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Background: Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are among the 
leading causes of blindness in the United States and other developed countries. Early detection is the key 
to prevention and effective treatment. We have built an artificial intelligence-based screening system which 
utilizes a cloud-based platform for combined large scale screening through primary care settings for early 
diagnosis of these diseases. 
Methods: iHealthScreen Inc., an independent medical software company, has developed automated AMD 
and DR screening systems utilizing a telemedicine platform based on deep machine learning techniques. For 
both diseases, we prospectively imaged both eyes of 340 unselected non-dilated subjects over 50 years of age. 
For DR specifically, 152 diabetic patients at New York Eye and Ear faculty retina practices, ophthalmic and 
primary care clinics in New York city with color fundus cameras. Following the initial review of the images, 
308 images with other confounding conditions like high myopia and vascular occlusion, and poor quality 
were excluded, leaving 676 eligible images for AMD and DR evaluation. Three ophthalmologists evaluated 
each of the images, and after adjudication, the patients were determined referrable or non-referable for AMD 
DR. Concerning AMD, 172 were labeled referable (intermediate or late), and 504 were non-referable (no or 
early). Concurrently, regarding DR, 33 were referable (moderate or worse), and 643 were non-referable (none 
or mild). All images were uploaded to iHealthScreen’s telemedicine platform and analyzed by the automated 
systems for both diseases. The system performances are tested on per eye basis with sensitivity, specificity, 
accuracy, and kappa scores with respect to the professional graders.
Results: In identifying referable DR, the system achieved a sensitivity of 97.0% and a specificity of 96.3%, 
and a kappa score of 0.70 on this prospective dataset. For AMD, the sensitivity was 86.6%, the specificity of 
92.1%, and a kappa score of 0.76.
Conclusions: The AMD and DR screening tools achieved excellent performance operating together to 
identify two retinal diseases prospectively in mixed datasets, demonstrating the feasibility of such tools in 
the early diagnosis of eye diseases. These early screening tools will help create an even more comprehensive 
system capable of being trained on other retinal pathologies, a goal within reach for public health 
deployment.
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Introduction

Age-related macular degeneration (AMD) and diabetic 
retinopathy (DR) (shown in Figure 1) are some of the most 
common blinding diseases affecting millions of people 
worldwide (1-4). AMD is the leading cause of vision loss 
in those over 50 years of age in the developed world (5-7). 
The number of people with AMD is expected to increase 
1.5-fold over ten years due to our aging population, 
hypertension, and other causes (8). It is often too late to 
mitigate the complications by the time a person visits an 
ophthalmologist, as the treatments cannot regenerate 
vision (9,10). Further, such treatments are expensive, 
typically costing up to $65,000 for one eye, depending on 
the drug used, for a 2-year course of treatment (11). While 
the total (direct and indirect in the USA) cost of AMD is  
$225 billion per year (5) and is expected to increase, the 
indirect cost is even greater due to injury, depression, and 
social dependency resulting from blindness (12).

Diabetic Retinopathy (4) is one of the leading causes of 
blindness, regardless of age, in the developed world. In the 
US, the number of patients suffering from DR is expected 
to reach 6 million by 2020 and 11.3 million by 2030 (13).  
Early detection of the disease is key to its effective 
treatment and subsequent reduction of associated economic 
burdens. The total annual economic burden of eye diseases 
in the US is about $139B (13).

Our literature review found a number of screening 
models (14-16) for detecting AMD automatically but 
without validation from external data or derived from very 
few test images. Among recent advances in deep learning 
(DL) is a method proposed by Liu et al. (17), which utilized 
multiple instances of learning to produce a model built 
with under 5,000 fundus images and an area under the 
curve (AUC) of 0.79. Several studies focused on automated 
screening of DR and have achieved varying performance 

(18,19). Gulshan et al. (20) applied deep learning for DR 
detection and concluded that further research was needed to 
bring it to a clinical setting. Abràmoff et al. (21) proposed a 
similar algorithm with 87% sensitivity and 90% specificity. 
Ting et al. (22) proposed and validated a deep learning 
system built with data from multiethnic populations and 
compared it with professional human graders. Ting’s results 
showed a sensitivity of 90.5%, and a specificity of 91.6% 
for detecting referable DR. Gargeya et al. (23) proposed a 
similar deep learning-based model with an AUC of 0.94, 
a sensitivity of 93%, and a specificity of 87% on a public 
dataset. However, these models, all built on retrospective 
datasets, still need validation in real-world primary care 
clinical settings and a prospective study, which is the paper’s 
motivation.

Telemedicine platforms using cloud-based applications 
have helped increase the rate of screening for eye diseases, 
with one study reporting an increase of diabetes-related 
retinal exams from 37% to 87% (24). Studies have 
concluded that cloud-based DR screening can identify up to 
25% more cases in the diabetic population (25). It has also 
been shown that telemedicine screening of diseases reduces 
costs significantly (26). Therefore, we have combined the 
AMD and DR screening tools on a secure HIPAA compliant 
telemedicine platform (27,28) to screen patients for the  
two eye diseases without additional imaging or visits.

This study demonstrates the validity and suitability of 
the screening system for AMD and DR on prospective data 
in clinical settings. We present this study in accordance with 
the STARD reporting checklist (available at http://dx.doi.
org/10.21037/aes-20-114).

Methods

A patient’s retinal color fundus images are taken in a clinical 

Figure 1 Normal vision (A), DR patient vision (B), and vision with AMD (C).
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setting then uploaded to the iHealthScreen developed 
cloud-based telemedicine platform by the healthcare 
worker. If the image is deemed ungradable by the system, 
it prompts the user to upload a new image. Once the 
image is accepted, the AI-powered automated AMD and 
DR screening algorithms perform evaluations and send 
back reports about the referability with respect to the two 
diseases individually. Based on this report, the patient would 
be referred to an ophthalmologist if needed. The method 
is explained in detail in the following paragraphs. The 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013). The study was approved by 
institutional review board of Mount Sinai (# IRB-18-00778) 
and informed consent was taken from all the patients.

Image acquisition and preprocessing

The screening system, built using recent advances in 
machine learning and artificial intelligence, accepts retinal 
color fundus images, which can be taken from a wide variety 
of cameras and imaging conditions. The images used in 
testing the systems were captured without pharmacological 
dilation with a Topcon TRC NW6 non-mydriatic fundus 
camera (Topcon Corp., Tokyo, Japan) with a 45-degree 
field of view, the DRS camera from CenterVue Inc. and 
the Eidon camera (Eidon, CenterVue Inc., Fremont, CA) 
with a 45-degree field of view. Images were preprocessed 
before training the models to enhance the robustness of 
the systems. A local color averaging technique was used 
to eliminate lighting gradients in the fundus image. An 

example of such a technique is shown in Figure 2. The 
screening systems referenced later in this paper have 
performed well under different imaging conditions.

AI-based telemedicine platform

iHealthScreen Inc. developed an artificial intelligence (AI) 
based telemedicine platform (28) that integrates the server-
side programs for image analysis and deep-learning (29) 
modules intended for screening system, with local remote 
computer or mobile devices for collecting patient data 
and images. The images are first checked for gradability 
automatically by AI developed in-house that achieved over 
99% accuracy on 3,000 fundus images. Once the check 
is passed, the remote devices in primary care will upload 
images and data to the server for automatic analysis, as 
shown in Figure 3. The telemedicine platform is compatible 
with both web and mobile platforms. It sends a report to 
the remote devices with an individual’s screening results of 
the two eye diseases and further recommendations to visit 
an ophthalmologist. The entire process from data entry 
to image analysis report is determined to take only a few 
minutes, depending on the user’s experience in handling the 
equipment, saving time for both the doctor and the patient. 
The client-side app will call the clinical decision support 
system to access the data, perform automated screening, 
and decide if a referral to an ophthalmologist is necessary.

Deep learning (29) is a popular technique that has been 
recently used for eye disease screening. Deep learning is 
a class of machine learning techniques that allows systems 

Figure 2 Original RGB fundus image (A), preprocessed image (B), with brightness gradient correction.
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to learn features directly from the data without having to 
specify any rules or conditions about predictive parameters 
if there is sufficiently large labeled data input. Deep 
learning has also been applied in medical applications to 
detect various diseases such as macular degeneration (30), 
melanoma (31), and others. Our two models use recent 
advances in deep learning and artificial intelligence to 
produce highly accurate classifiers.

AMD screening system

The AMD screening system (32-34) was developed, 
tested, and validated by iHealthScreen Inc. for identifying 
referable AMD patients. An ensemble of deep learning 
screening methods was trained and validated on 116,875 
color fundus photos from 4,139 participants in the Age-
Related Eye Diseases study (35) to classify them as normal 
(healthy), early, intermediate, or advanced AMD based on 
the presence and extent of retinal abnormalities. This study 
evaluated the system’s performance as a binary classifier—
referable (intermediate/late) and non-referable (normal/
early). For the identification of referable AMD over non-
referable, the system achieved 99.2% accuracy, with a 
sensitivity of 98.9% and a specificity of 99.5%.

DR screening system

The DR screening model (36,37) was developed by 
iHealthScreen Inc. using deep learning techniques and 
tested using 88702 images from the Kaggle dataset (38) 
and externally validated using 1,748 high-resolution fundus 
images from the Messidor-2 (39) dataset. The images 
were uploaded in the cloud-based software for testing the 
automated DR screening platform. The system accepts a 
fundus image and automatically grades it on a five-point 
scale—normal, mild, moderate, severe non-proliferative 
with diabetic macular edema and proliferative DR. An 
image is considered as referable DR if the grade is moderate 
or worse. Otherwise, it is considered as non-referable. 
The automated referable and non-referable DR system 
evaluation is compared against the expert ophthalmologists’ 
evaluation. The screening system, used on the Kaggle 
dataset, achieved a sensitivity of 99.2%, a specificity of 
97.6%, and an AUC of 0.99 when identifying referable DR. 
The system was also externally validated in Messidor-2, 
where it achieved a sensitivity of 97.6%, a specificity of 
99.5%, and an AUC of 0.99.

Clinical validation

For AMD and DR, 340 non-dilated subjects aged over  
50 years had retinal color imaging of both eyes performed 
randomly at New York Eye and Ear faculty retina practices 
with an FDA approved color fundus camera (Eidon, 
CenterVue Inc., Fremont, CA, USA) between October 
2019 and April 2020, and 152 diabetic patients at New 
York Eye and Ear faculty retina practices, ophthalmic and 
primary care clinics, yielding 984 images. After exclusion 
of 308 images with other confounding conditions like 
myopia and vascular occlusion, and those of poor quality, a 
total of 676 images were selected and evaluated for AMD 
and DR. It should be noted that, while in practice, patient 
referral is based on the worse eye, the models are trained 
and evaluated on per eye image basis. All images were 
uploaded to the telemedicine platform and analyzed by the 
appropriate screening systems.

Three expert graders also classified patients’ eyes as 
referable AMD (intermediate or late AMD) or non-
referable (healthy macula or early AMD). Separately, they 
were also classified as referable DR and non-referable 
DR. After adjudication of disagreement in the grading to 
consensus, 172 were referable, and 504 eyes were non-
referable AMD. Similarly, 33 were referable, and 643 were 
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Figure 3 The screening system workflow showing image 
acquisition, gradability testing, image analysis, referral to an 
ophthalmologist, and the upload of results to the telemedicine 
application.
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non-referable DR.

Statistical analysis and measures

With a referable case as “positive” and non-referable case as 
“negative”, clinically relevant measures such as sensitivity, 
specificity, accuracy, and kappa scores were calculated, with 

95% confidence intervals. For the two diseases, 2×2 tables 
were generated to characterize the algorithm’s sensitivity 
and specificity with respect to the reference standard. The 
reference standard was defined as the majority decision of 
the experts’ grading. The 95% confidence intervals for the 
sensitivity and specificity of the algorithm were calculated to 
be exact Clopper-Pearson intervals (40), which corresponded 
with individual coverage probabilities of sqrt (0.95)  ~ 0.975.

Intergrader reliability was measured among the human 
graders using kappa scores. The graders’ disagreements 
were adjudicated by taking the majority grade among the 
graders (two of three grader agreement). The human grader 
disagreement is an important measure to compare system 
performance with that of humans. The grades thus obtained 
are used to measure the performance of our DR and AMD 
screening system.

Results

To assess disagreement among the three graders, we chose 
the AMD dataset and kappa score measures. The majority 
grading, two of three graders agree, was compared to each 
of the graders, and kappa scores were calculated. Against 
majority grading, grader 1 had a kappa score of 0.71, while 
grader 2 scored 0.95, and grader 3 scored 0.88 (see Table 1).

Against the majority agreement grading, the AMD 
screening system (see Tables 2 and 3) achieved a sensitivity 
of 86.6% (80.6% to 91.3%), a specificity of 92.1% (89.4% 
to 94.3%), an accuracy of 90.7% (88.2% to 92.8%), and a 
kappa score of 0.76 (0.71 to 0.82) on the prospective dataset. 
The DR screening system achieved (see Tables 2 and 4)  
a sensitivity of 97.0% (84.2% to 99.9%), a specificity of 
96.3% (94.5% to 97.6%), an accuracy of 96.3% (94.6% to 
97.6%), and a kappa score of 0.70 (0.59 to 0.81).

Discussion
 

In this study, we have used two prospective datasets and 
demonstrated the suitability of an AI-based automated 
combined screening platform for AMD and DR in clinical 
settings. The screening platform can fill an unmet need for 
screening individuals with AMD and DR through a regular 
primary care doctor’s visit. A study from the National Eye 
Institute showed that half of the patients do not obtain eye 
examinations recommended by their general physicians. 
Optometrists and ophthalmologists who screen for DR and 
AMD are often limited geographically and have limited 
time. Specialist visits are also time-consuming. In these 

Table 1 Inter-grader reliability calculated using kappa scores 
against the majority grade (two of three grader agreement)

Graders/eye diseases Kappa score against majority grade

Graders 1 0.71

Graders 2 0.95

Graders 3 0.88

Table 2 Performance evaluation of the diabetic retinopathy (DR) 
and age-related macular degeneration (AMD) screening systems 
on the prospective dataset with accuracy, sensitivity, specificity, and 
kappa scores measured against adjudicated human grading

Metric AMD screening DR screening 

Sensitivity 86.6% (80.6% to 91.3%) 97.0% (84.2% to 99.9%)

Specificity 92.1% (89.4% to 94.3%) 96.3% (94.5% to 97.6%)

Accuracy 90.7% (88.2% to 92.8%) 96.3% (94.6% to 97.6%)

Kappa score 0.76 (0.71 to 0.82) 0.70 (0.59 to 0.81)

Table 3 Confusion matrix of the AMD screening system on  
prospective clinical data—adjudicated human grading vs. system 
grading

AMD grading Predicted referable
Predicted 

non-referable

Human graded referable 149 23

Human graded non-referable 40 464

AMD, age-related macular degeneration. 

Table 4 Confusion matrix of the DR screening system on prospective 
clinical data—adjudicated: human grading vs. system grading

DR grading Predicted referable
Predicted 

non-referable

Human graded referable 32 1

Human graded non-referable 24 619

DR, diabetic retinopathy.
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instances, automated screening tools within the primary 
care setting will help mitigate these issues and provide 
better care for patients with these eye diseases.

We have developed and validated the telemedicine-ready, 
AI-based, and fully automated screening tools that can be 
used for screening these diseases with just one image per 
eye in one visit. Evaluation of the systems in primary care 
clinics validated the high accuracy of these screening tools, 
comparable to that of human graders. We note that we used 
different retinal color fundus cameras (Topcon TRC NW6 
non-mydriatic cameras) for developing the model than 
those used to obtain the prospective data (DRS and Eidon 
cameras from CenterVue Inc.). Thus, our results are already 
robust to various types of cameras in the development and 
test phases and, with larger image sets from each camera, 
can surely produce even better results.

These AI-based screening tools should be tested 
prospectively in more diverse clinical settings with cost and 
time analyses for establishing reliability, consistency, and 
quantifying individual cost and time benefits. While two 
eye diseases can be screened simultaneously, the system 
is limited to only DR and AMD. Other eye diseases can 
potentially be screened using the same fundus image, such 
as glaucoma and hypertensive retinopathy. A non-referable 
grade in either AMD or DR speaks only to its referability 
for the said diseases. That means other non-AMD and non-
DR related pathologies, which the ophthalmologists would 
have picked up while reviewing the fundus images, can be 
missed by the more targeted automated grading systems. 
Making the automated systems more versatile in detecting 
other pathologies is warranted.

As evident from the disagreements in specialist human 
graders and their comparisons with the screening systems’ 
kappa scores, it can be concluded that the automated tools 
perform as well as the human graders, if not better. The 
performance of the tools is confirmed in the context of real-
world image acquisition and analysis. The physical system 
and the telemedicine software were tested for usability, 
convenience, and security. The screening systems were 
deployed on HIPAA-compliant telemedicine platforms and 
built for minimum interaction with the interface. By using 
such a secure, fast, reliable, and low-cost system, millions of 
eyes can potentially be saved from preventable vision-loss, 
with significant healthcare savings.

Acknowledgments

Funding: This project was supported by NIH SBIR Grant: 

1R44EY031202.

Footnote

Provenance and Peer Review: This article was commissioned 
by the editorial office, Annals of Eye Science for the series 
“Retinal Imaging and Diagnostics”. The article has 
undergone external peer review.

Reporting Checklist: The authors have completed the STARD 
reporting checklist. Available at http://dx.doi.org/10.21037/
aes-20-114

Data Sharing Statement: Available at http://dx.doi.
org/10.21037/aes-20-114

Conflicts of Interest: The authors have completed the 
ICMJE uniform disclosure form (available at http://dx.doi.
org/10.21037/aes-20-114). The series “Retinal Imaging 
and Diagnostics” was commissioned by the editorial 
office without any funding or sponsorship. RTS served 
as the unpaid Guest Editor of the series, and serves as an 
unpaid editorial board member of Annals of Eye Science 
from May 2019 to Apr 2021. AB reports grants from 
iHealthScreen Inc., during the conduct of the study; other 
from iHealthScreen Inc., outside the submitted work. AG 
reports grants from NIH SBIR, during the conduct of the 
study; other from iHealthscreen Inc, outside the submitted 
work. RTS reports a patent issued: the multi excitation 
image analysis technique for hyperspectral AF imaging. The 
authors have no other conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). The study was approved by institutional 
review board of Mount Sinai (# IRB-18-00778) and 
informed consent was taken from all the patients. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 

http://dx.doi.org/10.21037/aes-20-114 
http://dx.doi.org/10.21037/aes-20-114 
http://dx.doi.org/10.21037/aes-20-114
http://dx.doi.org/10.21037/aes-20-114
http://dx.doi.org/10.21037/aes-20-114
http://dx.doi.org/10.21037/aes-20-114


Annals of Eye Science, 2021 Page 7 of 8

© Annals of Eye Science. All rights reserved. Ann Eye Sci 2021;6:12 | http://dx.doi.org/10.21037/aes-20-114

formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1.	 AMD-Defined. Age-Related Macular Degeneration 
(AMD). Projections for AMD (2010-2030-2050), National 
Eye Institute (NEI), last accessed on August 3, 2020.

2.	 Age-Related-Eye-Disease-Study-Research-Group. 
The Age-Related Eye Disease Study (AREDS): design 
implications. AREDS report no 1. Control Clin Trials 
1999;20(6):573-600.

3.	 Bartlett H, Eperjesi F. Use of Fundus Imaging in 
Quantification of Age-related Macular Change. Surv. 
Ophthalmol 2007;52:655-71.

4.	 American Academy of Ophthalmology. Diabetic 
Retinopathy PPP – 2014. Available online: http://one.
aao.org/preferred-practice-pattern/diabetic-retinopathy-
ppp--2014, last accessed on October 1, 2020.

5.	 Schmier JK, Jones ML, Halpern MT. The burden of 
age-related macular degeneration. Pharmacoeconomics 
2006;24:319-34.

6.	 Hassell JB, Lamoureux EL, Keeffe JE. Impact of age 
related macular degeneration on quality of life. Br J 
Ophthalmol 2006;90:593-6.

7.	 Australia CfER. Centrally Focused: The Impact of Age 
Related Macular Degeneration. Prepared by Access 
Economics for the Centre for Eye Research Australia, 
Melbourne 2006.

8.	 Wong TY, Rogers SL. Age Related Macular Degeneration: 
time for a randomized controlled trial. Am J Ophthalmol 
2007;144:117-9.

9.	 AMD.Org - Macular Degeneration Partnership. 
Available online: http://www.amd.org/what-is-macular-
degeneration/dry-amd/, last accessed on October 1, 2020.

10.	 Kanagasingam Y, Bhuiyan A, Abràmoff M, et al. Progress 
on retinal image analysis for age related macular 
degeneration. Prog Retin Eye Res 2014;38:20-42.

11.	 Macular Degeneration Treatment Cost. How Much Does 
Macular Degeneration Treatment Cost? Available online: 
https://healthcosthelpercom/macular-degenerationhtml, 
last accessed on August 10, 2020.

12.	 Age-Related Eye Disease Study Research Group, 
SanGiovanni JP, Chew EY, et al. The Relationship of 
Dietary Carotenoid and Vitamin A, E, and C Intake With 
Age-Related Macular Degeneration in a Case-Control 
Study. Arch Ophthalmol 1999;20:573-600.

13.	 Eye Disease Statistics, National Eye Insititute 2014. 

Available online: https://nei.nih.gov/sites/default/files/nei-
pdfs/NEI_Eye_Disease_Statistics_Factsheet_2014_V10.
pdf, last accessed on October 1, 2020.

14.	 Zheng Y, Hijazi MHA, Coenen F. Automated “disease/
no disease” grading of age-related macular degeneration 
by an image mining approach. Invest Ophthalmol Vis Sci 
2012;53:8310-8.

15.	 Jayasakthi J, Rajaselvi VM. editors. Detection of 
Macular Degeneration in Retinal Images Based on 
Texture Segmentation. Proceedings of the International 
Conference on Soft Computing Systems. Springer, 2016.

16.	 Bhuiyan A, Kawasaki R, Sasaki M, et al. Drusen Detection 
and Quantification for Early identification of age related 
macular degeneration using color fundus imaging. J Clin 
Exp Ophthalmol 2013;4:305.

17.	 Liu H, Wong DW, Fu H, et al. DeepAMD: detect early 
age-related macular degeneration by applying deep 
learning in a multiple instance learning framework. Asian 
Conference on Computer Vision. Springer, 2018.

18.	 Xiao D, Bhuiyan A, Frost S, et al. Major automatic diabetic 
retinopathy screening systems and related core algorithms: 
a review. Machine Vision and Applications 2019;30:423-46.

19.	 Saha SK, Xiao D, Bhuiyan A, et al. Color fundus image 
registration techniques and applications for automated analysis 
of diabetic retinopathy progression: a review. Biomedical 
Signal Processing and Control 2019;47:288-302.

20.	 Gulshan V, Peng L, Coram M, et al. Development and 
validation of a deep learning algorithm for detection of 
diabetic retinopathy in retinal fundus photographs. JAMA 
2016;316:2402-10.

21.	 Abràmoff MD, Lou Y, Erginay A, et al. Improved 
automated detection of diabetic retinopathy on a publicly 
available dataset through integration of deep learning. 
Invest Ophthalmol Vis Sci 2016;57:5200-6.

22.	 Ting DSW, Cheung CYL, Lim G, et al. Development 
and validation of a deep learning system for diabetic 
retinopathy and related eye diseases using retinal images 
from multiethnic populations with diabetes. JAMA 
2017;318:2211-23.

23.	 Gargeya R, Leng T. Automated identification of diabetic 
retinopathy using deep learning. Ophthalmology 
2017;124:962-9.

24.	 Cloud-based imaging, telemedicine platform increases rate 
of diabetic retinal exams: Healio Primary care optometry 
news; 2018. Available online: https://www.healio.
com/news/optometry/20181206/cloudbased-imaging-
telemedicine-platform-increases-rate-of-diabetic-retinal-
exams, last accessed on October 1, 2020.

https://creativecommons.org/licenses/by-nc-nd/4.0/


Annals of Eye Science, 2021Page 8 of 8

© Annals of Eye Science. All rights reserved. Ann Eye Sci 2021;6:12 | http://dx.doi.org/10.21037/aes-20-114

25.	 Naik S, Wykoff CC, Ou WC, et al. Identification of 
factors to increase efficacy of telemedicine screening for 
diabetic retinopathy in endocrinology practices using 
the Intelligent Retinal Imaging System (IRIS) platform. 
Diabetes Res Clin Pract 2018;140:265-70.

26.	 Deschenes S. 5 ways telemedicine is reducing the cost of 
healthcare July 12, 2012. Available online: https://www.
healthcarefinancenews.com/news/5-ways-telemedicine-
reducing-cost-healthcare, last accessed on October 1, 2020.

27.	 Assistance HC. Summary of the hipaa privacy rule. Office 
for Civil Rights 2003.

28.	 iHealthScreen. iPredict application 2019. Available online: 
https://ipredict.health/, last accessed on October 1, 2020.

29.	 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 
2015;521:436.

30.	 Govindaiah A, Hussain A, Smith R, et al. Deep 
Convolutional Neural Network-Based Screening and 
Assessment of Age-Related Macular Degeneration from 
Fundus Images. In the Proceedings of IEEE International 
Symposium on Biomedical Imaging 2017;10.1109/
ISBI.2018.8363863:1525-8.

31.	 Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level 
classification of skin cancer with deep neural networks. 
Nature 2017;542:115.

32.	 Govindaiah A, Smith T, Bhuiyan A. A New and Improved 
Method for Automated Screening of Age-Related Macular 
Degeneration Using Ensemble Deep Neural Networks. In 
the proceedings of IEEE EMBC 2018;2018:702-5.

33.	 Alauddin S, Bhuiyan A, Govindaiah A, et al. A Prospective 
Trial of an Artificial Intelligence based Telemedicine 

Platform to Stratify Severity of Age-related Macular 
Degeneration (AMD). Invest Ophthalmol Vis Sci 
2020;61:1843.

34.	 Bhuiyan A, Wong TY, Ting DSW, et al. Artificial 
Intelligence to Stratify Severity of Age-Related Macular 
Degeneration (AMD) and Predict Risk of Progression to 
Late AMD. Transl Vis Sci Technol 2020;9:25.

35.	 The Age-Related Eye Disease Study system for classifying 
age-related macular degeneration from stereoscopic color 
fundus photographs: the Age-Related Eye Disease Study 
Report Number 6. Am J Ophthalmol 2001;132:668-81.

36.	 Bhuiyan A, Govindaiah A, Hossain M, et al. Development 
and Validation of an Automated AI-based Diabetic 
Retinopathy Screening Tool for Primary Care Setting. 
Invest Ophthalmol Vis Sci 2020;61:3821.

37.	 Bhuiyan A, Govindaiah A, Deobhakta A, et al. 
Development and validation of an automated diabetic 
retinopathy screening tool for primary care setting. 
Diabetes Care 2020;43:e147-8.

38.	 Kaggle Diabetic Retinopathy Detection competition. 
Available online: https://www.kaggle.com/c/diabetic-
retinopathy-detection, last accessed on October 1, 2020.

39.	 Messidore-2. Kaggle - Adjudicated DR Severity, DME, 
and Gradability for the MESSIDOR-2 fundus dataset. 
Available online: https://wwwkagglecom/google-brain/
messidor2-dr-grades (last accessed on October 1, 2020).

40.	 Clopper CJ, Pearson ES. The use of confidence or fiducial 
limits illustrated in the case of the binomial. Biometrika 
1934;26:404-13.

doi: 10.21037/aes-20-114
Cite this article as: Bhuiyan A, Govindaiah A, Alauddin S, 
Otero-Marquez O, Smith RT. Combined automated screening 
for age-related macular degeneration and diabetic retinopathy 
in primary care settings. Ann Eye Sci 2021;6:12. 


