cohort. The blue line in each panel represents the linear transformation 
of the final model (per 2 hours), with the shaded area representing the 95% confidence interval. The clinical stability score (0–1) is on the 
left y-axis as the Predicted Score. The green line represents the retrospective clinical observation score (1–4) and is on the right y-axis 
as Clinical Score. Clinical events are shown as plots throughout the ICU stay. Red = extubation; purple = discontinuation of epinephrine 
infusion; yellow = milrinone infusion (addition and discontinuation). Patient (j) uniquely shows other clinical events (ECMO initiation and 
decannulation, attempted chest closure, and CVVH initiation). ECMO, extracorporeal membrane oxygenation; CVVH, continuous veno-
venous haemofiltration; ICU, intensive care unit.
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inherent bias from that organization. Certain elements of 
our patient population, surgical techniques, and critical care 
treatment protocols may affect performance of this same 
algorithm applied to patients from a different center. The 
retrospective clinical observation score is not validated by 
other studies and could be susceptible to center bias.

While the Group 4 combined algorithm performs well 
in the test cohort, prospective enrollment and monitoring 
is required to compare clinical evaluation at the moment to 
the CSS provided by the algorithm. Retrospective clinical 
observation score is likely biased by institutional practice 
and retrospective nature. Furthermore, bedside evaluation 

of how the tool performs in improving patient outcomes, 
decreasing ICU LOS, or decreasing hospital LOS will need 
to be prospectively validated. Future directions will include 
the development of a real-time tool as well as evaluation of 
additional factors that may be predictive of clinical wellness 
at the bedside that could not be incorporated in the current 
study (e.g., NIRS waveforms, continuous ventilator data).

Conclusions

This study demonstrates the successful development of an 
AI based algorithm utilizing ECG waveforms to differentiate 
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between critically ill and stable patients following the 
Norwood operation. This model represents a novel 
application of AI in clinical medicine that extends beyond 
prediction of clinical deterioration, providing continuous 
assessment as patients progress from critical to stable. This 
work provides the basis for development of a real-time, 
bedside AI monitor to be prospectively validated, expanding 
the potential clinical applications of AI in medicine.
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Table S1 Patient demographics and characteristics

Variables Training cohort (n=45) Validation cohort (n=10) P value

Age at Norwood procedure (days) 5±3.6 6.9±3.1 0.5100

Gestational age at birth (weeks) 38 [35.4–41.1] 38 [36–39.3] 0.1663

Postmenstrual age at Norwood procedure 
(weeks)

38.7 [36.1–42.0] 39 [36.7–40.5] 0.2895

Weight at Norwood procedure (kg) 3±0.5 2.9±0.5 0.2499

ICU length of stay (days) 20.3 [7–85] 11.2 [7–28] 0.0990

Sex 0.9234

Male 26 (57.8) 5 (50.0)

Female 19 (42.2) 5 (50.0)

Norwood 0.7570

BTS 32 (71.1) 6 (60.0)

RVPAS 13 (28.9) 4 (40.0)

Anatomy 0.9252

HLHS 38 (84.4) 8 (80.0)

Unbalanced AVSD 3 (6.7) 1 (10.0)

Others 4 (8.9) 1 (10.0)

HLHS subtype 0.8925

MS/AS 14 (36.8) 3 (37.5)

MS/AA 11 (28.9) 3 (37.5)

MA/AA 11 (28.9) 2 (25)

MA/AS 2 (5.3) 0

Required ECMO immediate postoperatively 4 (8.9) 1 (10.0) 1.0

Disposition from ICU 

Transferred stepdown 39 (86.7) 9 (90.0) 0.6650

Mortality 6 (13.3) 1 (10.0) 1.0

Medians [25th–75th percentiles] or means ± standard deviations are reported for continuous variables. Frequencies (percentage) are 
reported for categorical variables and t-test on age, gestational age, weight, and length of stay. A Chi-square test contingency was used 
on the rest of the rows for the significance test. ICU, intensive care units; BTS, Blalock-Taussig shunt; RVPAS, right ventricle to pulmonary 
artery shunt; HLHS, hypoplastic left heart syndrome; AVSD, atrioventricular septal defect; MS, mitral stenosis; AS, aortic stenosis; AA, 
aortic atresia; MA, mitral atresia; ECMO, extracorporeal membrane oxygenation. 
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