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Introduction

Most metabolic, toxic and hereditary optic neuropathies 
are thought to arise from mitochondrial dysfunction. 
They present with similar symptoms, including painless 
central or cecocentral scotomas, reduced visual acuity and 
dyschromatopsia. Vision changes are typically bilateral, 
or unilateral with sequential involvement of the second 
eye. The onset can be sudden or insidious, depending 
on the etiology, and visual outcomes can range from 
complete recovery to no light perception vision. Exam 
characteristically shows selective thinning or pallor of the 
temporal aspect of the optic nerve commensurate with 
the extent of optic nerve injury, especially in the setting of 
prolonged disease.

These characteristics stem from preferential damage 
to the papillomacular bundle (PMB) in mitochondrial 
optic neuropathies. Retinal ganglion cell (RGC) axons 

course over the anterior surface of the retina in the retinal 
nerve fiber layer (RNFL) in distinct geographical bundles 
to converge on the optic nerve head. The PMB carries 
fibers from the macula to form the temporal aspect of the 
optic nerve. In contrast, the superior and inferior polar 
regions of the nerve are formed by fibers arising superior 
and inferior to the horizontal raphe temporal to the fovea, 
while the nasal optic nerve encompasses fibers from the 
nasal periphery (Figure 1). Therefore, damage to the PMB 
impacts macular function and results in temporal optic 
nerve pallor on fundus examination and RNFL thinning 
with OCT.

Several atypical features of the axons within the PMB 
place them under increased metabolic stress. They are 
unmyelinated and require large amounts of energy to 
propagate action potentials relative to the saltatory 
conduction present in myelinated nerves. The PMB also 
carries a relatively high proportion of axons arising from 
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small-caliber, rapid-firing parvocellular RGCs (1-4). 
Small-caliber axons are thought to be more susceptible 
to metabolic stress, as models of mitochondrial optic 
neuropathy based on axon caliber accurately predict 
nerve fiber loss in pathologic sections from patients with 
mitochondrial optic neuropathy (2). This is attributed to the 
axon’s lower volume-to-surface-area ratio (which equates to 
having fewer mitochondria available to maintain membrane 
potentials). Finally, as the nerve fibers exit the eye, they 
make a sharp turn to pass through the lamina cribrosa. 
This configuration represents a “choke point” of restricted 
axoplasmic flow in which there are increased metabolic 
demands for intracellular transport. Histologic sections 
of the optic nerve demonstrate a high concentration of 
mitochondria in this area (5). Overall, the PMB appears 
to be more susceptible to damage in the setting of 
mitochondrial dysfunction due to the energetic demands 
of small-caliber, unmyelinated nerve fibers traveling in 
a physically constricted space. This helps explain why 
mitochondrial dysfunction (which should be present in 
every cell in the body) can selectively affect the optic nerve 
in general and the PMB fibers in particular.

Mitochondrial optic neuropathies can sometimes be 
difficult to distinguish from other causes of optic nerve 
injury including glaucoma, inflammatory disorders, 
ischemia, compression, trauma or malignancy. Often a 
thorough history and exam helps to narrow the differential 
diagnosis. Ancillary testing including visual fields, fundus 

autofluorescence and optical coherence tomography 
(OCT) can be helpful in equivocal cases, in addition to 
blood work and imaging. OCT is a non-invasive, relatively 
affordable imaging modality that allows for high-resolution, 
quantitative visualization of the optic nerve and macula. 
This technology allows for quantification of axonal and 
neuronal loss, which can serve as a valuable marker for 
progression of visual loss, as well as a predictor for visual 
recovery with treatment.

Several OCT modalities are helpful in the setting of 
mitochondrial optic neuropathies. Assessment of the 
RNFL with OCT provides objective measurement of 
sectoral swelling or atrophy of the optic nerve, which can 
be followed over time to track improvement or progression. 
Macular OCT with GC-IPL segmentation allows for 
quantification of the ganglion cell layer and inner plexiform 
layer (IPL). In the setting of acute injury, GC-IPL analysis 
is particularly useful, as GC-IPL thinning may be apparent 
while RNFL thinning is masked by active swelling or 
distention of the nerve fibers. In other conditions, including 
optic neuritis, GC-IPL thinning can precede measurable 
RNFL thinning even in the absence of swelling. This 
surrogate marker of neuronal integrity can also provide 
prognostic information and be followed over time to track 
progression. In patients with central scotoma, macular 
OCT also provides visualization of the outer retina, which is 
helpful in distinguishing between disease processes effecting 
the retina and optic nerve. A few early studies of OCT-
angiography in hereditary optic neuropathy demonstrate 
detectable changes prior to the onset of RNFL thinning, 
suggesting that it may be a helpful technique as it becomes 
more widely available (6-8). Different hereditary, toxic and 
metabolic optic neuropathies manifest somewhat different 
findings on OCT, as discussed below.

Leber hereditary optic neuropathy (LHON) x

First described by Theodore Leber in 1871, LHON often 
causes sequential bilateral vision loss in young adults. The 
majority of cases (90–95%) are attributed to mitochondrial 
DNA mutations at position G11778A, T14484A, and 
G3460A, which effect NADH dehydrogenases (ND4, 
ND6, and ND1, respectively) (9,10). These dehydrogenases 
are complex I proteins that play a critical role in oxidative 
phosphorylation, neutralizing free radicals and regulating 
apoptosis (10). Prevalence varies somewhat between different 
populations, with the prevalence in Europe being roughly 
1:30,000. LHON exhibits variable penetrance, with 50% of 

PMB

Figure 1 Retinal nerve fiber bundles. Retinal nerve fibers take a 
characteristic course to the optic nerve. The papillomacular bundle 
(PMB) carries fibers from the fovea and nasal macula.
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male mutation carriers and 10% of female carriers developing 
vision loss. The typical age of onset ranges from 15 to 35, but 
cases have been reported in all decades of life (9). 

Clinically, LHON is characterized by the sequential, 
painless onset of dense cecocentral scotomas with 
dyschromatopsia. Visual acuity is typically reduced to 
20/200 or less, and the fellow eye is almost always affected 
within the first year, most commonly within 6–8 weeks. 
Vision loss typically progresses for up to 6 months and then 
plateaus. Some visual improvement is possible, particularly 
in patients carrying the 14,484 mutation, for which a 
37–71% chance of partial visual recovery has been reported, 
relative to 4% for the other mutations (9). Fundus exam at 
the time of onset typically shows thickening of the RNFL, 
hyperemia, peripapillary telangiectasias and mild tortuosity, 
although these findings are not always present. Fluorescein 
angiography characteristically shows the absence of leakage 
at the optic nerve head, which can help in distinguishing 
this process from other optic neuropathies.

Several longitudinal studies of patients with LHON 
have described characteristic RNFL changes on OCT. 
Asymptomatic carriers have statistically significant 
thickening of the temporal RNFL relative to age-matched 
controls, and a trend towards inferior RNFL thickening (11). 
This early thickening has been attributed to impairment of 
axoplasmic flow and likely represents early or baseline stress 
to the nerve fibers. At the time of symptom onset, there 
is typically predominant thickening of the superior and 
inferior RNFL, with normalization of the temporal RNFL 
as it begins to atrophy (12). These changes correspond to 
the appearance of disc edema, hyperemia and microvascular 
change on fundus exam. After 3 months, temporal thinning 
can be appreciated, and by 9 months superior and inferior 
thinning is apparent as well (13).

Progressive changes in the macula have been characterized 
in more recent case series of LHON patients. Macular 
OCT shows thinning of the inner macular ring and nasal 
peripheral macula in the first 3 months after symptom 
onset. This thinning then progresses to involve the 
temporal macula over the next 3 months, and by 12 months, 
diffuse macular thinning is evident, with average macular 
thickness of 251 μm compared with an average of 281 μm 
in controls (14). GC-IPL analysis appears to be even more 
sensitive to early changes in LHON. A small longitudinal 
case series of 4 patients demonstrated thinning of the GC-
IPL in the nasal macula prior to symptom onset. In the first 
three months after the onset of symptoms, the GC-IPL 
thinning progressed to involve the inferior, then superior 

and temporal sectors with diffuse thinning of the average 
GC-IPL to 63 μm at 3 months. This thinning continued 
to progress to 57 μm at 6 months, then stabilized (7). See 
Figure 2 for a discussion of a case with typical progressive 
changes on OCT.

Recent case reports have indicated that changes in 
the radial peripapillary capillary (RPC) network can 
be appreciated in patients with LHON using OCT-
angiography (15-17). This has been more thoroughly 
explored in a case series of 22 patients at different stages in 
disease progression. Capillary dropout in the RPC network 
was noted, with decreased vascular density occurring 
temporally in early disease stages, followed by inferior and 
superior capillary dropout, then diffuse dropout in chronic 
disease. The changes in vascularity corresponded with GC-
IPL thinning, and preceded RNFL thinning (6). As OCT-
angiography becomes more widely available, it may prove a 
useful correlate to GC-IPL in tracking disease progression 
and response to therapy, particularly in the early stages of 
the disease.

Given the sequential vision loss in LHON, there is a 
small window of opportunity in which prompt diagnosis 
may allow intervention prior to loss of vision in the fellow 
eye. A randomized, double-blinded, placebo-controlled 
trial demonstrated that idebenone 900 mg/d results in mild 
improvement of visual acuity outcomes in patients with 
discordant visual acuities at the onset of treatment, particularly 
in patients with the 11,778 and 3,460 mutations (18). 
Idebenone is not currently approved for treatment of LHON 
in the United States or Canada, but has been approved in the 
European Union for this purpose. Gene therapy is another 
emerging treatment option for LHON. Stage I/II clinical trials 
have been completed in 15 patients with the 11,778-mutation 
demonstrating a favorable safety profile, and stage III trials 
(RESCUE and REVERSE) are ongoing (19). Patients are 
likely to have maximal benefit from these treatment options 
with early diagnosis. Quantification of axonal and neuronal 
loss with OCT in general, and GC-IPL analysis in particular, 
can provide critical early diagnostic information for LHON, 
which will assist in identifying patients in the early stages of 
disease who may benefit the most from intervention as more 
treatments become available.

Autosomal dominant optic atrophy (ADOA)

ADOA, first described by Paul Kjer in 1957, typically 
presents  earl ier  than LHON, with most  patients 
developing symptoms in the first decade of life. Vision loss 
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Figure 2 A case of Leber hereditary optic neuropathy (LHON). CM is a 64-year-old female who presented with a 2-month history of painless, 
progressive, simultaneous central vision loss in both eyes, which she described as looking through a filter. She reported difficulty reading and 
was unable to drive. She had a strong family history of LHON, with a maternal uncle, brother, son, and cousin with severe vision loss. On her 
initial exam, visual acuity was 20/100 right eye (OD) and 20/80 left eye (OS). Ishihara color plates were 5/11 OD and 2/11 OS. She had no 
APD, and had mild nasal blurring of both disc margins. Size V Humphrey visual field (HVF 24-2) showed a mild central scotoma in her right 
eye. Optical coherence tomography (OCT) of the macula showed normal retinal thickness, but she had diffuse ganglion cell/inner plexiform 
layer (GCIPL) thinning. Retinal nerve fiber layer (RNFL) was largely normal, with the exception of superior thinning in her left eye. Due 
to the high level of suspicion for LHON, she was started on idebenone 900 mg/d and low vision services were recommended. She had 
previously undergone MRI with and without gadolinium that was unremarkable. Nutritional labs including thiamine, B12, folate, copper 
and complete blood count (CBC) were sent and were normal. Genetic analysis showed a homoplasmic 14,484 mutation. She returned to 
clinic 3 months later, and had noted continued gradual worsening of her central vision, with difficulty reading and navigating steps and 
curbs. Visual acuity had worsened to 20/500 OD and 20/300 OS, dyschromatopsia had progressed (Ishihara control plates only OU), and 
she had mild temporal disc pallor OU. HVF 24-2 showed worsening central scotoma OU, macular thickness remained normal, but GCIPL 
analysis showed progression. OCT RNFL was unchanged. When she returned after another 3 months, her vision loss had been stable for the 
past 1–2 months. She was using magnifiers and was feeling more independent in her daily tasks. Her visual acuity was stable, color vision had 
improved somewhat (5/14 OD and 6/14 Ishihara color plates), and she continued to have mild temporal disc pallor OU. HVF 24-2 showed 
progression of her central scotomas, OCT macula showed nasal inner ring thinning in her right eye, GCIPL analysis showed progressive 
thinning, and RNFL now showed significant temporal thinning in both eyes. We suspect that her optic neuropathy has now plateaued, which is 
consistent with the typical time-course of LHON. Visual fields are shown with the right eye on the right, and left eye on the left. For OCT, 
the right eye is shown on the left, and left eye on the right.
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is bilateral, simultaneous and gradual in onset, and very 
slowly progressive over the course of decades. Patients 
most commonly exhibit reduced visual acuity, cecocentral 
scotomas and blue/yellow dyschromatopsia. The majority 
of patients retain visual acuity of 20/200 or better, with one 
third retaining 20/60 or better, and there is a high degree of 
variability in penetrance and expressivity within families (20). 
While cecocentral scotomas are most common, these patients 
can also present with bilateral superotemporal visual field 
loss that does not respect the vertical midline (21). The optic 
disc characteristically exhibits temporal pallor or excavation, 
which can progress to diffuse pallor later in the course of 
disease (22,23). Prevalence ranges from 1:10,000 to 1:50,000 
worldwide, with the highest incidence in Denmark (24-26).

Mutations in the OPA1 gene are most frequently 
associated with ADOA, although cases attributed to OPA3 
mutations have been reported as well (24). Over 100 
different OPA1 mutations have been implicated in ADOA, 
and OPA1 mutations are identified in 32% to 89% of 
cases. Both missense and haplo-insufficiency mutations 
have been identified, with more severe atrophy associated 
with missense mutations (27). OPA1 encodes a dynamin-
related GTPase that localizes to the mitochondrial inner 
membrane, and plays an important role in mitochondrial 
fusion, oxidative phosphorylation and apoptosis. Therefore, 
although ADOA follows a Mendelian inheritance pattern, 
it behaves like a mitochondrial optic neuropathy. Apoptosis 
of RGCs is a critical part of normal development, with 
an estimated reduction in RGC numbers from 2.2–2.5 to 
1.5–1.7 million over the course of development in utero (28). 
Patients with vision loss and confirmed OPA1 mutations 
have optic discs that are smaller than those in age-matched 
controls, and more severe phenotypes are associated with 
smaller discs, suggesting that greater rates of apoptosis in 
RGCs may drive this disease (29,30). Histologic studies of 
patients of with ADOA are consistent with RGC dropout, 
demonstrating fibrosis and cell loss of the RGC layer, with 
associated myelin loss and increased fibrosis in the optic 
nerve and lateral geniculate nucleus (LGN) (31,32). 

Analysis of RNFL thickness using OCT has consistently 
demonstrated a severe reduction in average RNFL 
thickness in patients with ADOA compared with healthy 
controls. This thinning affects the entire optic nerve, but 
like other mitochondrial-related optic neuropathies is most 
prominent temporally, with multiple cross-sectional studies 
demonstrating thinning that is most pronounced temporally 
and inferiorly, then superiorly, and least pronounced 
nasally (27,30,33-36). This characteristic pattern can help 

distinguish ADOA from other optic neuropathies presenting 
in childhood including glaucoma, inflammatory optic 
neuropathies and compressive lesions. RNFL thinning 
occurs with aging in the general population. Curiously, the 
rate of RNFL thinning from the first to eighth decade of life 
appeared comparable in patients with ADOA compared with 
healthy controls, as assessed in two cross-sectional studies 
(33,34). This suggests that pathologic RGC is established 
very early in life, perhaps even prenatally. Clinically, we have 
also observed that patients with ADOA tend to perform 
better on automated perimetry than patients with other optic 
neuropathies and comparable RNFL thinning, which could 
reflect improved cortical adaptation.

Noninvasive imaging of specific retinal layers in the 
setting of ADOA has been undertaken with macular OCT 
(37,38). This approach demonstrates thinning of the inner 
retinal layers (GCL, IPL), while the outer retinal layers 
(INL, OPL, ONL, ellipsoid zone, RPE) appear intact 
(27,37). In particular, GC-IPL thinning is seen early in the 
course of disease, and shows more pronounced changes than 
the RNFL (27,30). Therefore, macular OCT with GC-IPL 
analysis may helpful in the setting of childhood-onset vision 
loss, to distinguish between ADOA and retinal dystrophies. 
Correlations between visual acuity and OCT measures 
including RNFL thinning and GC-IPL thinning have been 
described (8,27,39). However, OCT is not used routinely 
for predicting the degree of subsequent vision loss. 

Recent case-control studies using OCT-angiography in 
patients with ADOA have demonstrated reduced density of 
the temporal RPC network and macular superficial capillary 
plexus, which supply the RGCs. The deep capillary plexus 
and the foveal avascular zone were unaffected (8,40). 
These studies yielded conflicting results on the correlation 
between RPC density and visual acuity. There was a 
stronger correlation between visual acuity and GC-IPL 
thickness, suggesting that GC-IPL analysis may be the most 
useful OCT modality currently available for objectively 
tracking vision-affecting changes over time. It is unclear 
if the vascular changes noted are secondary to RGC loss, 
or if capillary dropout plays a role in the pathogenesis of 
ADOA. Future studies might explore OCT-angiography in 
younger patients or carriers to better define the progression 
of vascular changes early in the course of disease.

Other hereditary mitochondrial disorders

Optic neuropathy can occur in the context of other more 
rare mitochondrial syndromes, which have some overlapping 
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genetic risk factors. Wolfram Syndrome, also known as 
DIDMOAD (diabetes insipidus, diabetes mellitus, optic 
atrophy, and deafness), has been attributed to mutations in 
WFS1 and WFS2, but there is also increased risk in carriers 
of mitochondrial mutations associated with LHON. Behr’s 
syndrome (optic atrophy, ataxia, mental retardation, urinary 
incontinence, pes cavus) is associated with OPA3 in some 
pedigrees. Optic atrophy has also been described as a feature 
of Friedrich’s ataxia, specific forms of spinocerebellar ataxia 
(SCA1 and SCA3), mitochondrial encephalopathy, lactic 
acidosis, and stroke-like episodes (MELAS), and chronic 
progressive external ophthalmoplegia (CPEO). A high level 
of suspicion for optic neuropathy should be maintained 
when patients diagnosed with these syndromes present with 
vision changes, particularly if the clinical presentation, exam 
and ancillary testing are consistent. In these cases, OCT 
can be a valuable adjunct to the examination, allowing more 
precise assessment of optic atrophy and progression over 
time, particularly in patients who cannot reliably perform 
psychophysical tests such as visual acuity and perimetry.

Ethambutol toxicity

Ethambutol is most commonly used in the treatment of 
Mycobacterium tuberculosis and Mycobacterium avium complex 
infections. Mitochondrial toxicity is thought to result from its 
activity as a metal chelator, as local depletion of copper at the 
mitochondria inhibits cytochrome C oxidase, slows oxidative 
phosphorylation and triggers apoptosis (41). Ethambutol-
induced optic neuropathy occurs in a dose-responsive 
fashion. Under current recommended dosing regimens, 1% 
of patients develop toxicity, presenting with bilateral central 
vision loss, along with diminished color vision and contrast 
sensitivity (42,43). A subset of patients do not present 
with central or cecocentral scotomas, but instead develop 
junctional scotomas (Figure 3) or bitemporal hemianopsia 
that does not respect the vertical midline (44). The vision loss 
typically progresses for 1–2 months after discontinuing the 
medication, then gradually improves over the subsequent 6 
months with partial or full recovery of vision. 

Several small case series have demonstrated that OCT 
of the RNFL is often normal near the time of symptom 
onset, with progressive thinning over the subsequent several 
months. This thinning is diffuse, with decreased average 
RNFL thickness (by 19–48%), but is most prominent 
temporally (with 19–72% thinning) (45-49). A small case 
series evaluating full thickness macular OCT demonstrated 
thinning throughout the inner macula, and outer nasal 

macula, which corresponds to the area of the PMB (50). 
The utility of GC-IPL thickness analysis as compared to 
RNFL thickness has also been assessed in multiple case 
series, which suggest that thinning of the GC-IPL appears 
earlier than RNFL thinning, and is a better predictor of 
visual outcome (51-53). 

Early identification of toxicity is critical, as partial visual 
recovery is possible with discontinuation of the medication. 
Current screening recommendations for ethambutol-
induced optic neuropathy include regular monitoring of 
visual acuity, color vision and visual fields (54). The role 
for OCT in screening asymptomatic patients is unclear. 
As detailed above, case reports have demonstrated that 
OCT detects minimal change in the RNFL at the time of 
symptom onset. Furthermore, prospective studies evaluating 
OCT of the RNFL have shown mixed results, with one 
study indicating an increase in average RNFL thickness, 
while two other studies reported sectoral thinning in a 
subset of patients (55-57). Assessment of GC-IPL thickness 
may be more promising as a screening tool, as GC-IPL 
changes have been documented prior to RNFL changes, 
and have been correlated with visual acuity as well.

Methanol toxicity

Methanol ingestion is associated with metabolic acidosis 
and optic neuropathy. The neuropathy may be secondary 
to demyelination of the optic nerve posterior to the lamina 
cribrosa (58). The methanol metabolite formic acid is a 
known inhibitor of mitochondrial cytochrome C oxidase, 
which is essential for oxidative phosphorylation and likely 
has a direct toxic effect on retinal nerve fibers as well (59). 
While accidental or intentional ingestion does occur in 
isolated cases, there have periodically been outbreaks of 
toxicity associated with commercial distribution of tainted 
ethanol, which has allowed for longitudinal studies of 
groups of patients with methanol intoxication. 

Patients with methanol intoxication experience 
bilateral, acute onset, decreased visual acuity (which can 
be as severe as no light perception), visual field changes 
and photophobia, followed by gradual improvement over 
the subsequent weeks. In a retrospective study of 122 
patients impacted by an outbreak of methanol poisoning 
in Ahmedabad, India in 2009, disc edema was noted at 
the time of presentation in 42% of patients, and optic 
nerve pallor in 20% of patients after 3 months (60). Visual 
prognosis depended on the visual acuity and serum pH 
at presentation, with a serum pH <7.3 associated with an 
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Figure 3 A case of ethambutol toxicity. BL is a 76-year-old female who initially presented to an outside ophthalmologist with painless, gradual 
onset central bilateral vision loss (worse in the left eye) after 9 months of treatment with ethambutol (15 mg/k/day) for mycobacterium avium 
intracellulare pneumonia. Visual acuity was 20/30 right eye (OD) and count fingers left eye (OS). Over the next 3 months her vision continued 
to decline to 20/70 OD and count fingers OS. After discussion with her pulmonologist, the ethambutol was discontinued and she was started on 
clarithromycin. She presented to our clinic 6 weeks later. She felt her vision had improved slightly after discontinuing the ethambutol, and 
denied any family history of optic neuropathy or other neurologic symptoms. On exam, visual acuity was 20/50 OD and 4/200 OS. She scored 
9/11 OD and no control plate OS on Ishihara color testing. She had no APD. There was mild peripapillary atrophy but no disc edema or pallor. 
Humphrey visual field (HVF) showed a temporal field cut that did not respect the vertical midline OD, and Goldmann visual field (GVF) 
showed dense central scotoma OS concerning for a junctional scotoma. OCT of the retinal nerve fiber layer (RNFL) was full, with average 
RNFL thickness 94 OD and 100 OS (not shown). Given the concern for a left pre-chiasmatic optic nerve lesion causing a junctional scotoma, 
an MRI brain and orbits with and without contrast was ordered, and was unremarkable. Complete blood count (CBC), B12, thiamine, folate, 
copper and zinc were also sent to assess for any contribution of nutritional deficiency and were also unremarkable. On follow-up 2 months 
later, her vision had continued to improve, with visual acuity 20/25 OD and 20/60 OS, no APD, and unchanged appearance of the optic 
nerves. HVF OD and GVF OS showed improving scotomas, and OCT RNFL remained full but was thinner than previously, with average 
RNFL thickness of 84 OD and 83 OS. On follow-up at 8 months, her vision had again improved and she was reading and driving comfortably. 
Her pneumonia was well controlled on the clarithromycin. Her visual acuity was 20/25 OD and 20/30 OS, she scored 9/11 OD and 5/11 OS 
on Ishihara color plates and she had no APD. She did have new temporal disc pallor of both eyes (OU). HVF showed resolution of the central 
scotoma OU, with some residual inferior arcuate defect OS. As the workup for other etiologies had been unremarkable, her optic neuropathy 
was attributed to ethambutol toxicity, with excellent visual recovery. Visual fields are shown with the right eye on the right and the left eye on 
the left.
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increased risk of chronic RNFL thinning (OR 11.65) (60,61). 
Chronic changes were also noted in 42 patients involved in 
a mass methanol poisoning in the Czech Republic in 2012, 
with, 40% of patients developing chronic visual sequela. 
These patients also demonstrated RNFL thinning at 5 
months, while only rare borderline changes were noted in 
patients who returned to baseline vision (61,62). Visual acuity 
remained relatively stable over the 4-year follow-up period, 
although there was some progression in RNFL thinning in 
severe cases. GC-IPL analysis has not been conducted in a 
large study group, but a case study of a single patient with 
persistent small cecocentral scotomas reported normal OCT 
RNFL, with mild thinning of the nasal macula GC-IPL at 1 
month, which was more prominent at 8 months (63).

The presence or absence of RNFL and GC-IPL thinning 
on OCT may be helpful in counseling patients on visual 
prognosis, particularly several months after ingestion. As 
in other forms of mitochondrial optic neuropathy, changes 
in the GC-IPL may precede detectable RNFL changes. 
No intervention has been definitively shown to improve 
prognosis, although steroids and erythropoietin have both 
been reported anecdotally (64,65). 

Amiodarone toxicity

Amiodarone is an anti-arrhythmic that is associated with 
optic neuropathy in 2% of patients. Amiodarone-associated 
optic neuropathy has been attributed to lamellar inclusion 
bodies within the optic nerve oligodendrocytes secondary 
to lysosomal dysfunction, rather than mitochondrial 
dysfunction (66). The average time to onset in a meta-
analysis of 296 patients was 6 to 9 months after initiation 
of therapy (67). Classically, patients experience insidious, 
mild, bilateral vision loss (to 20/30 on average). Disc edema 
is documented in 85% of patients. However, the clinical 
presentation can vary. Some patients develop acute, or 
more severe loss of vision, and 35% present with unilateral 
symptoms and disc edema (68). These unilateral cases can 
be difficult to distinguish from NAION, particularly as 
patients on amiodarone are likely to have vasculopathic 
risk factors for NAION. The key distinguishing feature is 
that disc edema in NAION typically resolves after several 
weeks, while the edema associated with amiodarone toxicity 
persists for several months. Serial measurements of the 
RNFL using OCT are essential in equivocal cases.

There are no formal recommendations for screening 
intervals, although a baseline exam is recommended by 
the Heart Rhythm Society (67). Given the typical onset 

within the first year of therapy, it has been suggested that a 
baseline exam, with interval exams during the first year, and 
annual exams thereafter is a reasonable approach (68). In 
patients who develop edema or vision changes, serial OCT 
of the RNFL may be helpful for following the resolution of 
edema and distinguishing between amiodarone-associated 
optic neuropathy and NAION. Improvement in vision was 
noted in 58% of patients after discontinuing amiodarone, 
so accurate diagnosis and consultation with the patient’s 
cardiologist is essential, particularly in more severe cases (67).

Linezolid toxicity

Linezolid is an oxazolidinone antibiotic that inhibits 
mitochondrial protein synthesis, and can cause optic 
neuropathy after prolonged use for greater than 1 month (69).  
Patients typically present with reduced visual acuity and 
color vision, with cecocentral scotomas and bilateral disc 
edema (70). Dramatic partial, if not complete, improvement 
is obtained with discontinuation of the medication. Temporal 
pallor is sometimes seen as a late finding. Only a small 
number of case reports have included OCT imaging, which 
shows diffuse RNFL thickening in the acute stage (70-72).  
Given the nonspecific OCT findings, a high level of 
suspicion in patients presenting with typical symptoms and 
prolonged use of linezolid (longer than 1 month) is essential 
for diagnosis. Prompt diagnosis is critical, as vision improves 
with withdrawal of linezolid. Steroid treatment has been 
attempted, but appears to worsen rather than improve 
symptoms (73,74).

Metabolic optic neuropathies

Deficiencies of cobalamin (vitamin B12), thiamine (vitamin 
B1), folate and copper have been associated with optic 
neuropathy (75-86). Symptoms are typical of mitochondrial 
optic neuropathy and include decreased visual acuity, 
dyschromatopsia and cecocentral scotoma. Patients often 
have an associated peripheral neuropathy, or macrocytic 
anemia in the setting of B12 or folate deficiency, but the 
optic neuropathy can occasionally be isolated. In the 
developed world, B12, thiamine and copper deficiency occur 
most often in the setting of poor absorption secondary to 
gastrointestinal disease or gastric bypass surgery. Folate 
deficiency has been associated with poor diet, alcoholism 
and long-term use of low-dose methotrexate. There have 
also been historical reports of outbreaks of optic neuropathy 
in populations suffering from nutritional strain due to 
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sociopolitical factors, most recently the Cuban epidemic 
neuropathy from 1991–1993 (87).

The most comprehensive assessment of OCT findings 
in metabolic optic neuropathy is case series of 45 patients 
with B12 deficiency, which showed thinning of the average 
and temporal RNFL (88). Several case studies have been 
conducted on patients with copper deficiency who presented 
one to three years after gastric bypass surgery (75-78). 
Temporal pallor, with associated RNFL thinning was 
noted, along with GC/IPL thinning. The few case reports 
linking folate deficiency and thiamine deficiency with optic 
neuropathy have not included OCT, but one patient with 
folate deficiency did exhibit bilateral temporal disc edema 
(79-83). These data suggest that selective temporal thinning 
on OCT in the appropriate clinical context should raise 
concern for metabolic optic neuropathy.

Optic neuropathy in the setting of vitamin deficiency 
is often multifactorial. It is likely that the phenomenon 
referred to as “tobacco-alcohol amblyopia” results from 
a convergence of vitamin deficiency, the toxic effects of 
tobacco and alcohol, and genetic predisposition (89). 
Therefore, clinicians should be extremely cautious about 
rendering this diagnosis without a thorough investigation 
for other causes. Patients can present with multiple vitamin 
deficiencies concurrently, so it is often advisable to test 
comprehensively for B12, thiamine, folate and copper 
along with CBC to assess for macrocytic anemia. With 
the exception of copper, supplementation of the deficient 
vitamin typically results in excellent visual outcome.

Distinguishing mitochondrial optic neuropathies 
from glaucoma

Glaucoma is a common cause of optic neuropathy, with 
a global prevalence recently estimated at 3.54% in the 
population aged 40–80 years (90). The optic nerve head 
typically exhibits deep cupping without pallor until late 
in the course of disease. In contrast, mitochondrial optic 
neuropathies typically cause disc pallor within months 
of symptom onset with a variable amount of cupping. 
Glaucoma preferentially affects the superior and inferior 
poles of the optic nerve earliest, with corresponding arcuate 
visual field defects and sparing of central vision until late 
in the disease course. Therefore OCT demonstrating 
RNFL thinning superiorly, inferiorly and nasally is more 
suggestive of glaucoma, while isolated or more severe 
temporal thinning with macular GC-IPL thinning early 
is more characteristic of mitochondrial disease. However, 

OCT alone is not diagnostic, and the entire clinical picture 
must be taken into account. As toxic and metabolic optic 
neuropathies can be easily treated with improvement 
in visual outcomes, a thorough medication review is 
recommended and nutritional evaluation should be 
undertaken in the appropriate clinical context.

Distinguishing mitochondrial optic neuropathies 
from ischemia

Non-arteritic anterior ischemic optic neuropathy (NAION), 
resulting from microvascular disease, and arteritic anterior 
ischemic optic neuropathy (AAION), which occurs in the 
setting of giant cell arteritis (GCA), present with unilateral, 
acute onset disc edema, vision loss, dyschromatopsia and 
scotomas that typically respect the horizontal midline. Over 
the course of 6 to 8 weeks, the disc edema subsides, with the 
development of disc pallor that is diffuse, or restricted to 
the superior or inferior aspect of the nerve, with associated 
RNFL and GC-IPL thinning on OCT. As in glaucoma, 
the sectoral nature of optic atrophy can be helpful in 
distinguishing between ischemic optic neuropathies and 
mitochondrial disorders.

Distinguishing mitochondrial optic neuropathies 
from other causes of optic atrophy

Posterior to the lamina cribrosa, the optic nerve is 
myelinated and is subject to inflammatory demyelinating 
diseases including multiple sclerosis and neuromyelitis 
optica spectrum disorders (NMOSD). Infiltrative 
inflammatory or malignant processes including sarcoidosis, 
lymphoproliferative disorders,  optic nerve sheath 
meningioma, and optic nerve gliomas can also involve the 
orbital or intracanalicular segments of the optic nerve, as 
can numerous infectious agents including lyme, syphilis 
and tuberculosis (91). Mass lesions within the orbit can 
cause a compressive optic neuropathy, and traumatic 
optic neuropathy results from shear or compressive forces 
incurred by the optic nerve as it travels through the 
restrictive space of the optic canal. These diverse etiologies 
tend to impact the full thickness of the optic nerve to 
cause decreased visual acuity and color vision, an afferent 
pupillary defect (APD) (if unilateral), and visual fields with 
generalized depression. There is sometimes disc edema in 
acute phases, with later progression to diffuse pallor, with 
RNFL and GC-IPL thinning on OCT, although sectoral 
changes have been reported in a subset of cases. 
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Mass lesions causing compression in the pre-chiasmatic 
segment of the optic nerve can cause a junctional scotoma, 
with central vision loss and diffuse disc pallor of the involved 
side, and a superotemporal scotoma on the contralateral 
side, while lesions compressing the chiasm classically result 
in bitemporal hemianopsia, and occasionally cause bilateral 
temporal pallor of the disc and RNFL thinning on OCT. 
As discussed above, these findings are seen in a minority of 
patients with mitochondrial optic neuropathies. Imaging 
is strongly recommended to rule out mass lesions in the 
setting of bitemporal or junctional field cuts, particularly 
those that respect the vertical meridian.

Conclusions

Hereditary, metabolic and toxic optic neuropathies 
likely result from mitochondrial dysfunction, which 
disproportionately affects the PMB to cause bilateral central 
vision loss and dyschromatopsias. Characteristically, OCT 
shows RNFL thinning that is most pronounced temporally, 
but this can be delayed in appearance. Concordant ganglion 
cell/inner plexiform layer (GC-IPL) analysis is particularly 
useful, as it can show early changes prior to RNFL 
thinning. Overall, OCT is a valuable tool that can assist in 
the diagnosis of mitochondrial optic neuropathies.
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