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Introduction

The increasing capabilities of technological inventions have 
significantly broadened their applications in medicine and 
ophthalmology. Smartphones and multipurpose devices are 
now being increasingly used for diagnostics, telemedicine 
applications, and self-monitoring of eye diseases (1). 
Software technology has been impactful in ophthalmic 
informatics, examples being deep learning and pattern 
recognition, to differentiate abnormal images or outcomes 

from normative databases (2).
Another stunning example is motion-based navigation 

technology in both ophthalmic imaging and treatment. 
Several imaging instruments use a real-time eye-tracking 
system, which helps to reduce motion artefacts and 
increase signal-to-noise ratio in imaging acquisition such 
as optical coherence tomography (OCT), microperimetry, 
and fluorescence and color imaging (3,4). Navigation 
in ophthalmic surgery has been firstly applied in 
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laser vision corrective surgery (5,6), navigated retinal  
photocoagulation (7), and positioning guidance of 
intraocular lenses (IOL) during cataract surgery (8). It 
has emerged as one of the most reliable representatives 
of technology as it continues to transform surgical 
interventions into safer, more standardized, and more 
predictable procedures with better outcomes.

The meaning of navigation in surgery is conceptualized 
into “location of target”, “safe reach of the target”, “current 
anatomic location”, or “evaluation of treatment accuracy”. 
Apart from these important orientation questions, surgical 
navigation is also used as a measurement tool and an 
information center for providing surgeons with the right 
information at the right time.

In this review, we summarise the basic principles 
and applications of navigation technology in modern 
ophthalmology. We will review contributions in ophthalmic 
imaging, anterior and posterior segment laser treatments, 
and surgery. We present the following article in accordance 
with Narrative Review reporting checklist (available at 
http://dx.doi.org/10.21037/aes-20-127).

Eye-tracking in ophthalmic imaging

When following the task of precisely measuring a particular 
structure of the eye, eye movements induce an artefact, 
which is difficult to “recalculate”. Therefore, compensation 
for eye movements was implemented to make these 
measurements more reproducible.

One of the first applications was using eye-tracking for 
laser Doppler velocimetry to measure ocular hemodynamics 
where an eye-tracking device compensated the eye 
movements and ensured an artefact-free image. This 
tracker was based on Purkinje images, which are reflections 
of infrared light on different surfaces of the eye. These 
reflection changes upon movements are evaluated and 
recalculated into eye movements (9). An image-based eye 
tracker was later implemented into Heidelberg retinal 
angiography to compensate for eye movements and improve 
the image quality. According to the manufacturer website, 
the TruTrack® Active Eye Tracking (Spectralis, Heidelberg 
Engineering, Heidelberg, Germany) is a “patented 
technology that uses a second laser beam to actively track 
the eye during scanning to avoid motion artefact” (3,4).

However, for OCT a different kind of compensation 
is needed to allow high-resolution and motion artefact-
free images in depth. In 2004, Ferguson et al. presented 
the first prototype of an eye tracker that compensated eye 

movements for enhanced OCT imaging on the retina. 
Using this tracker, which was based on the detection of 
natural structures of the retina, the image quality could be 
improved, and the deviation in the measurement position 
was reduced from 3.4 to 0.45 pixels (10).

OCT tracking devices are separated into hardware and 
software-based systems. Hardware-based systems use an 
additional hardware implemented into the optical design 
of an instrument that captures additional data to calculate 
eye motion online or offline. In software-based systems the 
motion patterns are approximated either by comparing the 
acquired data to a reference (OCT) image or by considering 
some prior assumptions about the nature of the eye motion. 
Hardware-based systems by nature also require software 
to calculate eye motions from the obtained data. Most of 
these utilized software are variations of cross-correlation-
based image registration techniques (3). Commercially 
available OCT systems and their eye-trackers will be briefly 
described in the following chapters.

Heidelberg engineering (TruTrack Active Eye Tracking) 
uses a real-time eye-motion system to track eye movements 
and guide OCT to the proper location for repeating the 
B-scans if there was eye movement during scanning. The 
tracking system is an effective solution for transverse 
movements, while axial correction still requires a software 
correction (11). Vienola et al. describe this eye tracker to be 
an image-based eye tracker obtained from 1,000 points in 
the infrared imaging channel (12). The tracking accuracy 
in the Heidelberg Engineering System in a model eye 
was measured to be a mean maximal error of 15 µm in the 
lateral and horizontal position. The axial resolution of the 
OCT in depth is 5 to 7 µm (13). It was also shown to reduce 
the percentage of motion artefacts when compared to a 
system without eye-tracking.

The Zeiss Cirrus device, in addition to 3-D raster scans, 
acquires two diagonal B-scans with different wavelengths 
mainly for axial motion correction (3).

The RTVue system uses an image-based tracker from 
an infrared full-field fundus camera with a 20 to 30 Hz 
refreshment rate (3,14).

The Canon OCT-HS100 uses both automatic anterior eye 
alignment (pupil tracking) and fundus tracking for better 
compensation of involuntary eye motions. The detailed 
principle is described in a report by Carrasco et al. where a 
pupil-based tracker was used, and simulations revealed the 
ability to track lateral movements of ±3.5 mm or rotational 
eye movements of ±1.2 ° with an accuracy of approximately 
49 µm (without combination of the fundus tracking) (15).

http://dx.doi.org/10.21037/aes-20-127
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The Physical Sciences Inc. (PSI) OCT system is based 
on a dithering beam that is locked on reflectance changes 
from single retinal features within the optic nerve head or 
blood vessels. The eye motion signal is used to control the 
OCT scanning mirrors to maintain the scanning grid on its 
retinal target, except in the PSI system where the beam is 
controlled with additional tracking mirrors (14).

Another advanced eye-tracking principle for OCT is 
image distortion-based tracking. With devices using this 
principle, a scanning laser ophthalmoscope (SLO) images 
the eye with a frame rate of 30 Hz, but extracts eye motion 
at much higher rates by analyzing distortions within sections 
of each captured frame. These extracted eye motion signals 
are transformed into tracking signals and combined with 
the signals that drive the OCT galvo mirrors (14).

Sugita et al. described an eye tracker in polarization-
sensitive OCT (PS-OCT). To extract the retinal position 
shift information, first, a template (typically consisting of 
64×64 pixels) with a fiducial marker such as a thick vessel 
branch (of the subject retina) is chosen and extracted from 
the SLO images recorded as a pre-processing step. During 
the sequence of the data acquisition of the PS-OCT sub-
system, the SLO images taken in parallel are analyzed so 
that the cross-correlation between the template image and 
each SLO image is calculated. From the cross-correlation 
values, the best-matched location is found, and the two-
dimensional shift information is obtained. This template 
matching calculation is done immediately after the data 
acquisition and image construction for each SLO frame (16).

OCT angiography (OCTA) is a new technology for 
imaging retinochoroidal vasculature, and reduction of 
motion artefacts using eye-tracking technology is of utmost 
importance to assure reproducible image analysis (17). 
The benefit of using an eye-tracking device in OCTA has 
been demonstrated previously. The use of eye-tracking 
systems results in higher reproducibility and repeatability 
in the measurement of vascular flow (18) and a significantly 
reduced amount of motion artefacts in conjunction with 
significantly stronger signal strength as well as a lower 
variability in vessel density (19). Although the acquisition 
time with active eye-tracking was significantly longer than 
without the authors concluded that eye-tracking provides 
superior image quality (19).

Intraocular lens placement in cataract surgery 
using eye-tracking

Cataract surgery is one of the most common procedures 

in ophthalmology. If, after cataract surgery, astigmatism of 
more than 1.25 dioptres remains uncorrected, the patient 
will still need spectacles postoperatively. This is the case in 
20% to 30% of patients (20). With the advent of toric IOLs 
an option became available to correct this astigmatism in 
patients who desire to remain spectacle free. However, the 
accuracy of positioning these lenses is important to ensure 
the highest effectivity in astigmatism compensation. Every 
5 degrees of misalignment will decrease the anticipated 
effect by 17% (12,21). For correctly centered and rotated 
implantation with optimal incision location, surgeons use a 
three-step process (marking of horizontal axis with ink on 
slit lamp; alignment of line mark; intraoperative alignment 
of IOL and axis). Visser et al. showed that a commonly used 
three-step ink marker process leads to a mean error in IOL 
placement of approximately 5 degrees. In cases with higher 
astigmatism, this leads to the need for retreatment (22).

With the ongoing development of navigation and eye-
tracking, computer-assisted systems for optimized toric 
IOL implantation have become available. The two most 
common systems are the Zeiss Callisto® and Verion® from 
Alcon originally developed as the SG3000 by SensoMotoric 
Instruments, GmbH in 2010. The first step includes a 
diagnostic image on a unit that does keratometry and 
acquires a high-resolution reference image in which the 
limbal vessels, scleral vessels, and iris characteristics are 
visible. Based on these extracted “landmarks”, the diagnostic 
image (including landmarks such as the center of the pupil, 
steep and flat axis) is registered automatically onto the live 
image of a microscope during lens implantation.

Several peer-reviewed publications have investigated 
computer/eye-tracking guided IOL implantation. Most 
of them report significantly better results when using an 
eye-tracking and computer-guided system with regards 
to mean toric misalignment of residual astigmatism. The 
mean toric misalignment ranges from 2.0°±1.86° (standard 
deviation) (23) to 2.96°±2.54° (24) with a computer-guided 
system as compared to a mean range of toric misalignment 
from 2.88°±2.18° (25) to 4.33°± 2.72° (26) for manual ink 
marker implantation. The mean residual astigmatism is 
published to range from −0.29±0.22 D (27) to 0.10  ± 0.08  
D (26) in computer-guided treatments versus a range from 
−0.46±0.25 D (27) to 0.22±0.14 D (23). Mayer et al., in 
addition, analyzed the required time for toric IOL alignment 
to be significantly faster in computer-guided systems as 
compared to the time the alignment requires when using 
manual markers (37.2±11.9 vs. 59.4±15.3 s; P=0.003) (23). 
One publication compared the Zeiss Callisto and the Alcon 
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Verion systems without identifying the superiority of either. 
The authors found that the systems are not interchangeable 
as there was a relatively large proportion of cases where a 
difference in axis rotation between each system was >3°. The 
authors also state that it was rare to identify a large deviation 
between both systems (28).

Navigation in refractive laser surgery

Myopia and hyperopia are the most frequent eye disorders 
across the world (29). In North America, nearly 9% of 
children aged 5–17 years reported myopia of at least 
−0.75 dioptres, and an additional 13% had at least +1.25 
dioptres hyperopia (29,30). The interest of the ophthalmic 
community in the surgical treatment of refractive disorders 
has been long-standing. Most surgical procedures in 
the past, such as radial keratotomy and keratomileusis, 
represented breakthroughs in surgical developments (31-33), 
but in reality suffered from some degree of imprecision.

With the advent of excimers lasers, the procedure became 
less invasive. It led to the first photorefractive keratectomy 
(PRK) or keratomileusis in situ (without separation of the 
corneal layer) conducted by Trokel in 1983 in animal studies 
and human trials in 1987 (14,34). The FDA approved PRK 
in 1995 and laser-in-situ keratomileusis (LASIK) in 2002. 
The flying-spot scanning technology used worldwide for 
customized LASIK procedure was invented by Dr. Lin (5,6). 
With the advent of this relatively precise “knife” the need 
for a supported application arose. In the following years, 
the lasers were improved to small scanning beams to allow a 
smooth ablation bed and less energy per spot (35).

Originally the laser beam was placed manually to the 
correct ablation zone. With the increasingly small laser 
beam, the desire rose for assisted laser positioning that could 
compensate eye movements to avoid the decentration of 
the laser from the correct ablation zone. However, when no 
paralyzing is available, the whole treatment is dependent on 
passive fixation of the patient. Even when perfect fixation of 
the patient takes place, the eye is subject to uncontrollable 
saccadic eye movements of up to 170 mm/s (25,36,37). A 
misplacement of the excimer laser beam can lead to serious 
side effects such as halos, glare, and diplopia (38), but also a 
higher number of higher-order aberrations (39,40).

The first method to compensate and control these eye 
movements for refractive laser was described by Preussner 
et al. in 1990 for compensating eye movements in laser 
keratotomy (41). This prototype consisted of a light-
emitting land marker fixed by 3 mm deep hooks to the 

limbus of the patients’ eye. These land markers were 
tracked and checked for an alignment accuracy of the laser 
beam and target of 5 µm. The laser was blocked in cases of 
deviations larger than 5 µm (40). The key drawback of this 
solution was its invasive nature.

In 1992, Phoenix Laser System Inc. was granted the first 
patent describing a “system (that) also includes tracking 
system for following the movements of the subject tissue, 
for example an eye during surgery. The tracking system 
is fast enough to track such movement, preferably at the 
maximum repetition rate of the laser plus a sufficient 
margin for safety” (42). This system was the first using a 
camera image and image processing techniques to analyze 
and compensate eye movements. Several patents with 
the same goal and different approaches were submitted 
in the following years (43-45). Shortly thereafter, further 
improvements and inventions on eye-tracking technologies 
were introduced, such as an increased tracking rate 
(nowadays reaching up to 4 kHz) and recognition of 
cyclorotation as well as compensating for parallax error 
when analyzing a 2D image of a 3D elevated structure (16).

The key set-up of all eye-trackers in refractive laser 
is basically the same and is well illustrated in Figure 1. It 
consists of one or more cameras observing the patient’s 
eye, an image processing unit analyzing the features of the 
image(s) and providing position information that finally is 
processed by the main control unit of the refractive laser to 
either block the laser from further release or reposition the 
actual ablation pattern (23).

The first eye-tracking devices used a black and white 
charge-coupled device image sensor with an acquisition 
rate of 50 Hz (46) using the pupil border to calculate and 
track the pupil center. The offset of the actual pupil center 
with the pupil center of the initially acquired reference 
image (which contains the information of the desired laser 
locations) leads to the position information of the next laser 
spot. There are different modalities available to image the 
pupil. Either imaging based on a “photographic” image 
where structures are extracted from infrared light, coaxially 
positioned to the eye, which is reflected by the retina and 
then imaged as a bright circle on dark background (8).  
Over the course of the time, other image features for 
tracking were either alternatively or in conjunction with 
pupil tracking added to the tracking method (limbus, 
iris structures, and limbal vessel tracking). This allowed 
firstly to be independent of pupil size and to work with 
either a non-dilated or dilated pupil, but also allowed 
detection of cyclorotational movements (47,48). The recent 
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technological advancement is 6D (six-degrees) tracking, 
which compensates the parallactic error created by the 
curvature of the cornea. While pure limbal and pupil-
based tracking calculates a translational movement of a 2D 
plane (iris), the eye actually rotates with a curved cornea. 
This leads to a deviation between the desired spot (center 
of the pupil) and the applied spot (Figure 2) (37,49). This 
becomes especially relevant if a wavefront-guided refractive 
correction is used. In wavefront-guided treatments, the 
higher-order aberrations are measured, and a laser ablation 
profile is calculated to compensate for these higher-
order aberrations. However, without using 6D tracking 
compensation, the success in eliminating higher-order 
aberrations was limited in clinical studies (50-54).

While the quality of the tracking can be influenced by 
various factors, such as pupil size, the most commonly 
stated influence factors are the image acquisition speed and 
the latency of the laser positioning. The pulse positioning 
accuracy increases with a decrease in laser positioning 
latency. A latency of 15 ms usually corresponds to a 
positioning error of 3.5 mm, eye tracker latencies of below 
1.5 ms result in accuracy below 0.5 mm (37).

With increasing tracking frequency, the pulse positioning 
error reduces. A tracking frequency of below 100 Hz usually 
relates to inaccuracy of 1.5 mm, while an increased tracking 

frequency of 1,000 Hz reduces this value to below 0.5 mm. 
Therefore, it is important to observe frequency and latency 
together to minimize positioning error (37).

The initial eye-tracking systems with 50 Hz image 
acquisition were analyzed in a real clinical setting and did 
not lead to a significant increase in accuracy when compared 
to a manual positioning technique. Both methods showed an 
average deviation of planned to actual accuracy of 0.55±0.30 
mm (range, 0.10 to 1.4 mm), and in the manual centration 
group, 0.43±0.23 mm (range, 0.10 to 1.0 mm) (55). The 
currently available tracking rate reaches 4 kHz. The latency 
is reported to be between 10 and 3 ms (56,57). Qazi et al. 
analyzed the impact of using an eye tracker on patient’s 
visual quality. They concluded that the use of infrared pupil 
tracking improved uncorrected visual acuity, produced more 
predictive refractive outcomes, and fewer large centration 
outliers (57). Eye-tracking in refractive laser surgery became 
the gold standard and accepted to be superior to manual 
spots, especially when using small spot sizes (Figure 3).

Navigation in posterior segment treatments

The most frequent non-surgical treatment on the retina 
is photocoagulation, which is indicated in numerous 
conditions. It was introduced as early as 1945 by Meyer-

Figure 1 Principle set-up of an eye-tracking system for refractive laser (37).
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Schwickerath using sunlight and then further improved 
by the use of Xenon light followed by the use of laser 
light to deliver energy for photocoagulation (58,59). Until 
approximately 2010, laser systems included a slit lamp-
based delivery able to apply photocoagulation even in a 
fixed pattern style rapidly. While the speed of application 
and pain experience are the biggest challenges in peripheral 
treatment, in focal application, the challenge is to deliver 
a treatment avoiding sensitive areas such as the macula 
and the optic disc. Often, pathologic areas that need to be 
targeted (such as leakage sources or ischemic areas) cannot 
be identified easily in ophthalmoscopic images from the slit 
lamp. Generally, a fluorescein image is obtained and placed 
aside the slit lamp like a road map to help locate the needed 
areas.

Combining a fluorescein angiography image display with 
laser treatment has been successfully applied previously. For 
instance, Jean and Kreissig described such a display, which 
has been used for several years. Usage was successful and 
aimed to improve therapeutic precision in hitting lesions. 
At the same time, the procedure was relatively complicated 
and the fluorescein angiography images had to be mounted 
in a special device (60). Other groups have used similar 
devices, for example, Mainster et al. reported more than 200 
photocoagulations and found the setup to be useful (61).

The idea of applying retinal tracking to enhance laser 

treatment by a navigating system has been investigated for 
some time. In parallel to the previously mentioned angio-
mounted slit lamp systems, several groups investigated 
a computerized laser system to compensate for eye 
movements. Naess et al. reported the development of 
a computerized laser system to compensate for eye 
movements based on a digital image processing unit (62). 
Jean et al. were able to reposition the aiming beam based 
on fundus structure recognition in real-time and achieved 
robustness of 90% in laboratory settings (63). In 1991, Yu 
et al. presented a further tracking-assisted system based on 
fundus structure correlation and used scanning mirrors to 
compensate movements. This system did not achieve clinical 
relevance as the repetition rate was only 1 to 2 Hz (64).  
In 1999, Berger and Shin presented their computer-based 
system, highlighting how such image-guided macular laser 
therapy should facilitate accurate targeting of treatable 
lesions and less unintentional retinal injury when compared 
with standard techniques (65).

Starting in the late 1980s, Markov et al. presented 
the first hybrid retinal tracking, which was considerably 
improved by the US Air Force Academy, University of 
Texas, and University of Wyoming over the next two 
decades (66). Wright et al. published initial in vivo results in 
rabbits in 2000 (67). While tracking speed was found to be 
slower in vivo than in vitro, the system overall performed 

Figure 2 Misplacement of the pupil and limbus-based tracker systems compared to 6D measurement (49).
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Figure 3 Eye-tracking during a conventional myopic ablation on the Schwind Amaris 750s excimer laser system. The Amaris platform uses a 
proprietary 6D tracking system capable of compensating for static cyclotorsion, dynamic cyclotorsion, lateral movement, rolling movement 
and axial displacement (Image courtesy of Dr. Hamed Anwar).

well and exceeded requirements for clinical application. The 
requirements for this system have evolved to retinal tracking 
rates equal to or better than 10 deg/s, laser pointing 
accuracy better than 100 µm at the retinal surface, uniform 
lesion formation within 5% of apparent size and depth, and 
system reaction time of no more than 5 milliseconds (62). 
However, retinal photocoagulation was not a finally realized 
application. While the system was tested successfully in 
animals for this purpose, in practice, it was applied to eye 
movement measurements and tattoo removal in humans in 
vivo (68).

In 2009, the Navilas (OD-OS, Teltow, Germany) system 
was described by Liesfeld et al. consisting of a digital 
imaging system with a reflex-free color or infrared image 
in combination with an eye-tracking system compensating 
for eye movements during retinal laser photocoagulation or 
thermal stimulation (7,69,70).

Navilas includes a unique pre-planning capability that 
allows users to outline and review the treatment strategy 
before execution of the therapy. With Navilas, users can 
plan caution zones where the laser must not fire while 

planning the points of interest where the laser shall fire. 
Either the images obtained from the Navilas system or from 
other diagnostic devices showing retinal vessel structures, 
such as OCT, indocyanine green angiography, fluorescein 
angiography, and OCTA can be imported and registered. 
Having a set of retinal images is helpful for a better 
understanding of the pathology and especially in deciding 
the positioning of the optimal treatment locations. The user 
is then annotating the images with the desired treatment 
locations. Options include either single spots or several 
spot patterns, such as a hexagonally oriented pattern. The 
locations are drawn via the graphical user interface directly 
onto the digital diagnostic images of the retina. The spacing 
between spots and the spot size can be individually defined. 
After treatment, Navilas stores the treatment plan in a 
digital report that can be exported and shared. The user can 
execute the treatment plan with the help of computerized 
image guidance (Figure 4).

During the actual treatment, the image acquired with 
Navilas, together with the related treatment locations 
(reference image), is automatically registered onto the 
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Figure 4 Overlaid planning images (fundus fluorescein angiography or OCT) with treatment plans (green circles) and already treated areas 
(yellow circles). OCT, optical coherence tomography.

live image obtained from the retina by localization of 
retinal structures, including vessels and other prominent 
structures. Each image from the live stream is registered to 
its preceding image for tracking the retina in subsequent 
steps. The difference in the position of the extracted retinal 
structures is recalculated into an eye movement. Scanners 
then reposition the laser beam according to the calculated 
positioning difference.

Unlike all other eye-tracking systems for retinal laser, the 
Navilas is the only system that has been shown to be robust 
in vivo as early as 2011 (71,72). The group at the University 
of California San Diego first published results regarding 
the clinical accuracy of the system in diabetic macular 
edema (DME), which outperformed manual laser treatment 
by an increased microaneurysm hit rate with navigated 
photocoagulation (72). Such a high treatment accuracy 
with Navilas appears to correspond to favorable clinical 
outcomes (73). Superior accuracy was reconfirmed by Kernt 
et al., showing that 95% of the spots are within a 100 µm 
radius of the target (74). Regarding pain perception during 
treatment, several comparison studies reported a more 

favorable outcome with navigated laser than conventional 
laser treatment for both central and peripheral applications 
(75-80).

The introduction of anti-VEGF has shifted the standard 
treatment paradigm to the use of monthly anti-vascular 
endothelial growth factor (VEGF) injections due to the 
favorable results in visual acuity compared to macular laser 
photocoagulation in DME (81). Although studies did not 
show a benefit of conventional laser further improving the 
visual acuity gain or the number of required anti-VEGF 
injections (82,83), laser was used as a rescue option in 
almost 50% of cases (14). Other studies using navigated 
laser instead of conventional have demonstrated a reduction 
in the need for anti-VEGF with stable visual acuity (84-
86). Furthermore, by using navigation, a more advanced 
treatment to the periphery is feasible, which allows for 
more targeted treatments. Singer et al. used navigation with 
imported angiographic images to locate peripheral ischemia 
as the basis of their treatment approach of rebound macular 
edema (87). Navigated photocoagulation due to its image-
based principle has been conceptually introduced in remote 
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treatments as part of teleophthalmology (88).

Narrative

This search has drawn historical facts and recent knowledge 
from ophthalmic and optics literature and, therefore, covers 
a very broad spectrum. It is possible that some information 
has not been included. As this area is subject to ongoing 
research, updates to this topic will be essential with new 
developments.

Summary

Ophthalmology is traditionally a technological leader 
among medical and surgical specialties. Early adoption of 
the principles of navigation technology is an example of 
why this is so. Navigation in ophthalmology spans from 
imaging diagnostics to most advanced laser and surgical 
procedures, such as the treatment of refractive errors, 
accurate placement of artificial IOLs, or most selective laser 
treatment of retinal diseases such as diabetic retinopathy. 
Navigation has made our decision making more detailed 
and our treatments more accurate and safer. The natural 
results of this are more standardized and predictable 
procedures with better treatment outcomes and increased 
patient satisfaction.

Literature search

We used all available public domains to search for scientific 
literature published in English, German, French, Russian, 
and Spanish languages. The key words included: eye 
tracking, optics, navigated surgery, imaging, refractive and 
surgery, excimer laser. There was no time limitation for 
published reports.

Highlights

 Diagnostic ophthalmic imaging uses features of eye-
tracking.

 Practically all  excimer lasers use eye-tracking 
technology to ensure accurate execution of corneal 
tissue ablation.

 Modern cataract surgery includes eye-tracking assisted 
implantation of IOLs.

 Navigated retinal laser represents a new generation 
system with increased accuracy of treatment.
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