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Background: Prediction of clinical outcomes in coronary artery disease (CAD) has been conventionally 
achieved using clinical risk factors. The relationship between imaging features and outcome is still not well 
understood. This study aims to use artificial intelligence to link image features with mortality outcome. 
Methods: A retrospective study was performed on patients who had stress perfusion cardiac magnetic 
resonance (SP-CMR) between 2011 and 2021. The endpoint was all-cause mortality. Convolutional neural 
network (CNN) was used to extract features from stress perfusion images, and multilayer perceptron (MLP) 
to extract features from electronic health records (EHRs), both networks were concatenated in a hybrid 
neural network (HNN) to predict study endpoint. Image CNN was trained to predict study endpoint 
directly from images. HNN and image CNN were compared with a linear clinical model using area under 
the curve (AUC), F1 scores, and McNemar’s test.
Results: Total of 1,286 cases were identified, with 201 death events (16%). The clinical model had good 
performance (AUC =80%, F1 score =37%). Best Image CNN model showed AUC =72% and F1 score 
=38%. HNN outperformed the other two models (AUC =82%, F1 score =43%). McNemar’s test showed 
statistical difference between image CNN and both clinical model (P<0.01) and HNN (P<0.01). There was 
no significant difference between HNN and clinical model (P=0.15). 
Conclusions: Death in patients with suspected or known CAD can be predicted directly from stress 
perfusion images without clinical knowledge. Prediction can be improved by HNN that combines clinical 
and SP-CMR images. 
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Introduction

Background

It has been more than two decades since the launch of 
coronary artery disease (CAD) risk stratification scores, 
which commonly aim to estimate the 10-year risk of 
developing CAD and other related health outcomes, such 
as major adverse cardiovascular events, heart failure and 
mortality (1). The concept of risk factors in CAD was first 
coined by the Framingham Heart Study (FHS), which 
published its findings in 1957, and demonstrated the 
epidemiologic relations of smoking, raised blood pressure 
and cholesterol levels to the incidence of CAD. The 
findings were truly revolutionary for it helped bring about 
a change in the way medicine is practiced (2). There are 
several important and potentially modifiable risk factors for 
cardiovascular disease (CVD), such as hypertension (HTN), 
dyslipidaemia, diabetes mellitus (DM), obesity, smoking, 
chronic kidney disease (CKD), anxiety and depression, 
social isolation, low physical activity and poor diet. Non-
modifiable risk factors also exist in fewer numbers, such as 
ethnicity and family history of CVD (3).

Conventionally, these risk factors are used as inputs in 
different risk scoring algorithms to produce a quantifiable 

output, used by clinicians to predict long-term risk, 
clinical outcome and prognosis. Recent literature has 
shown strong predictive power of non-invasive imaging 
modalities of CAD, adding important prognostic value in 
predicting outcomes in patients with known or suspected 
CAD. Broadly, these non-invasive imaging techniques are 
either focused on functional/ischaemia assessment (e.g., 
stress perfusion cardiac magnetic resonance (SP-CMR) (4),  
dobutamine stress echocardiography (DSE) (5) and 
myocardial perfusion scanning (MPS) (6); or focused on 
imaging the coronary anatomy directly [e.g., coronary 
computed tomography angiography (CCTA) (7)]. Whilst 
several methods of combining functional and anatomical 
non-invasive imaging have been proposed, these remain in 
largely within the research-domain (8,9).

The revolution of artificial intelligence (AI) and 
neural networks within the medical domain over the last 
decade, has led to real world clinical applications with 
many automated medical tasks, including predictive 
analytics. Emerging studies have shown that AI can detect 
traditionally difficult to diagnose conditions, and empower 
outcome prediction, in addition to many other applications 
in treatment, safety, patient adherence, administration and 
precision medicine (10). 

Rationale and knowledge gap

The utilisation of non-invasive imaging to assess patient 
risk and diagnose CAD is increasing our understanding 
of long-term patient outcomes. Contemporaneously, the 
use of AI algorithms in assessing cardiac risk factors and 
clinical data to predict outcome in at-risk patients is also 
being developed and adopted. Whilst findings from non-
invasive imaging have been incorporated in such models, 
the algorithms largely rely on clinician interpretation of 
the imaging. Any direct relationship between the acquired 
images themselves and predicted outcome has not been 
investigated and is poorly understood.

Objective

This study aims to assess the probability of predicting 
patient outcomes from SP-CMR images using a novel AI 
approach for outcome prediction. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://jmai.amegroups.com/article/view/10.21037/jmai-
24-1/rc).

Highlight box

Key findings
• Outcome prediction can be achieved directly from stress perfusion 

cardiac magnetic resonance images using artificial intelligence (AI). 
• Outcome prediction using AI can be enhanced by mixed data types 

from image pixels and electronic health records. 

What is known and what is new?
• Non-invasive cardiac imaging has additional and independent 

prognostic values. 
• Outcome prediction using imaging data still relies on expert 

human interpretation of image findings. 
• This study adds an insight into how to link image pixel data with 

prognosis using AI. 

What is the implication, and what should change now?
• This study will open the door for a novel approach in outcome 

prediction using non-invasive imaging without former knowledge 
of patients’ data. 

• It also introduces a novel hybrid AI prognostic tool, which has the 
potential to overcome conventional clinical risk scoring. 

• More research on larger and multi-centre datasets, and more 
refined imaging data have to be performed to achieve higher 
performance and novel clinical applications.

https://jmai.amegroups.com/article/view/10.21037/jmai-24-1/rc
https://jmai.amegroups.com/article/view/10.21037/jmai-24-1/rc
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Method

Study design and population

This was a retrospective observational cohort study. This 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
the Research Ethics Committee of King’s College London 
Partnership (No. 20/ES/0005) and individual consent for 
this retrospective analysis was waived. Patients undergoing 
SP-CMR at a single centre (Guy’s & St Thomas’ NHS 
Foundation Trust) between April 2011 and March 2021 
were screened, and only those with completed studies 
including full reports and available images were included. 

The total number of all-cause mortality events was 
obtained for the whole population from electronic patients 
record. The follow-up period was variable depending on 
the date of the clinical scan, with data collection completed 
on 20 August, 2021. 

Inclusion criteria

We included only patients with complete adenosine stress 
perfusion study and good quality images, who had complete 
reports. Exclusion criteria were: reports which were blinded 
for research purposes, conflicting reports description 
between main body text and summary findings, terminated 
stress study due to complications, reports with missing 
tissue characterisation information, contraindications to 
using stress agent, mass perfusion studies, dobutamine 
stress studies, lung perfusion studies, poor response to 
stress agent, and mis-labelled reports which were originally 
highlighted as perfusion studies but after inspection found 
to be otherwise. 

Data extraction

Clinical data
Clinical data extraction was performed using natural 
language processing (NLP) AI-based application called 
CogStack (11), which allows to extract information from 
unstructured data sources in multiple formats. Once 
extracted, harmonised and processed, multiple uses of 
this unstructured data become possible based around 
information retrieval and extraction. For the purpose of 
this study, an NLP model was trained to extract CVD 
risk factors from unstructured data using medical terms 
from Systematic Nomenclature of Medicine Clinical 
Terms (SNOMED CT), whereas baseline characteristics 

of the population were extracted from structured data 
using Application Programming Interface (API) search 
engine called Elastic Search (12). Samples of documents 
were ingested into the Medical Concept Annotation Tool 
(MedCAT), which is used to link electronic health records 
(EHRs) to biomedical ontologies such as SNOMED-
CT and Unified Medical Language System (UMLS) 
and train NLP models. For this study, SNOMED-
CT UK version was used for annotation. Text files were 
tokenized, lemmatised and pre-processed, then used as 
inputs into the network with the corresponding labels. 
Initial self-supervised model was trained using named-
entity recognition + linking (NER + L) annotation, this 
algorithm is used to extract and locate name entities in 
unstructured text into a pre-defined categories for labelling 
before training the model. Fine tuning was achieved with 
supervised learning after a group of expert clinicians labelled 
a sample of reports with the relevant medical terminology. 
MedCAT trainer used multiple neural networks architecture 
(long-short-term-memory (LSTM), gated recurrent unit 
(GRU), and transformers), and the best performing model 
was deployed into CogStack. All data were anonymised. 
The AI-based data extraction pipeline is explained in Figure 1.

Image data
For image data extraction, SP-CMR images included three 
series of frames representing 3 levels of slices: basal, mid 
and apical left ventricular (LV) slices. These perfusion 
images were extracted in 2 stages and reviewed by a level 3  
CMR reader. During stage 1 the frame of peak signal intensity 
within the LV cavity was selected using an automated pipeline 
based on sum and peak pixels per frame. An automated 
identification and discard of low resolution arterial input 
function frames utilised pixel gradient algorithms. The use of 
a four frames per slice allowed for visualisaton of myocardial 
contrast wash-in/wash-out. In stage 2 the images were 
cropped to include only the LV myocardium and cavity 
using a centre crop function. Late gadolinium enhancement 
(LGE) images were also extracted, including three long 
axis views (2-chamber, 3-chamber and 4-chamber views) 
and multi-slice short axis imaging of the whole ventricles. 
Unique case identification numbers (IDs) were used to link 
each image series with the corresponding clinical data.

Construction of neural networks

Image convolutional neural network (CNN)
CNN architecture was used when training image-based 
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prediction models. Different experiments were performed 
with different CNN architectures. Training started from a 
simple design with LeNet (13) to more complex networks, 
this included: AlexNet (14), VGG19 (15), ResNet50 (16) 
and GoogleNet (17). Images were resized to equal height 
and width of 224 pixels and all frames were stacked for each 
case with input shape of [224, 224, 25] to include 12 images 
for stress perfusion and 13 images for LGE datasets. The 
final layer of each neural network was a Dense layer of one 
node with ’sigmoid’ activation function to prediction either 1  
for mortality event or 0 for none. Binary cross-entropy loss 
function was used, and an early stopping was used after 
monitoring F1 score in the validation set. Adam optimiser 
was chosen with a learning rate of 0.001.

Hybrid neural network (HNN)
A HNN was developed to have mixed input data, both 
the CMR images and clinical information, in order 
to extract features from both data types and predict 
outcome. CNN architecture was used to extract features 
from stress perfusion and LGE images after removing 
the top prediction layer and flattening the output to a 
Dense shape of 4. A multi-layer perceptron (MLP) with 2 
Dense layers was used to extract features from continuous 
and categorical clinical variables after removing the top 
prediction layer and flattening the output to a Dense shape 
of 4, to be compatible with the output of CNN. Both 

outputs were then concatenated and passed to 2 Dense 
layers with the prediction in the final Dense layer with one 
node and ’sigmoid’ activation function to predict all-cause 
mortality. Five different CNN architectures were used in 
the experiments in a similar approach to the image CNN 
experiments. 

The full pipeline is shown in Figure 2. 

Model training
Data was split into 60% for training, 15% for validation and 
25% for testing. To overcome class imbalance, the initial 
bias was adjusted to reflect classes ratio and help training to 
make better initial guesses by setting the output layer’s bias 
to reflect that, this can help with initial convergence. The 
initial bias b0 can be calculated as the following:

( ) ( )
( ) ( )

00 1 1

0 log 1 0 1 log

b

e e

p pos pos neg e

b p pos neg

−= + = +

= − − =  
[1]

This was followed by model building with the new initial 
bias, and outputting the bias after each epoch of training. 
Furthermore, class weights were calculated as:

( )2w N n= ×  [2]

Where w is the class weight, n is the number of class 
instances, N is the total size of the sample and 2 is the 
number of classes. Class weight was used as a parameter 

Figure 1 A diagram showing the data extraction process using CogStack. MedCAT, Medical Concept Annotation Tool; NER + L, named-
entity recognition + linking.
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during fitting the model for training. 
Training was monitored with early stopping based on 

validation precision/recall curve or F1 score, and binary 
cross-entropy was used as a loss function. After testing two 
optimisers with various learning rates [Adam and Stochastic 
Gradient Descent (SGD)], Adam optimiser with a learning 
rate of 0.001 was used. 

Statistical analysis

Categorical variables were expressed using number and 
percentage; continuous variables were expressed using 
mean and standard deviation. Follow-up was calculated as 
the mean time to all-cause mortality event, and all cases 
without events and with shorter duration from CMR date to 
collection date were excluded. The population was divided 
into three age subgroups given that different CVD risks vary 
based on adults age subgroups (18) (<65, 65–75, >75 years).  
The difference in baseline characteristics, clinical risk 
factors and CMR data between all subgroups was tested 
using the Chi-square test for categorical variables and a 
One-Way ANOVA for continuous variables. 

Multivariate logistic regression was used as a baseline 
for comparison with neural networks performance using 
common CVD risk factors. Continuous variables were 
normalised using mean values, and categorical variables 
were used as binary (yes/no) input values, regardless of 
underlying types of classes. CVD risk factors included: 
age, gender, CKD, HTN, heart failure, smoking history,  
previous myocardial infarction, dyslipidaemia, DM and 
cerebrovascular accident (CVA). Similar approach was taken 
in building the MLP pipeline in HNN networks. 

Testing model performance was evaluated using accuracy, 
precision, recall, area under the curve (AUC) and F1 score, 
and compared using McNemar’s test. P value of <0.05 was 
considered statistically significant. 

All statistical analysis and networks training was performed 
using Python programming language, version 3.10.

Results

Baseline characteristics

The extraction results and datasets used for models training 
are explained in Figure 3.

Figure 2 Full pipeline showing the HNN architecture combining CNN (top) and MLP (bottom). CNN, convolutional neural network; 
HNN, hybrid neural network; LGE, late gadolinium enhancement; MLP, multi-layer perceptron.
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The total number of patients analysed was 1,286. 
The total number of patients who died was 201 (16%). 
Mean follow-up was 1,090 days (IQR, 351−1,749). The 
study population included males in around two thirds 
(66% male vs 34% female). More CMR studies were 
performed at 3 Tesla than 1.5 Tesla (62% vs 38%), using 
Siemens and Philips vendors. All stress perfusion imaging 
was conducted via the use of vasodilatory medication to 
achieve hyperaemia, with the vast majority performed 
using Adenosine, and a much smaller number receiving 
Regadenoson (88% vs 12%). Around a third of the 
population had inducible defects at peak hyperaemia 
(30%) and/or scar on LGE imaging (33%). All baseline 
characteristics, CMR data and clinical risk factors are shown 
in Table 1. 

After dividing the population into three age subgroups, 
the older population (age >75 years) had a higher percentage 
of positive LGE and positive stress perfusion compared 
with the other age-defined subgroups, as shown in Figure 4. 

Mortality prediction

The clinical model with logistic regression achieved 
good performance level (AUC =80%, F1 score =37%), 
with intercept of −4.17 and coefficients of CKD 0.84, 

HTN 0.53, male gender 0.59, heart failure 0.26, smoking 
0.02, dyslipidaemia 0.13, DM 0.17 and age 4.10. Within 
image CNN, the best performing neural network was the 
AlexNet, which showed AUC =72% and F1 score =38%, 
however, there was poor convergence in training and signs 
of overfitting. For HNN, GoogleNet with three inception 
blocks was the best model for feature extraction from 
images. The performance of HNN was superior to both 
the image CNN and the clinical model (AUC =82%, F1 
score =43%). Compared to image CNN, McNemar’s test 
showed higher performance of both clinical model (P<0.01) 
and HNN (P<0.01). There was no significant difference 
between HNN and clinical model (P=0.15). 

AUC and F1 scores for each image CNN model are 
shown in Table 2, for HNN models in Table 3, and for 
the clinical model in Table 4. Figure 5 shows the receiver 
operating characteristic (ROC) curves and the precision-
recall curves comparison between image CNN, HNN and 
clinical model. 

Discussion

Clinical practice relies on effective risk stratification to 
guide the management of patients with suspected or 
known CAD. Utilising clinical risk scores derived from 

Figure 3 A diagram showing sample selection for training both types of models, and the clinical variables used by the hybrid neural network. 
CNN, convolutional neural network; FU, follow-up; HNN, hybrid neural network; LGE, late gadolinium enhancement.

4,188 cases

3,926 cases with  
images available

2,862 cases with 
high quality

Exclusion of short  
FU cases → 1,286  

included

HNN  
mortality 

prediction

Image CNN 
mortality 

prediction

Stress perfusion +  
LGE images

201 mortality  
events

Clinical fields extracted for 
hybrid neural network: 
1. Age 
2. Gender
3. Hypertension
4. Heart failure
5. Smoking status
6. Dyslipidaemia
7. Diabetes mellitus
8.  Previous myocardial 

infarction
9. Chronic kidney disease
10. Cerebrovascular events

Stress perfusion +  
LGE images



Journal of Medical Artificial Intelligence, 2024 Page 7 of 11

© Journal of Medical Artificial Intelligence. All rights reserved. J Med Artif Intell 2024;7:3 | https://dx.doi.org/10.21037/jmai-24-1

large datasets and long periods of follow-up aids in clinical 
decision making, achieving an AUC of 80% in our study 
for the prediction of all-cause mortality based on clinical 
parameters. This highlights the high sensitivity and 
specificity of outcome prediction using conventional clinical 

risk factors and established prediction. 
Recent literature emphasises the independent and 

additional prediction power of non-invasive imaging in 
CAD, with identified features linked to specific outcomes 
(4-7), such as high-risk plaque features identified on 

Table 1 Baseline characteristics by age subgroups

Variables Total (n=1,286) <65 years (n=577) 65–75 years (n=383) >75 years (n=326) P value

Death 201 [16] 28 [5] 63 [16] 110 [34] <0.001*

Sex 0.241

Male 845 [66] 370 [64] 250 [65] 225 [69]

Female 441 [34] 207 [36] 133 [35] 101 [31]

Clinical risk factors

Smoking 147 [11] 47 [8] 56 [15] 44 [13] 0.004*

DM 61 [5] 27 [5] 19 [5] 15 [5] 0.759

HTN 515 [40] 197 [34] 174 [45] 144 [44] <0.001*

Dyslipidaemia 281 [22] 117 [20] 106 [28] 58 [18] 0.022*

CVA 116 [9] 37 [6] 47 [12] 32 [10] 0.004*

CKD 81 [6] 15 [3] 30 [8] 36 [11] <0.001*

Previous MI 319 [25] 144 [25] 104 [27] 71 [22] 0.309

Heart failure 226 [18] 82 [14] 73 [19] 71 [22] 0.005*

Arrhythmia

AF 194 [15] 45 [8] 72 [19] 77 [24] <0.001*

Atrial flutter 63 [5] 22 [4] 26 [7] 15 [5] 0.059

VT 110 [9] 40 [7] 34 [9] 36 [11] 0.010*

VF 15 [1] 7 [1] 6 [2] 2 [1] 0.724

Field strength 0.723

1.5 T 492 [38] 220 [38] 146 [38] 126 [39]

3 T 794 [62] 356 [62] 234 [61] 204 [63]

Stress agent 0.041*

Adenosine 1,130 [88] 518 [90] 339 [89] 273 [84]

Regadenoson 156 [12] 59 [10] 44 [11] 53 [16]

LVEF 55±14 58±12 55±14 51±15 <0.001*

RVEF 59±10 59±09 59±10 58±12 0.303

+ve ischaemia 384 [30] 137 [24] 118 [31] 129 [40] <0.001*

+ve LGE 424 [33] 109 [19] 141 [37] 174 [53] <0.001*

Values are presented as number [%] for categorical variables; mean ± standard deviation for continuous variables. *, P<0.05. DM, diabetes 
mellitus; HTN, hypertension; CVA, cerebrovascular accident; CKD, chronic kidney disease; MI, myocardial infarction; AF, atrial fibrillation; 
VT, ventricular tachycardia; VF, ventricular fibrillation; T, Tesla; LVEF, left ventricular ejection fraction; RVEF, right ventricular ejection 
fraction; LGE, late gadolinium enhancement; +ve, at least one positive myocardial segment.
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CCTA (19). Integrating non-invasive imaging into 
risk scoring algorithms is likely to enhance outcome 
prediction, encompassing mortality, ventricular arrhythmia, 
hospitalisation, and other related health outcomes.

The increasing availability and funding, along with 
technological advancements like higher imaging resolution, 
improved acceleration techniques, and lower radiation 
dosing, have made non-invasive imaging essential parts of 
daily clinical practice. 

The prediction of mortality in CAD has been a crucial 
aspect of clinical practice, and non-invasive imaging, 
particularly stress perfusion CMR, has played a growing 
role in predicting treatment response and improving long 
term outcomes (20). 

Our study pioneers the incorporation of image pixel data 
for predicting clinical outcomes using deep learning and AI 
technology. To the best of our knowledge, this is the first 
application of using AI to link image pixels to prognosis in 
stress perfusion CMR. While prediction from clinical risk 
factors and CMR findings outperformed image CNN, the 
HNN combining both types of data achieved the best AUC 
and F1 scores. This suggests the potential clinical utility 
of AI, which may identify subtle features missed by human 
interpretation. 

The integration of  AI in r isk strat i f icat ion,  as 

Figure 4 Categorical bar plot showing different age groups with gender categories and comparison based on positive stress perfusion (left) 
and positive ischaemic LGE (right) (with 95% confidence intervals). LGE, late gadolinium enhancement.

Table 2 Comparison of performance metrics for all image CNN 
models

Image CNN Accuracy Precision Recall AUC F1 score

AlexNet 0.59 0.25 0.69 0.72 0.38

GoogleNet 0.81 0.28 0.40 0.65 0.28

LeNet 0.60 0.20 0.62 0.63 0.26

ResNet50 0.52 0.19 0.61 0.63 0.22

VGG19 0.52 0.24 0.59 0.61 0.27

CNN, convolutional neural network; AUC, area under the curve.

Table 3 Comparison of performance metrics for all HNN models

HNN Accuracy Precision Recall AUC F1 score

AlexNet 0.75 0.24 0.70 0.74 0.36

GoogleNet 0.70 0.26 0.77 0.82 0.43

LeNet 0.72 0.25 0.73 0.76 0.37

ResNet50 0.67 0.22 0.74 0.75 0.25

VGG19 0.70 0.25 0.73 0.76 0.35

HNN, hybrid neural network; AUC, area under the curve.

Table 4 Comparison of performance metrics for the clinical model
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demonstrated in this study, holds promise for improving 
prognostic assessment in patients with suspected CAD. 
Future research could explore larger and multi-centre 
populations, and novel AI models using unsupervised 
learning might generalise predictions on unseen data. 

Limitations

This study used retrospective cohort data with heavy class 
imbalance, only 16% of the population had an event, this 
can have an impact on the generalisation of the model to 
external datasets. 

As there was no significant statistical difference between 
HNN and clinical model on McNemar’s test, the redundant 
information in raw stress perfusion and LGE images are 
likely to have caused detrimental effects. More refined 
images with segmentation and quantification of the areas of 
interests are likely to improve the results in the future. 

Conclusions

Direct prediction of mortality in patients with suspected 
CAD is achievable through analysis of stress perfusion 
images, even in the absence of clinical information. The 
utilisation of specific features or characteristics within stress 
perfusion images contributes to the accuracy of this direct 
prediction. Furthermore, the integration of HNN, which 
combines both clinical and stress perfusion CMR images 
demonstrates a notable improvement in mortality prediction. 

This advancement in predictive capabilities has the 
potential to revolutionise clinical decision making in CAD. 
The ability to directly predict mortality, coupled with the 
refinement and combination of clinical and imaging data, 
positions HNNs as valuable tools in guiding treatment 
strategies and improving overall patient outcomes. 
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