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Introduction

Brain tumor is an abnormal growth of cells within the 
brain or the surrounding tissues of the central nervous 
system (CNS). In the US, there are 23 out of 100,000 
population diagnosed with brain tumors in 2011–2015 (1).  
These tumors can be either benign or malignant (2). 

Malignant brain tumors require aggressive therapies and are 
the most challenging to treat. The most common malignant 
brain tumor in adults is gliomas. Gliomas originate from 
the glial cells that provide support and protection to 
neurons and play a crucial role in maintaining the normal 
functioning of the nervous system. The prevalence 
of gliomas is approximately 5–10 per 100,000 in the 
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population every year (3). Gliomas are classified into low-
grade (least aggressive) and high-grade (most aggressive). 
The prognosis of a patient with glioma is highly related 
to the tumor grade (1). Patients with high-grade glioma 
(HGG) have a poor survival rate, despite treatment 
options including chemotherapy, radiation therapy, and  
surgery (4). The survival rate after diagnosis of a brain 
tumor is 35.8% (5). Especially, patients with the most 
aggressive brain tumor, glioblastoma multiforme (GBM), 
have a survival period of 12–16 months, even with advanced 
treatments (6).

Treatment to a patient with glioma depends on the 
tumor grade (7,8). Traditionally, glioma grade is determined 
by pathologists in an invasive manner, by examining a tissue 
sample under a microscope. This process is expensive, 
time-consuming, and can have human errors. Therefore, 
an accurate and robust non-invasive diagnosis method for 
grade prediction is highly desirable.

In the past, several studies have demonstrated the 
use of radiomic features to grade gliomas non-invasively 
from magnetic resonance (MR) images. To classify low-
grade glioma (LGG) from HGG, Skogen et al. (9) used 
histogram-based texture analysis on 95 patients. This study 
reported a receiver operating characteristic area under 
the curve (ROC AUC) of 0.910 (9). Tian et al. (10) used 
a support vector machine (SVM) model to classify grades 
and reported an accuracy of 98%. In another study, random 

forest (RF) classifier was used on the radiomic and wavelet-
based features and reported an accuracy of 97.54% (11). 
These studies first extracted the radiomic features from 
MR images and then these features were used by machine 
learning (ML) models for determination of glioma grade. 
It is important to note that ML models, such as SVM, 
decision trees (DT), RF, and gradient boosting classifier, 
perform well when the data is limited but require extraction 
of features. Additionally, these prior studies used hand-
engineered features that are straightforward to extract. 
We believe that the information extracted in these features 
is limited, thereby, restraining the performance of ML 
models. Therefore, it is required to build models that learn 
features directly from MR images.

Recently, several deep learning (DL) models, specifically 
utilizing convolutional neural networks (CNNs) that learn 
features from the MR data in a layer-by-layer manner were 
proposed for glioma grade classification (12,13). For the 
classification of LGG and HGG, Ertosun and Rubin (14)  
proposed a CNN and reported an accuracy of 96%. In 
another study, a CNN and genetic algorithm was proposed 
by Anaraki et al. (15) and reported an accuracy of 90.9%. In 
another study, a transfer-learning based approach for glioma 
grading was proposed by Yang et al. (16), and reported an 
accuracy of 90%. The CNNs proposed in recent times have 
the ability to learn features directly from MR images. But it 
is important to note that these DL methods are data hungry, 
requiring lots of data to learn robust and meaningful 
features.

In this paper, we propose a CNN + ML model for 
accurate grade classification. A CNN model was used to 
learn features and these learned features are then used by 
ML models for grade classification. To account for limited 
data problem, 2D slices were extracted from 3D scans and 
these 2D slices were used in training CNN model to extract 
robust features. This approach takes advantage of both 
CNN model that can learn robust features and ML models 
that perform well in limited data cases. We compare the 
proposed approach with the radiomic features and other 
state-of-the-art CNN models that were used for feature 
extraction.

Methods

In this section, we first provide the data description and 
then the different methods utilized for grade classification 
would be described.

Highlight box

Key findings
• We proposed a convolutional neural network (CNN) architecture 

that can extract features that are valuable for accurate classification 
of low-grade and high-grade tumors.

What is known and what is new?
• Previous work has explored the use of complex deep learning 

models l ike U-Net,  Auto Encoders,  and Stacked CNN 
Architectures for glioma grade prediction.

• The novelty lies in the development of a simple CNN architecture 
specifically designed to train on individual magnetic resonance 
imaging sequences. The proposed architecture not only improved 
performance but also demonstrated faster training and evaluation.

Implication and what should change now?
• It is recommended to consider adjustments in the pre-processing 

steps to achieve high performance, given the characteristics of the 
dataset.
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Imaging data description

The dataset used in this work were from the brain tumor 
segmentation 2018 (BraTS2018) challenge (17,18). BraTS 
initial focus was only on the evaluation of state-of-the-
art methods for the segmentation of brain tumors in 
multimodal magnetic resonance imaging (MRI) scans (19). 
Later, the same dataset was being used for other tasks such 
as grade classification and overall survival rate prediction.

The BraTS 2018 dataset consists of multi-institutional 
clinically-acquired pre-operative multimodal MRI scans of 
glioblastoma (GBM/HGG) and LGG (17,18). The dataset 
consists of 210 patients with HGG and 75 patients with 
LGG, making it a total of 285 patients. For each patient, 
the following scans were collected: (I) native (T1); (II) post-
contrast T1-weighted (T1Gd); (III) T2-weighted (T2); 
and (IV) T2 fluid attenuated inversion recovery (FLAIR) 
volumes. The representative LGG and HGG scans for 
different sequences were shown in Figure 1. Top row 
corresponds to HGG scans and bottom row corresponds 
to LGG scans. Columns 1–4 correspond to FLAIR, T1, 
T1CE, and T2 scans respectively. The datasets were 
provided after the following pre-processing steps: (I) co-
registered to the same anatomical template; (II) interpolated 
to the same resolution (1 mm3); (III) skull-stripped; (IV) 
manual segmentation of tumors by experienced neuro-
radiologists (17,18,20).

It is important to note that the scans were acquired 
with different clinical protocols and various scanners from 
multiple (n=19) institutions. In contrast, the private datasets 
collected by a single organization vary in the imaging 
modalities used, the time of data collection, and in the 
processing techniques employed to clean the data. For these 
reasons, it is difficult to compare the performance of various 
algorithms using private datasets.

Radiomic feature extraction

PyRadiomics (21), an open-source package was utilized to 
extract radiomic features from brain tumor images. The 
flowchart showing the pipeline of grade classification using 
radiomic features was shown in Figure 2.

Step A: the initial step involves the extraction of 
radiomic features, that capture valuable information, from 
different sequences (T1, FLAIR, T2, T1CE). A total of 110 
features were extracted from each sequence, which include 
First Order Statistics (19 features), Shape-based (3D)  
(16 features), Gray Level Co-occurrence Matrix (24 features),  
Gray Level Run Length Matrix (16 features), Gray Level 
Size Zone Matrix (16 features), Neighbouring Gray Tone 
Difference Matrix (5 features), and Gray Level Dependence 
Matrix (14 features) (22).

Step B: subsequently, we have concatenated the features 
extracted from different sequences corresponding to a 

Figure 1 Representative LGG and HGG scans from the BraTS2018 dataset. Top row corresponds to scans from a HGG patient and bottom 
row corresponds to scans from an LGG patient. First column shows FLAIR scans, second column shows T1, third column shows T1CE, 
and the fourth column shows T2 scans. Note that a radiologist cannot determine the grade from these brain MRI scans. HGG, high-grade 
glioma; LGG, low-grade glioma; FLAIR, fluid attenuated inversion recovery; T1CE, T1 contrast-enhanced; MRI, magnetic resonance 
imaging.

 FLAIR T1 T1CE T2

HGG

LGG
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single patient, to create a multi-modal feature set. This 
consolidation enhances the model’s ability to leverage 
multimodal data for accurate tumor segmentation.

Step C: as part of pre-processing, we stratified split 
the data into training and testing in the ratio of 75% 
and 25% respectively. We then employed synthetic 
minority oversampling technique (SMOTE) oversampling  
technique (23) on the training data to create a balanced 
dataset. Subsequently, data normalization has been applied 
to ensure that the training data is uniformly scaled for faster 
training of ML models.

Step D: the pre-processed training datasets were given 
as the input to various ML models, including SVM (24),  
DT (25),  RF (26),  and Xtreme gradient boosting  
(XGBoost) (27) to build the model for glioma classification. 
Five-fold cross-validation was performed to tune the 
hyperparameters of ML models. The trained models were 
then evaluated on the test data.

Learned feature extraction

In this subsection, we detail the methods that were used for 
extraction of learned features.

Pre-processing
The pre-processing pipeline implemented for extraction of 
learned features from CNN’s was presented in Figure 3.
Step A: image extraction 
Each patient data consists of four sequences, T1, T1CE, 
T2, and FLAIR and each sequence is three-dimensional. 

To account for limited data problem, we first extracted 
2D images of size 240×240 from FLAIR, T1CE, and T2 
sequences. We excluded T1 sequence due to the limited 
information present in these images (28). Note that in each 
3D sequence, there are 188 slices and only slices from 56 to 
136 were included in the study. This range was chosen as it 
contains the most pertinent information for glioma analysis, 
avoiding slices that are predominantly black or lacking 
significant diagnostic features. Note that all the slices from 
56 to 136 were included to avoid any data loss, though the 
neighboring slices may be very similar to each other, leading 
to redundancy.
Step B: train-test split 
We performed patient-level train-test split in the ratio 
of 75% and 25%. Note that performing patient level 
split is crucial for avoiding data leakage. Note that the 
hyperparameters (such as depth of the DT, number of 
estimators in RF and gradient boosting algorithms, cut-
off for defining HGG and LGG) of ML models, were 
tuned using five-fold cross-validation. Since the dataset 
is imbalanced, F1-score (harmonic mean of precision 
and recall) was used as a metric to determine optimal 
hyperparameters. For instance, to determine optimal 
cut-off, F1-score was computed at different probability 
thresholds and the one with the highest F1-score was 
chosen.
Step C: resizing and cropping 
As part of pre-processing, we have resized the extracted 
images in step A of Figure 3 from 240×240 to 190×190 to 
reduce the number of trainable parameters. Any further 

Figure 2 Radiomic feature extraction process. The input are scans from BraTS2018 dataset. (A) Extraction of radiomic features for each 
sequence using PyRadiomics; (B) concatenation of features to create a multi-model feature set for each patient; (C) data pre-processing 
involves oversampling to balance the training dataset and scaling for faster training; (D) ML models, support vector machine, decision tree, 
random forests, and XGBoost trained on radiomic features for prediction of glioma grade. SVM, support vector machine; XGB/XGBoost, 
Xtreme gradient boosting; ML, machine learning.
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Figure 3 Pipeline used for extracting learned features. The input are the scans from BraTS2018 dataset. (A) Extraction of 2D slices from 
3D data; (B) split the data into training and testing based on patients; (C) resizing and cropping to reduce the dimension and remove the 
excess black region around the skull; (D,E) data augmentation and oversampling to balance the dataset; (F) data scaling for faster model 
training; (G) design of various CNN models to learn the features; (H) extraction of learned features that were given as inputs to ML models; 
(I) support vector machine, decision tree, random forest, and XGBoost algorithms were trained for grade prediction; (J) majority voting 
was performed to combine slice-level predictions into patient-level. CNN, convolutional neural network; ML, machine learning; XGBoost, 
Xtreme gradient boosting.

reduction in the size significantly impacted the image 
quality. We then cropped these resized images to 120×120 
to eliminate the external excess black region around the 
skull part.
Step D: data augmentation 
Data Augmentation technique involved generating different 
versions of the images introducing variations such as 
rotations, flips. This part of the pre-processing was aimed to 
enhance model’s ability to generalize well in case of limited 
data. It is important to note that the data augmentation was 
performed only on the train set.
Step E: oversampling 
To address the problem of class imbalance in the dataset, 
we have employed oversampling technique. This process 
involves the replication of minority class data which in our 
case is LGG, thereby balancing the class distribution and 
improving the model’s performance.
Step F: data scaling 
We have applied normalization on both train and test sets 

for faster training of CNN models.
Step G: CNN model training 
This step involves training different CNN models that were 
discussed next. The main goal of these CNN models is to 
learn informative features from the tumor images that are 
valuable for accurate grade classification.
Step H: CNN feature extraction 
Upon CNN model training, we extracted features for 
both train and test sets. These features provide a rich 
representation of tumor characteristics.
Step I: training ML models 
The extracted features from step H of Figure 3 were used to 
train various ML models which include the SVM, DT, RF, 
and XGBoost.
Step J: majority voting 
Note that the steps described above from A to I of Figure 3 
were performed on 2D images. To determine the grade of a 
patient, we utilize a majority voting scheme, where the most 
frequently occurring class of a patient’s feature vectors will 
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Figure 4 The input to the autoencoder network is a T1CE/T2/FLAIR sequence and the goal is to reconstruct the input. An autoencoder 
was trained for each sequence T1CE, T2, and FLAIR. The architecture consists of an encoder block for spatial dimension reduction and a 
decoder block for input sequence reconstruction. After the training, features were extracted from the encoder block and were given to ML 
models for glioma grade prediction. FLAIR, fluid attenuated inversion recovery; T1CE, T1 contrast-enhanced; XGB, Xtreme gradient 
boosting; SVM, support vector machine; ML, machine learning.

be considered as the patient’s grade.

Existing methods
Autoencoder trained on individual sequences for feature 
extraction
Autoencoder is an unsupervised learning algorithm, 
mainly used for the task of representation learning (29). 
The autoencoder architecture used to extract features is 
presented in Figure 4

As shown in Figure 4, the network consists of an encoder 
block and a decoder block. The encoder block comprises of 
convolutional and max-pooling layers, that are responsible 
for reducing the input dimensionality, and serve as feature 
extractor. The decoder block, following the latent space, 
consists of up-sampling layers to reconstruct the input 
data from the compressed representation from the encoder 
block. The autoencoder architecture visually demonstrates 
the compression and eventual reconstruction of the input 
image.

Three individual autoencoders were trained, one for each 
sequence (T1CE, T2, and FLAIR), with the architecture 
shown in Figure 4. Each individual autoencoder was built 
with the main goal of reconstructing the input image with 
minimal error possible, thereby enabling the extraction of 
meaningful features from the encoder block.

The output of the encoder block was used to extract 
features from each sequence individually. Once the features 
were extracted from each sequence, they were concatenated 
to form a multimodal feature set. These concatenated 
features were then used to train ML models, SVM, RF, DT, 
and XGBoost, for glioma grade prediction. Note that the 
majority voting was utilized to obtain patient-level grade 
prediction.
CNN trained on stacked sequences for feature extraction
The CNN architecture employed to learn features from 
stacked T1CE/FLAIR/T2 sequences (30) was shown 
in Figure 5. The input to the architecture is of shape 
(120×120×3), where 120×120 represents the dimensions 
of the image formed after the pre-processing pipeline and 
3 represents various sequences (FLAIR, T2, and T1CE) 
to form a multi-modal input for the 2D-CNN. The 
architecture comprises a series of convolutional layers, 
each followed by max-pooling layers to strategically down-
sample the spatial dimensions. The flattened output from 
the convolutional layers leads to two dense layers with 
rectified linear unit (ReLU) activation function and dropout 
for regularization. The final output layer consists of a 
single neuron with a sigmoid activation function for binary 
classification.

After the 2D-CNN was trained, features were extracted 
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Figure 5 Architecture of 2D-CNN trained on stacked FLAIR, T1CE, and T2 sequences. The network consists of convolutional and max-
pooling layers for spatial dimension reduction and dense layers for feature extraction and classification. After the model training, features 
were extracted from dense layers and were given as inputs to ML models for prediction of glioma grade. FLAIR, fluid attenuated inversion 
recovery; T1CE, T1 contrast-enhanced; HGG, high-grade glioma; LGG, low-grade glioma; CNN, convolutional neural network; ML, 
machine learning.

from the dense layer comprising 256 neurons that provide a 
rich representation of tumor characteristics. These features 
were then used to train various ML algorithms, SVM, RF, 
DT, and XGBoost. The majority voting technique was 
utilized to determine the glioma grade for each patient.
U-Net trained on stacked sequences for feature extraction
The U-Net architecture (31), was first designed and applied 
in 2015 to process biomedical images. The input to the 
network consists of stacked sequences of shape (120×120×3), 
where 120×120 represents the image size and 3 represents 
different sequences (T1CE, T2, and FLAIR). The  
U-Net (31) architecture, as shown in Figure 6 consists of 
encoder-decoder blocks. The encoder block consists of 
convolutional layers, max-pooling layers for downsampling, 
and batch normalization to make training faster and 
more stable reducing issues related to internal co-variant 
shift (32). On the other hand, the decoder block consists 
of up-sampling layers to restore the spatial dimensions. 
The concatenation layer in the decoder blocks played an 
important role in preserving the spatial features lost during 
the downsampling process. They combine the feature maps 
from different levels of the network, ensuring that the final 
output contains both high-level abstractions and low-level 
details. The final output layer consists of a single neuron 

with sigmoid activation function for grade classification.
The U-Net architecture has the advantage of extracting 

features, that capture the complex patterns present in the 
multi-modal input data. The features, encapsulating the 
unique characteristics of tumor regions, were extracted 
from the dense layer with 256 neurons. These features were 
then used by ML models and majority voting was used for 
predicting the grade of a patient.

Proposed method: CNN trained on individual 
sequences for feature extraction
The proposed CNN architecture trained on individual 
sequences is presented in Figure 7. The architecture consists 
of three convolutional layers, each followed by a max 
pooling layer. The output from convolutional layers was 
flattened and given as input to dense layer with 512 neurons 
and ReLU activation function. The output from the dense 
layer was given to a dropout layer to avoid overfitting 
issues. While the convolutional layers are specialized in 
feature extraction and spatial dimension reduction, dense 
layers are capable of further processing the learned features. 
The output layer consists of a single neuron with sigmoid 
activation function for binary classification. This layered 
structure showcases the gradual transition from feature 
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Figure 7 Proposed method: the 2D-CNN architecture trained on individual sequences of FLAIR, T1CE, and T2. The network consists of 
convolutional and max-pooling layers for dimensionality reduction; and dense layers for feature extraction and classification. After the model 
training, features were extracted from dense layers and were given as inputs to ML models for glioma grade prediction. Note that training 
a separate CNN model for each sequence significantly reduced the number of trainable parameters, making it a computationally efficient 
approach. FLAIR, fluid attenuated inversion recovery; T1CE, T1 contrast-enhanced; HGG, high-grade glioma; LGG, low-grade glioma; 
CNN, convolutional neural network; ML, machine learning.

Figure 6 The U-Net architecture trained on stacked T1CE, T2, and FLAIR sequences. The network consists of convolutional and max-
pooling layers for spatial dimension reduction, up-sampling layers for image reconstruction, and concatenation layers for preserving the 
spatial features lost during the down-sampling process. After the model training, features were extracted from the dense layer consisting 
of 256 neurons. The extracted features were then given as inputs to ML models for grade prediction). FLAIR, fluid attenuated inversion 
recovery; T1CE, T1 contrast-enhanced; HGG, high-grade glioma; LGG, low-grade glioma; ML, machine learning.

extraction to classification.
In this proposed method, we pursued a novel approach 

by training three simple 2D-CNNs, one for each sequence 
(T1CE/T2/FLAIR). The main objective of these separate 
CNNs is to capture the sequence-specific patterns in 
tumor classification resulting in a simplified and focused 
learning process. Following the training, features learned 
by each network on individual sequences have been 
extracted from the dense layer. These features encapsulate 
the unique characteristics of each sequence, and they were 
concatenated to form a multi-modal feature set. These 
concatenated features subsequently were used to train ML 
models.

Results

The results obtained from different methods described 
in “Methods” section were presented in Table 1. These 
results provide valuable insights about the performance of 
various feature extraction methods. The metrics accuracy 
(A), precision (P), recall (R), F1-score (F1), specificity (S), 
and negative predicted value (NPV) were reported for ML 
models, SVM, DT, RF, and XGBoost. These ML models 
were trained on features extracted from various techniques, 
radiomic features, autoencoder trained on individual 
sequences, CNN trained on stacked sequences, U-Net 
trained on stacked sequences, and the proposed method 
which is CNN trained on individual sequences.
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Table 1 Performance of ML models, SVM, decision tree, random forest, and XGBoost, trained on radiomic features and learned feature 
extraction techniques 

Model
SVM (%) Decision tree (%) Random forest (%) XGBoost (%)

A P R F1 S NPV A P R F1 S NPV A P R F1 S NPV A P R F1 S NPV

Radiomic features 73 68 71 69 80 84 71 63 64 63 85 80 79 74 69 71 85 81 78 72 67 68 85 83

Individual 2D-AE 83 81 71 76 80 84 76 80 71 75 85 92 90 91 90 90 95 90 86 84 83 83 90 88

Stacked 2D-CNN 93 92 93 92 90 85 81 80 79 79 90 77 93 92 91 91 95 82 90 90 89 89 90 87

Stacked U-Net 98 97 96 97 95 93 98 99 95 97 95 92 98 97 98 98 95 95 99 98 97 98 95 95

Proposed 98 98 96 97 95 97 89 86 87 86 80 85 98 97 95 96 95 97 98 97 98 98 95 98

First row: radiomic features; second row: features learned from an autoencoder network trained on individual sequences; third row: 
features learned from 2D-CNN model trained on stacked sequences; fourth row: features learned from U-Net model trained on stacked 
sequences; fifth row: proposed method with CNN trained on individual sequences. Random forest model trained on features learned from 
autoencoder had an F1-score of 90%, which is 19% higher than radiomic features. The stacked U-Net model had an F1-score of 98%, 
which is 7% higher than the model trained with features learned by stacked 2D-CNN. The proposed method performed similar to U-Net 
with F1-score of 98%, but has 14 times less trainable parameters, making it a computationally efficient approach. ML, machine learning; SVM, 
support vector machine; XGBoost, Xtreme gradient boosting; A, accuracy; P, precision; R, recall; F1, F1 score; S, specificity; NPV, negative 
predicted value; AE, autoencoder; CNN, convolutional neural network.

The results of ML models trained on radiomic features 
extracted by PyRadiomics are shown in the first row of  
Table 1. The best result was obtained by RF algorithm with 
an F1-score of 71%. Despite our best efforts in tuning 
hyper-parameters, the results of ML models trained on 
radiomic features did not improve. This indicates the lack of 
important information in radiomic features that is required 
for accurate glioma grade prediction. These results indicate 
the necessity of learning the features that are relevant for 
grade classification.

The results of ML models trained on features learned 
from autoencoder model are shown in the second row of 
Table 1. The best result was obtained by RF algorithm with 
a F1-score of 90%, which is about 19% improvement over 
radiomic feature extraction.

The results of ML models trained on features learned 
from CNN model trained on stacked sequences are shown 
in the third row of Table 1. The best result was obtained 
by SVM with an F1-score of 92%, which is about 2% 
improvement over autoencoder model.

The results of ML models trained on features learned 
from U-Net model trained on stacked sequences are shown 
in the fourth row of Table 1. The best result was obtained by 
RF and XGBoost models with an F1-score of 98%. This is 
about 6% improvement over the SVM model trained from 
features extracted from CNN model trained on stacked 
sequences. It is important to note that the results obtained 
from autoencoder method did not yield the best results 

compared to other CNN models that were trained with 
a goal of performing classification. It might be because 
the primary goal of an autoencoder was to reconstruct the 
image with minimum reconstruction error which might 
have overshadowed the feature extraction process.

The results of ML models trained on features learned 
from the proposed model are shown in the fifth row of  
Table 1. The best result was obtained by XGBoost algorithm 
with an F1-score of 98%. Furthermore, the proposed 
method has a specificity of 95% and a negative predictive 
value (NPV) of 98%. This reflects the model’s reliability 
in correctly identifying negative cases (LGG). Note that 
the optimal threshold for the proposed model was 0.464 
as determined by five-fold cross-validation. These results 
indicate that the features extracted from 2D-CNN’s trained 
on individual sequences contain information that are 
relevant for accurate grade prediction.

To provide a detailed analysis of the proposed CNN 
method performance on the test data, confusion matrix for 
ML models, SVM, DT, RF, XGBoost (XGB) is presented in 
Figure 8. The label 1 indicates HGG and label 0 indicates 
LGG. True values are shown in rows and predicted values 
are shown in columns. The results indicate the ability of 
the proposed model to accurately classify LGG and HGG. 
As can be seen in Figure 8, XGBoost, when trained with 
features extracted from the proposed CNN model has a 
high number of true positives (TP =64) and a very low 
number of false negatives (FN =2). This indicates that 
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Figure 8 Confusion matrix for ML models, SVM, decision tree, random forest, and XGBoost when trained on features extracted from 
the proposed CNN method. The label 1 represents high-grade glioma and 0 represents low grade glioma. Rows correspond to true values 
and columns correspond to predicted values. The results demonstrate the proposed model’s ability to learn informative features that can 
accurately classify low-grade and high-grade glioma. CNN, convolutional neural network; SVM, support vector machine; DT, decision tree; 
RF, random forest; XGB/XGBoost, Xtreme gradient boosting; ML, machine learning.

the proposed model successfully identified majority of 
positive cases, with only a few instances of misclassification. 
Such a high TP rate is particularly crucial for accurately 
detecting the presence of HGG, that is vital for timely 
and appropriate treatment. The model’s low FN rate 
further underscores its reliability, minimizing the risk of 
overlooking patients who require critical medical attention.

To further evaluate the effectiveness of the proposed 
method, we computed the confidence interval (CI) to 
quantify the uncertainty of the model’s performance. 
The F1-score 95% CI of XGBoost algorithm trained 
on radiomic features is 68±7. The 95% CI of XGBoost 
algorithm trained on features learned by the autoencoder 
network is 83±5. The 95% CI of XGBoost algorithm 
trained on features learned by the stacked 2D-CNN 
network is 89±4. The 95% CI of XGBoost algorithm 
trained on features learned by the stacked U-net and the 
proposed network is 98±1. From these results, it is clear that 
the 95% CI for the stacked U-net and the proposed network 

are significantly low compared to the other models. These 
results highlight the robustness of the features extracted by 
the proposed network for glioma grade classification.

From the results presented in Table 1, it was clear 
that the performance of U-Net similar to the proposed 
method. The comparison of U-Net in terms of number 
of trainable parameters and training and testing time are 
given in Table 2.

The U-Net utilized had approximately 470 million 
parameters leading to training time of approximately  
7 hours and 14.7 seconds for extraction of learned features 
from each test sample. On the other hand, the proposed 
CNN had about 33 million parameters and the training was 
completed in an hour and 30 minutes and it took around 
2.3 seconds to extract learned features from the test set. 
Note that both the models were run for 20 epochs and all 
the experiments were conducted on an Intel(R) Xeon(R) 
Gold 6144 CPU @ 3.50 GHz server with a total RAM of  
64 GB. It was evident from Table 2, that the proposed model 
is simple and has about 14 times less trainable parameters 
compared to the U-Net. Note that the low parameter 
count also reduces the risk of overfitting. In addition to its 
simplicity, the proposed method demonstrated impressive 
results in determining features that are relevant for accurate 
glioma grade prediction. In contrast, methods like U-Net, 
while capable of achieving high performance, come with 
the drawback of huge number of trainable parameters with 
a higher computational burden. The proposed method 
significantly reduced the training and testing time, making 
it a practical choice for faster model development and 
evaluation. These observations highlight the trade-off 
between model complexity, training and testing time, and 
predictive performance, offering valuable insights for the 
selection of an appropriate approach.

Table 2 Comparison of U-Net and proposed method in terms of 
training and testing time and number of trainable parameters 

Method
Train time  

(sec)
Test time  

(sec)
Parameters  

(M)

U-Net 25,200 14.7 470

Proposed method 5,400 2.3 33

The U-Net takes about 7 hours to train and the proposed 
method takes about an hour and 30 minutes for 20 epochs. 
The U-Net takes about 14.7 seconds to extract learned features 
from each test sample, whereas the proposed method takes 
around 2.3 seconds which is at least 6 times faster compared 
to U-Net. The U-Net has about 470 million parameters, while 
the proposed method has 33 million parameters, which is about  
14 times lower trainable parameters. sec, seconds; M, millions. 
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Discussion

In this study, we proposed a CNN to learn features that 
are valuable for glioma grade classification. The extracted 
features are then used to train ML models, SVM, DT, 
RF, and XGBoost for prediction of grade. The proposed 
feature extraction network was compared with different 
architectures including autoencoder network, stacked 
2D-CNN, and stacked U-Net.

The model’s effectiveness was assessed based on accuracy, 
precision, recall, F1-score, specificity, and NPV. The 
stacked U-Net and the proposed method demonstrated 
higher performance compared to autoencoder and stacked 

2D-CNN networks, highlighting the potential of advanced 
CNN architectures in effectively predicting glioma grades. 
This evaluation forms the basis for integrating CNN 
features with traditional ML models for determining glioma 
grade.

The performance of using only CNN’s for both feature 
extraction and classification is presented in Table 3. It can 
be seen that the performance of proposed CNN network 
and stacked U-Net are similar and are better compared to 
autoencoder and stacked 2D-CNN models. However, it 
is important to note that the performance of the proposed 
network when used for feature extraction (F1-score =98) 
is better than using it for grade prediction (F1-score =92). 
These results demonstrate the significance of using CNN’s 
for extracting features and then building ML models for 
grade classification.

To demonstrate the calibration of the proposed method, 
calibration plot was presented in Figure 9. It can be observed 
that the model is well calibrated at lower probabilities and 
the model has overestimated at higher probabilities (0.7–0.9).

Our f indings,  as  detai led in “Results” section, 
demonstrate the efficacy of our proposed CNN method 
in accurately predicting glioma grade. To successfully 
integrate this technology into clinical practice, a series of 
steps must be undertaken, including extensive validation 
of the model against larger and more diverse datasets, 
ensuring compliance with regulatory standards, and training 
healthcare professionals to effectively utilize this technology. 
Furthermore, the integration of our model into existing 
diagnostic workflow would necessitate collaboration with 
medical practitioners to ensure seamless implementation.

Conclusions

In this work, we explored various feature extraction methods 
for glioma grade classification on the BraTS2018 dataset. 
The feature extraction techniques include radiomic features, 
autoencoder trained on individual sequences, CNN trained 
on stacked sequences, U-Net trained on stacked sequences, 
and CNN trained on individual sequences (proposed 
method). The ML methods include SVM, DT, RF, and 
XGBoost that were trained on radiomic and learned 
features. The performance of ML models trained with 
learnable features achieved at least a 19% higher F1-score 
compared to the models trained with radiomic features. 
The ML models trained with features extracted from the 
U-Net model had achieved an F1-score of 98%, which is 
at least 6% higher compared to the models trained with 

Table 3 Performance of CNN methods when used for both feature 
extraction and grade prediction 

Method A (%) P (%) R (%) F1 (%)

Individual 2D-AE 89 87 85 84

Stacked 2D-CNN 89 89 87 86

Stacked U-Net 94 93 92 92

Proposed method 95 94 90 92

The performance of proposed and stacked U-Net models is 
higher than other CNN networks, but lower compared to using 
the proposed network for feature extraction and ML model for 
grade prediction. These results indicate the significance of 
integrating CNN and ML models. CNN, convolutional neural 
network; A, accuracy; P, precision; R, recall; F1, F1 score; AE, 
autoencoder; ML, machine learning. 

 0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted probability

CNN model 
Perfectly calibrated

Calibration plot for CNN model

1.0

0.8

0.6

0.4

0.2

0.0

Fr
ac

tio
n 

of
 p

os
iti

ve
s

Figure 9 Calibration plot of the proposed model. The model is 
well calibrated at lower probabilities and overestimates at higher 
probabilities. CNN, convolutional neural network.
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features extracted from autoencoder and stacked CNN 
network. The proposed method performed similar to 
U-Net, but with about 14 times less trainable parameters 
and 6 times faster in extracting features, making it a simple 
and a computationally efficient approach. In conclusion, 
autoencoder model focuses on the image reconstruction 
task and was not an efficient approach for learning features 
valuable for glioma grading. In addition, features learned 
from the model trained on individual sequences performed 
better than the features learned from models trained on 
stacked sequences. These insights pave a way for tailored 
treatment strategies and the ultimate goal of improving 
patient care.
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