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Introduction

The sclera is a specialised connective tissue that accounts 
for the majority of the surface area of the outer coat of the 
eye. Any change in the size of the eye must therefore be 
facilitated by changes in the tissue volume and/or surface 
area of the sclera. Given that axial eye size is the major 
determinant of refractive error (1), researchers in the 
field of ocular and refractive development have long been 
interested in the sclera. In particular, much effort has been 
devoted to understanding its structure, how its structure 

changes to facilitate changes in eye size, what factors impact 
or control these changes and whether the scleral changes 
are active or passive. More recently the biomolecular and 
genetic mediators that regulate and facilitate changes in 
scleral structure have been of particular interest.

Perhaps the main stimulus for the interest in the sclera 
has been its role in the development of the ocular refractive 
condition myopia, more specifically because: (I) Myopia has 
become a major socioeconomic, and therefore major public 
health, issue around the world (2); and (II) high degrees of 
myopia are associated with particularly large eyes, in which 
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stresses on the delicate internal ocular structures result in 
irreversible damage and, ultimately, blindness (3). It follows 
that efforts to understand the process whereby the sclera 
allows the eye to grow excessively have an end goal of 
applying that knowledge to intervene in the ocular growth 
mechanisms, ultimately preventing vision loss and reducing 
the socioeconomic burden of the management of myopia. 

Since the earliest research into human myopia, it has been 
understood that the sclera thins significantly, particularly 
at the posterior pole of the eye, as the myopia develops (4).  
Thus, most experimental and clinical approaches to 
intervening in myopia development either seek to slow, or 
reverse, the process of scleral thinning (5), or, alternatively, 
to reinforce the sclera (6), which has become weakened as 
a result of the thinning. Major advances in this field have 
been possible over the years through the development of 
animal models of myopia (7), which allow investigation of 
the biological mechanisms underlying myopia development, 
something not usually achievable using post mortem 
human tissue. In particular, animal models have allowed 
us to progress our understanding of the mechanisms of 
scleral remodelling, during myopia development and 
progression, and have also facilitated the demonstration 
of methodologies through which scleral remodelling may 
be slowed, arrested or, in some cases, reversed (8). This 
review will therefore consider the most recent advances in 
our understanding of the process of scleral remodelling in 
myopic eyes, as well as the latest advances in controlling 
this remodelling and in reinforcing the weakened sclera.

Scleral morphology and underlying biology

The sclera is a dense, irregular connective tissue, consisting 
of a highly organised and tightly regulated collagenous 
extracellular matrix. In mammals, it accounts for close to 
85% of the surface area of the eye, interrupted only by the 
cornea anteriorly, and by the entry of the optic nerve into 
the eye posteriorly (9). The mammalian sclera is a fibrous 
extracellular matrix, whereas in birds, and other vertebrates, 
more complex scleral structures are seen, often constituting 
a thinner fibrous layer, similar to that in mammals, with 
a thicker, cartilaginous layer that provides the majority of 
the tensile strength of the structure (5). This review will 
concentrate largely on the fibrous, mammalian structure 
that best reflects the structure of the human sclera, however, 
there will also be reference to studies in avian models of 
myopia, which also provide much useful information due to 
the similarity in structure between the thin fibrous layer and 

the mammalian sclera. 
The scleral extracellular matrix comprises largely 

parallel, but interwoven, bundles of collagen fibrils (10),  
that, although apparently random in orientation throughout 
most of the scleral structure, exhibit local areas of 
directional selectivity, consistent, presumably, with local 
tensile requirements, such as in the region of attachment 
of the extraocular muscles (9). These collagenous bundles 
are typically found to vary in thickness between the inner 
and outer aspects of the sclera (10). More recent studies 
suggest that, tangentially, these bundles display a sinusoidal 
‘waviness’, or crimping, in the outer sclera, when compared 
to the less obvious crimping in the inner sclera (11). In 
addition, these fibre bundles, which are populated primarily 
by collagen fibrils that vary in cross sectional diameter 
between 28 and 280 nm, typically exhibit a reduced average 
diameter of fibrils in the inner, compared to the outer, 
sclera (12). 

At a molecular level, the scleral collagen fibrils are 
primarily comprised of type I collagen molecules, 
interspersed with smaller amounts of at least 11 other 
collagen types that variously fulfil roles in maintaining 
structure, regulating fibril size and mediating inter-fibril 
interactions (13). Although collagenous proteins are known 
to account for in excess of 80% of the mammalian scleral 
dry weight (14), there are a number of other important 
proteinaceous and polysaccharide molecules that reside 
in the scleral matrix and are of great importance to scleral 
homeostasis. The scleral matrix contains a range of both 
small and large proteoglycan molecules that also contribute 
to fibril structure, mediate interactions between fibrils and 
control hydration of the scleral matrix (15). Although less 
is written about this aspect of scleral structure, the collagen 
fibre bundles are loosely contained within microfibrillar 
sheaths of small collagen fibrils and elastic fibres (10), and 
the inter-bundle spaces contain shorter elastin fibrils (11) 
and, presumably, fluid-filled voids.

The inter-bundle and inter-fibrillar space contains 
many enzymes and regulators that are of great importance 
to the structure and function of the scleral extracellular 
matrix. These include a range of enzymes that control 
the remodelling of the matrix, such as collagen degrading 
enzymes and regulators from the matrix metalloproteinase 
and tissue inhibitor of metalloproteinase families (16), and 
a range of cytokines and other signalling molecules that 
control expression of the components of the extracellular 
matrix, including members of the transforming growth 
factor-beta (TGF-β) family (17). The fibroblast is the 
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resident cell of the scleral extracellular matrix and, 
therefore, responsible for the production, organisation 
and regulation of scleral matrix structure. A significant 
proportion of the scleral fibroblast population, however, 
comprises fully differentiated myofibroblasts (18) which, 
through an alpha smooth muscle actin (α-SMA)-rich 
cytoskeleton, bridged to the extracellular matrix through 
integrin adhesion molecules (19), have the potential to 
contribute to biomechanical regulation within the sclera.

Given the obvious importance of the sclera to excessive 
eye growth in myopia, it is no surprise that there has been 
extensive investigation of each of the elements described 
above and, in particular, how they change in the myopic 
eye. These studies have been carried out directly, through 
the use of animal models of myopia, and indirectly, through 
observations of post-mortem scleral tissue from human 
myopes.

Morphological and biochemical scleral changes 
in myopia

The defining feature of the sclera in a highly myopic eye is 
that it is thinned significantly, with the thickness sometimes 
approaching half that of the sclera in an emmetropic eye (4).  
Excessive degrees of scleral thinning correlate with the 
posterior staphyloma sometimes reported in human high 
myopia and with the degree of myopia present in these 
individuals (20). However, studies in animal models of 
myopia tell us that a more general thinning of the posterior 
sclera is likely a feature of all myopia development (12). 
This gross morphological change in the sclera is, at an 
ultrastructural level, associated with a preponderance of 
smaller diameter collagen fibrils in the scleral matrix, 
leading to a reduction in the gradient in average fibril 
diameter between the inner and outer sclera. There are also 
slightly fewer collagen fibre bundles across the entire scleral 
thickness in myopic eyes, with those bundles also being 
thinner (12). It is perhaps unsurprising, therefore, that a 
defined area of scleral tissue from a myopic eye has a lesser 
dry weight than a similar area of tissue from an emmetropic 
eye. However, animal models of myopia have also shown 
that this scleral thinning and tissue loss is not simply a local 
phenomenon as there is also a reduction in overall scleral 
dry weight, demonstrating that active loss of tissue occurs as 
myopia develops, rather than just a simple redistribution of 
the tissue as the eye enlarges (8). 

Although studies in post mortem, highly myopic 
human eyes have confirmed that the active scleral 

tissue loss is a result of collagen and, to a lesser degree, 
mucopolysaccharide depletion (21), animal models have 
shown this to be a complex process, involving both 
accelerated scleral matrix degradation and slowed production 
of new extracellular matrix as an eye becomes myopic (13).  
The process and causes of this matrix degradation are well 
documented, with increased production and activation 
of key matrix metalloproteinases (MMPs) (16,22) 
associated with decreased activity of their regulators (23),  
the tissue inhibitors of MMPs (TIMPs), being key 
contributors. Reduced production of new extracellular 
matrix manifests as lower levels of collagen synthesis, in 
particular type I collagen (13), and reduced production of 
proteoglycans and their glycosaminoglycan (GAG) side 
chains (8). However, this is also a complex process, in that 
it creates apparent stoichiometric imbalance between the 
molecular components of new matrix as it is laid down, 
which has the potential to contribute to the differences 
in fibril morphology and matrix structure observed at the 
morphological level. In particular, there is evidence to 
suggest that the general reductions in extracellular matrix 
component synthesis result in an overrepresentation of key 
factors that influence collagen fibril diameter, such as type V 
collagen (13) and the smaller proteoglycans (24), presumably 
contributing to the increased prevalence of smaller collagen 
fibrils. Demonstrable changes in the polysaccharide 
profile of the scleral matrix, for example through the 
reduced accumulation of glycosaminoglycans (25),  
also lead to the hypothesis that scleral hydration is lessened 
in the myopic eye. Overall, the changes discussed suggest 
that, as myopia develops, the scleral matrix becomes a 
thinner, less rigid biomaterial that is increasingly susceptible 
to the in vivo physiological forces it experiences.

Scleral fibroblasts and myofibroblasts are the orchestrators 
of the changes in the scleral extracellular matrix of myopic 
eyes, and are presumed to be driving this change in 
response to biochemical signals emanating locally, from 
the retina, in response to specific information contained 
in the image projected onto the retinal photoreceptors 
and processed in  subsequent  ret inal  layers  (26) .  
However, studies in animal models suggest there are also 
secondary effects on the scleral cells as the matrix changes 
around them, resulting in altered local stresses that impact 
cell behaviour. Specifically, in vitro studies suggest that 
increased stresses on fibroblasts within the weakened 
extracellular matrix, in conjunction with an environment 
in which levels of matrix-stimulating cytokines, such as 
TGF-β, are reduced, results in an increase in the number of 



Annals of Eye Science, 2018Page 4 of 15

© Annals of Eye Science. All rights reserved. Ann Eye Sci 2018;3:5aes.amegroups.com

cells that transdifferentiate into myofibroblasts (27). This 
occurs despite evidence that the cells appear to reduce the 
extent of their adhesion to the extracellular matrix, through 
reduced integrin production (28) and, presumably, reflects 
attempts to both regulate the local stress levels experienced 
by cells and also maintain the integrity of the surrounding 
matrix.

Given the structural and biochemical changes that 
occur in the sclera of eyes developing myopia, and the 
implications of those changes, it is unsurprising that the 
mechanical properties of the sclera are of particular interest 
in myopic eyes.

Biomechanical properties of the sclera in myopia

The discovery of a significantly thinned sclera in 
highly myopic eyes led to the early realisation that the 
biomechanical properties of the sclera must also be 
compromised. Subsequent characterisation of these 
biomechanical properties in post mortem human eyes 
with high myopia revealed that this was indeed the case. 
Studies revealed that whereas the sclera from ‘normal’ 
emmetropic eyes tended to show regional variations in the 
degree of stiffness, with sclera from posterior regions of the 
eye having a lower Young’s (elastic) modulus, thus being 
less stiff, than equatorial or anterior regions (29), scleral 
tissue from these same regions of myopic eyes showed yet 
lower stiffness values, indicating that the sclera in myopic 
eyes may be more extensible under the in vivo load profiles 
experienced by scleral tissue (30). 

Given that the sclera is a viscoelastic biological tissue, 
subsequent studies have determined its properties in 
response to forces that mimic the eye’s physiological load 
profile, suggesting that the structural changes in the sclera 
of myopic eyes make them more susceptible to distending, 
and therefore enlarging, when exposed to the normal forces 
of intraocular pressure over time (31). This tendency of 
scleral tissue in myopic eyes to creep under physiological 
loads suggests that the biochemical factors underlying 
scleral remodelling and ultrastructural change in eyes 
developing myopia lead to a consequent biomechanical 
weakness in scleral tissue which, over time, results in ocular 
elongation and myopia development. In support of this 
hypothesis, studies have shown a correlation between the 
creep properties of the posterior sclera from myopic eyes 
and the degree of ocular elongation and myopia developed 
in that eye (31).

Scleral collagen content has a major effect on the 

biomechanical properties of the sclera, with fibril diameter 
playing an important role in this (12), while the relative 
proportions of the different collagen types present in the 
sclera also have an impact (13). The number of cross-links 
between collagen fibre bundles also modulate the scleral 
biomechanics, with increasing age and cross-link numbers 
leading to a stiffer sclera (32). Proteoglycan concentrations 
change throughout life, and are also likely to be at least 
partly responsible for the age-related changes in scleral 
biomechanical properties (15). A whole range of other 
growth factors and signalling cascades are involved in the 
maintenance of the scleral tissue, thereby impacting the 
biomechanical behaviour of the sclera (33). Given the scleral 
biochemical changes reported during the development of 
myopia, it follows that collagen and proteoglycan profile 
changes and modifications to collagen cross-linking are 
likely key factors in the measured biomechanical changes in 
the sclera.

It is now well accepted that the biomechanical properties 
of the sclera are closely related to its ultrastructural and 
biochemical makeup, and that specific changes in scleral 
biochemistry promote ocular enlargement and myopia. It is 
no accident, therefore, that attempts to arrest the excessive 
growth of the eye are either aimed at strengthening the 
extracellular matrix, or at reversing the biochemical changes 
that drive the mechanical weakness in the myopic eye.

Approaches to scleral strengthening in myopia

A number of different strategies have been employed in 
an attempt to prevent the progression of myopia through 
scleral strengthening, each targeting a different aspect of 
the factors governing scleral biomechanical properties.

Posterior scleral reinforcement (PSR)

PSR surgery was first proposed by Shevelev in 1930, 
and has a sporadic history of use in the management of 
high myopia (34). The aim of PSR is to act as a buckle, 
improving the biomechanical properties of the myopic 
sclera. Due to the highly invasive nature of the procedure, 
it has typically only been performed in patients with the 
highest levels of pathological myopia, frequently with 
staphyloma formation and/or myopic macular detachment. 
The various techniques of PSR developed over the years, 
using donor tissue or synthetic materials, have had various 
levels of success. The most recent proponents of PSR have 
been from Russia and China. Biomechanical shortcomings 
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of the earlier PSR surgeries were hypothesised to be the 
result of the application of too little force to the posterior 
aspect of the globe, with the application of appropriately 
tensioned scleral buckles having been shown to effectively 
control axial myopia progression (35). Long-term 
reductions in axial length and refractive progression have 
been seen using both human donor sclera (6,36) and dura 
mater (37) as the reinforcement material. Only minor 
effects of PSR, however, have been observed in younger 
patients with high myopia (38). In all cases, PSR is only 
used for the management of high, pathological myopia, and 
not for controlling the excessive axial elongation associated 
with lower levels of (physiological) myopia.

Although PSR is typically used in cases of pathological 
myopia, the anatomical and biomechanical changes 
that occur in the sclera as a result of PSR may also 
provide insights into the development of lower levels of 
(physiological) myopia. Few studies have looked at the 
tissue response to PSR, and only in animal models to date. 
The use of synthetic reinforcement materials in rabbit 
sclera leads to an inflammatory wound-healing response 
and type III collagen granulation tissue deposition, which 
is eventually replaced by type I collagen (39). A similar 
response, of inflammatory reaction followed by fibrosis, 
also occurs when human donor sclera is used to reinforce 
rabbit sclera (40). Both the elastic modulus of the sclera 
and the hydroxyproline content were reduced in the area 
of reinforced sclera following the surgery, but returned 
to physiological levels over 9 months (40). It appears that 
the longer the reinforcement is in place, the greater the 
increase in scleral elastic modulus that occurs, and that 
this increase in reinforced elastic modulus is not directly 
related to the modulus of the reinforcing material (41). 
Scleral fibroblasts in the area of reinforcement also show 
altered responses to mechanical stimulation compared to 
control tissue (42-44). Viscoelasticity of individual scleral 
fibroblasts in the host sclera was reduced following PSR, 
but fibroblasts in the fusion zone between the host and 
donor tissue showed significantly increased viscoelastic 
properties (42). PSR results in a reduction in MMP-2 in 
the host tissue compared to normal controls, with the most 
significant reduction in the transition zone between the host 
and donor tissues (44). Cyclic stretching of the fibroblasts 
can further reduce these MMP-2 levels (45). TGF-β1 
and FGF-2 levels in the transition zone between host and 
donor tissue are also significantly increased via mechanical 
stretching, suggesting enhanced fusion and thickening of 
the PSR region occurs under mechanical forces. Taken 

together, these findings suggest that the increasing scleral 
elastic modulus seen following PSR is a function of induced 
tissue remodelling beneath the donor tissue that is the 
reverse of that seen during the development of myopia. The 
mechanism whereby these altered scleral responses occur 
following PSR have yet to be fully elucidated, but targeting 
of the signalling cascade itself may prove equally useful 
in effecting similar changes in progressing myopic eyes 
without the need for surgical grafting.

Collagen cross-linking

While PSR has been practised for decades, more recent 
attempts at strengthening the posterior sclera to prevent 
myopia progression have focused on scleral collagen 
crosslinking. Collagen cross-linking has been successfully 
employed over the past two decades for strengthening the 
cornea in cases of ectasia, typically in keratoconus (46). 
The collagen in the sclera naturally contains cross-links, 
and shows a change in the type (14) and an increase in 
the number of cross-links with age (47). This is possibly 
associated with a commensurate increase in scleral stiffness 
with age (32). When scleral collagen cross-linking is 
inhibited the degree of experimental myopia that develops 
is significantly increased (48), highlighting the importance 
of endogenous scleral collagen cross-links in refractive error 
development. 

In corneal cross-linking, the typical process involves a 
photo-inducer (riboflavin) and a light source [ultraviolet 
A (UVA)] to induce the formation of cross-links (46). A 
number of studies have used animal models to explore the 
feasibility and myopia inhibiting effect of riboflavin and 
UVA or blue light cross-linking of the sclera (34). Recently, 
experimental myopia progression has successfully been 
prevented by scleral cross-linking in vivo in form deprived 
rabbits (49), with short-term success also reported in 
negative lens-wearing guinea pigs (50). The in vivo cross-
linking procedure did not prevent the myopia-induced 
reduction in collagen fibre bundle numbers, but the fibre 
bundles were denser, more regularly distributed, and 
showed some skew towards thicker fibre bundles (50). 
In eyes treated with scleral cross-linking, but no myopia 
induction, an inhibition of eye growth is present, further 
demonstrating the role of scleral cross-links on eye growth 
cessation (51). In contrast to myopic eyes, when scleral 
cross-linking is performed in vivo without myopia induction 
the scleral collagen fibre bundles also become skewed 
towards smaller diameters (52) and increased variability in 
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fibre bundle composition (53). Biomechanically, the cross-
linked sclera shows increased elastic and viscous modulus 
(53-55), and increased stiffness (53). When human sclera is 
cross-linked in vitro, the response is similar to that observed 
in vivo, with a skew towards thicker collagen fibril diameters 
and an overall increase in spread of fibril diameters (55,56). 
Young’s modulus increases with increasing intensity of the 
cross-linking light source in both human (57) and rabbit 
sclera (58). This effect, however, plateaus, with a decrease in 
Young’s modulus seen with further intensity increases (57),  
or no biomechanical effect seen if irradiation levels are 
insufficient (59).

The varied response of the sclera to differing irradiation 
intensities makes determination of the appropriate level of 
cross-linking for a given level of myopia and scleral collagen 
content a challenge. Increasing levels of irradiation provide, 
in most cases, greater scleral stiffening, but increasing 
irradiation levels increase the risk of complications. Scleral 
inflammation (58), collagen destruction or disorganisation 
(52,53,55), reduction in dark-adapted electroretinogram 
(ERG) (54), and retinal cell death and layer disruption 
(51-54,58) have all been observed following cross-linking 
procedures, particularly with higher irradiance levels. 
Given that the biomechanical changes required to prevent 
myopia progression require higher irradiances to achieve, 
the potential for serious side effects to occur with current 
procedures warrants careful further investigation before 
starting human cross-linking trials. Further concern has 
been expressed about the impact of the cross-linking process 
on scleral myofibroblasts and vasculature (60), issues which 
will also need to be resolved if this is to become a viable 
treatment strategy.

The process of scleral cross-linking, wherein riboflavin 
and UVA or blue light needs to be delivered to the surface 
of the sclera for extended periods of time, make this highly 
invasive procedure impractical for the control of myopia 
in the general population. Some of the difficulties involved 
in delivering light to the posterior surface of the sclera 
may be overcome with the development of flexible optical 
waveguides to improve the light delivery performance (61) 
or multimode optical fibres for riboflavin and UVA delivery 
in a minimally invasive manner (62). A different approach 
to the traditional cross-linking technique is the use of 
other cross-linking agents that work without the need for 
arduous, potentially toxic, activation processes. Genipin and 
glyceraldehyde have both been shown to increase Young’s 
modulus in the sclera in vivo (63,64), with a dose-dependent 
stiffening of sclera demonstrated in vitro (65). Genipin 

has been shown to effectively prevent axial elongation and 
myopia development, through form deprivation, in guinea 
pigs, showing an increase in the scleral Young’s modulus 
accompanied by increased collagen fibril diameter and 
decreased fibril density (66). Interestingly, however, while 
glyceraldehyde increases scleral stress and Young’s modulus, 
as expected from cross-linking, it showed no significant 
effect in preventing myopia development (64). Other 
agents that have been investigated for enhancing scleral 
collagen cross-linking that may yet prove beneficial in 
preventing myopia development include methylglyoxal (65) 
and a range of formaldehyde releasers including sodium 
hydroxymethylglycinate (67,68). 

While the use of these novel forms of scleral cross-
linking are still in their infancy in terms of myopia control, 
it is important to think of the potential long-term side 
effects, over and above those immediate histological 
effects mentioned already. Scleral cross-linking with 
glyceraldehyde in mice has been shown to have no impact 
on retinal histology or ERG function while stiffening the 
sclera, however there was accelerated retinal ganglion cell 
loss when intraocular pressure was increased as a model 
of glaucoma development (69). While this increase in 
glaucomatous damage with scleral cross-linking may be 
limited to the use of glyceraldehyde as the agent, it may 
also be relevant to other forms of scleral cross-linking for 
myopia prevention and should be taken into consideration, 
given the epidemiological link between myopia and 
glaucoma (70).

Other physical reinforcements

Sub-Tenon’s injections or implants using a range of 
materials have been trialled as a means to strengthen 
the sclera and prevent myopia progression (71-74). 
Scleral strengthening injections in rabbit eyes resulted in 
granulomatous inflammation that was slowly replaced by 
new collagen (71), which mirrors the effects of synthetic 
band scleral reinforcement (39). The procedure also appears 
to be a viable option for reducing highly progressive myopia 
in human eyes, with maintenance of a stable refractive error 
in around 50% of patients by 4–5 years post-injection (71).  
Sub-Tenon’s  in ject ion of  a  hydrogel  compris ing 
acrylated hyaluronic acid also successfully prevented the 
development of experimental myopia in guinea pigs, 
although, interestingly, eyes injected with a control vehicle 
containing only buffer also displayed the same inhibition of 
myopia progression (72). In these cases, there was cellular 
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infiltration of the hydrogel implant, and thickening of 
Tenon’s capsule for both the implant and control injections, 
suggestive of the early stages of an inflammatory process. In 
chicks, however, sub-Tenon’s reinforcing injections, while 
leading to scleral thickening, did not alter the growth of 
the eye (73,74), highlighting different mechanistic actions 
in mammalian and avian ocular biomechanical growth 
characteristics.

Another possible myopia management strategy that 
has been proposed in theoretical terms is the use of 
stem cell delivery to the sub-scleral space (75). It has 
been hypothesised that these implanted stem cells might 
be coaxed into fibroblasts to enhance scleral collagen 
production, or to act on dopaminergic pathways to 
modulate myopia development. Human fibroblasts have 
been transplanted, in a suspension, onto the posterior pole 
sclera via sub-Tenon’s injection in an effort to prevent 
myopia development (76). Approximately 40% reduction 
in the form deprivation myopia induced was noted in eyes 
with the fibroblast transplant. In all eyes with transplanted 
fibroblasts there was an increase in type I collagen in the 
sclera surrounding the implant location, and a decrease 
in fibroblast numbers four weeks after transplantation. 
Presumably the increased collagen deposition strengthened 
the sclera to reduce the myopia progression.

Collagen and proteoglycans

A different approach to strengthening of the sclera is to 
more directly target prevention of the degradation of 
the tissue that occurs during myopia development, or 
enhancement of the production of new tissue to counteract 
the degradation. 

Collagen content in the sclera is significantly reduced 
during myopia development, with thinning of fibrils, loss of 
a fibre thickness gradient, and overall reduction in scleral 
thickness (26). The caffeine metabolite 7-methylxanthine, 
a non-selective adenosine antagonist, has been shown to 
prevent form deprivation myopia development in guinea 
pigs (77) and rabbits (78), although its actual mechanism 
of action remains a matter of speculation. It has also been 
shown to display a modest effect in controlling lens-induced 
myopia in chicks (79), and almost entirely prevents lens-
induced myopia development in rhesus monkeys (80).  
In eyes without a stimulus to myopia development, 
7-methylxanthine significantly increases posterior scleral 
collagen fibril diameter and significantly decreases total 
GAG content (81). The alteration in scleral collagen 

fibril diameter is the likely mechanism of action for 
7-methylxanthine’s myopia inhibition, as treatment with 
it also prevents the loss of collagen fibril gradient typically 
seen in myopia development (26,77,78). 7-methylxanthine 
has also been shown to significantly reduce axial elongation 
and myopia progression in human trials (82,83), with axial 
growth returning to the same rate as control following 
cessation of treatment (84). Long-term follow-up, over 
eight years, shows an approximate 60% reduction in myopia 
progression with oral 7-methylxanthine treatment (85).  
Other potential  targets  in the collagen synthesis 
pathway, aiming to increase scleral collagen content and 
strengthening the sclera to prevent myopia development, 
include the peroxisome proliferator activated receptors 
(80,86), cyclic adenosine monophosphate (87), cyclic 
guanosine monophosphate (88), regulator of G-protein 
signalling 2 (89), and bone morphogenetic proteins (BMP) 
(90-92).

Conversely, instead of increasing scleral collagen 
production to strengthen the sclera, the degradation of 
pre-existing collagen can be slowed through modulation 
of MMPs and TIMPs. Supplementation of TIMP-2 has 
been shown to significantly reduce the amount of collagen 
degradation during myopia development in chicks (5) 
and tree shrews (23), although a commensurate reduction 
in the amount of myopia has only been observed in tree 
shrew. Pirenzepine, an M1 receptor selective antimuscarinic 
agent that is effective in controlling human myopia 
progression (93), has been shown to inhibit experimental 
myopia development through modulation of MMP-2 and 
TIMP-2 expression (94). Difrarel, an anthocyanin derived 
from bilberry, also reduces form deprivation myopia via 
suppression of MMP-2 and enhanced collagen type I 
expression (95). Anthocyanins derived from blackcurrants 
have also been shown to prevent lens-induced and form 
deprivation myopia (96,97), and although the mechanism 
of action has not been investigated they may be working 
through a similar pathway to difrarel. Sonic hedgehog 
(Shh) has been shown to enhance myopia development in 
mice and guinea pigs, with an inhibitor of the Shh pathway, 
cyclopamine, blocking myopia development (98,99). The 
expression of Shh increases during myopia induction, 
coincident with increased retinal mRNA expression of 
blue and red opsins, implicating Shh in their modulation 
during refractive development (100). Enhanced myopia 
development through the Shh pathway, however, appears 
to be through increased MMP-2 production (99), offering 
another potential target for myopia control. 
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GAG content is reduced in the sclera of myopic eyes, 
and this correlates with the peak increase in scleral creep 
associated with myopia development (101). Removal of 
sulphated GAGs from the sclera, however, differentially 
increases scleral stiffness in humans (102) and decreases 
scleral stiffness in pigs (103). Scleral GAG synthesis 
has been shown to be upregulated by BMP-2 (91) and 
insulin (104). GAG levels in scleral fibroblasts reduce in 
the presence of GABA agonists and increase with GABA 
antagonists (105), possibly through a dual mechanism 
involving both intra- and extra-scleral GABA receptors. 
Interestingly atropine, which is one of the most successful 
treatments found to date for inhibiting the progression 
of human myopia (106), has been shown to significantly 
reverse the elevated retinal and scleral GABA transporter 1 
levels seen during myopia development (107). The myopia 
preventing effect of atropine may thus have an endpoint, 
at least in part, in a reduction in GABA-mediated GAG 
inhibition. Peroxisome proliferator activator receptor 
alpha (PPRAα), which has recently been demonstrated to 
suppress myopia development through increased scleral 
collagen synthesis (80), has also been shown to inhibit 
GAG biosynthesis and counteract the stimulatory effects of 
TGF-β1 on proteoglycan synthesis in other tissues (108). 
Inhibition of proteoglycan synthesis by β-xyloside has been 
shown to prevent form deprivation myopia development in 
chicks (109). The role of proteoglycans and their GAG side 
chains in myopia development is clearly highly complex 
representing a complicated balance in expression levels 
between the different core proteins and the composition 
of the bound GAG side chains. The manipulation of 
proteoglycans and GAGs to control scleral biomechanics, 
and therefore myopia development, although a theoretically 
promising pathway, has proved minimally successful to date.

Fibroblasts, myofibroblasts and TGF-β 

Scleral myofibroblasts, modified fibroblasts with contractile 
properties endowed through the presence of α-SMA, have 
been shown to be present in human (18), macaque (18),  
tree shrew (110), and guinea pig sclera (111). First 
identified in granulation tissue from healing wounds (112), 
the contractile properties of these cells (113) provide 
an interesting target for arresting, or even potentially 
reversing, myopia development. In order for fibroblasts to 
transdifferentiate into the myofibroblast phenotype and 
express α-SMA they must be exposed to both TGF-β (114) 
and local tissue stress (115). 

TGF-β expression is down-regulated in eyes developing 
myopia, leading to a reduction in collagen synthesis (17). 
However, in the presence of stress equivalent to that 
experienced in the sclera, the reduction in TGF-β has been 
shown to actually increase expression of α-SMA in cultured 
scleral fibroblasts/myofibroblasts, presumably through 
reduced collagen synthesis and increased local stress on the 
cells (27). This implies that multiple activation pathways 
exist for targeting myofibroblasts in myopia control. One 
such pathway whereby TGF-β helps to modulate scleral 
changes in myopia development is the Wnt/β-catenin 
signalling pathway. It has recently been shown that 
inhibition of the Wnt/β-catenin pathway by the antagonist 
DKK-1 in experimental myopia increases type I collagen 
expression and induces a more orderly arrangement of the 
collagen, while neutralisation of TGF-β1 further reduces 
type I collagen expression (116). Furthermore, stimulation 
of the Wnt pathway, even in the absence of myopiagenic 
stimuli, results in a myopic shift in refraction (117). The 
traditional Chinese medicine Bu Jing Yi Shi has been 
shown to prevent form deprivation myopia development 
in a dose-dependent manner, increasing scleral TGF-β1 
and Smad3 levels as well as leading to increased scleral 
thickness and fibroblast numbers (118). Smad3 is one of a 
family of effector proteins that help to transfer the TGF-β 
signal from outside fibroblasts to the nucleus, one of the 
possible pathways for activating α-SMA and differentiation 
of myofibroblasts (114). Interestingly Wnt/β-catenin also 
appears to play a pivotal role in this pathway of α-SMA 
activation (114).

Cyclosporine A, an immunomodulatory drug, has been 
shown to increase TGF-β, α-SMA, and type I collagen 
expression in fibroblasts from some tissues (119,120), 
although in other tissue types it has inhibitory effects 
(121,122). Interestingly, cyclosporine A has recently been 
shown to reduce experimental myopia progression, although 
whether this was effected through changes in α-SMA 
expression was not investigated (123). In gingival fibroblasts 
cyclosporine A enhances the expression of α-SMA and type I 
collagen through Shh, regulated by TGF-β (119). Atropine 
has also been shown to reduce inflammatory markers in the 
sclera while suppressing myopia development (123). This 
leads to the possibility of an inflammatory link in myopia 
development. Indeed, one of the earlier theories of the 
pathogenesis of myopia development was that it resulted 
from a low-grade inflammation of the retina, choroid, and 
sclera: “The inflammation is usually preceded by congestion of 
the retina and choroid as the result of excessive and improper 
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use of the eyes. The inflammation slowly supervenes, but never 
becomes active. Myopia in growing children is undoubtedly due to 
this cause” (124). More recently, myopia has been shown to 
occur with higher prevalence in individuals with systemic 
inflammatory disorders (123), showing an association with 
hay fever (125), and negative lens-induced myopia has been 
linked to an increase in complement factors (126). There 
are also links between myopia and other inflammatory 
ocular conditions (127). Immune pathways have also been 
implemented in refractive development through differential 
gene expression analyses (128).

Another aspect of cellular activity in the sclera that may 
have a role in controlling scleral biomechanical changes in 
myopia is the adhesion of fibroblasts and myofibroblasts 
to the surrounding extracellular matrix. Integrins, 
which mediate cell-matrix interactions, are expressed in 
mammalian sclera (19,129), and show significant decreases 
in expression during myopia development (28,130). Basic 
fibroblast growth factor has been shown to increase integrin 
and collagen type I expression in the sclera while inhibiting 
myopia development (130). 

It should be apparent that the role of fibroblasts and 
myofibroblasts in the scleral changes and development 
of myopia is a complex one, with many different growth 
factors and signalling pathways involved in the process. 
While this makes determining the pathway(s) responsible 
for the pathogenesis of myopia difficult, it does provide 
many potential targets for strengthening the sclera against 
myopia development that will need to be investigated.

Candidate genes

A lot of research has been undertaken to investigate the 
gene expression patterns that occur during the development 
of myopia, and a full examination of the genes involved in 
myopia development is beyond the scope of this review. 
Analysis has shown that the candidate genes involved in 
human myopia development display significant overlap 
with the candidate genes identified in experimental 
animal models of myopia, indicating these models remain 
suitable for studying human myopia development (131). 
It is clear that a large number of genes are upregulated or 
downregulated during development of or recovery from 
myopia, some of them in a bidirectional manner. What 
remains unclear, given the large number of candidate genes, 
is which genes should be targeted for investigation as to 
their role in myopia development, and particularly as to 
their role in the sclera. Indeed, it is likely that the condition 

reflects an interaction of many different genes with small 
expression changes that leads to the myopic phenotype 
(132), and, of course, that many of the phenotypic changes 
in the sclera occur downstream, in the signalling cascade, 
of some of the candidate genes. Recently, microRNAs, 
small noncoding RNAs that regulate gene expression, have 
been investigated for their possible involvement in myopia 
development (133-136). With large numbers of candidate 
genes for non-pathological myopia identified through 
various genetic testing protocols, there is no shortage 
of potential scleral targets for the control of myopia 
development to be investigated.

Scleral signalling

One aspect that this review has not yet addressed is how 
the changes that occur during myopia development are 
communicated to the sclera. Numerous studies have shown 
that there is local control of ocular growth, and that the 
retina detects and responds to the sign of defocus (137). 
There is evidence that this is modulated, at least in part, by 
changes in choroidal thickness, and that mediators released 
by the choroid may signal the sclera to modify its growth 
parameters (138). There are many potential candidates for 
the retinal-choroidal signal, the discussion of which falls 
outside the scope of this review, except to acknowledge 
that, once isolated, these pathways will provide another, 
upstream, target for modulating the biochemical, and 
therefore biomechanical, behaviour of the sclera during 
myopia development. 

Summary

The changes that occur in the sclera during myopia 
development represent a complex interaction between 
tissue remodelling, synthesis, and degradation, the upshot 
of which is a reduction in scleral stiffness and increased 
extensibility of the posterior sclera. A number of different 
strategies have been employed to strengthen the sclera and 
prevent the progression of myopia, which can roughly be 
divided into reinforcement of the weakened scleral tissue, 
or modulation of the synthesis and degradation pathways. 
The technique that has been employed to the most success 
in humans to date is posterior sclera reinforcement, but 
the highly invasive nature of the technique and variable 
outcomes has seen this mostly relegated to cases with the 
highest levels of pathological myopia. Scleral collagen 
cross-linking represents a promising alternative to PSR. 
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Unlike corneal cross-linking, which has found much 
favour in managing corneal ectasias, scleral cross-linking 
has proven difficult to implement due to access to the 
posterior sclera, the proximity of other tissues sensitive to 
UV damage, namely the retina, and the vascular nature of 
the sclera. Modulation of the production of collagen by 
7-methylxanthine, and inhibition of MMP-2 show promise 
in strengthening the scleral tissue. The targeting of other 
pathways, however, has had mixed results.

The main challenges involved in strengthening the sclera 
to prevent myopia development therefore appear twofold. 
The first being the location of the posterior sclera within 
the orbit, and the second being the multitude of finely 
balanced processes that underlie scleral remodelling that 
we have yet to fully elucidate. The fact that interventions 
our current understanding of scleral biochemical and 
biomechanical processes suggest should reinforce the sclera 
do not work as expected highlights that the development of 
a feasible and functional scleral stabilisation technique for 
the prevention of myopia will rely on our understanding of 
a complex array of tissue interactions. 
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