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Review Article

Inflammatory pathways in pathological neovascularization in 
retina and choroid: a narrative review on the inflammatory drug 
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Objective: We review inflammatory drug targets in retinal and choroidal neovascularization (NV) in 
narrative manner. 
Background: Vascular remodeling and angiogenesis are processes typically associated with wound-healing 
mechanisms intended to minimize ischemia and maintain tissue homeostasis. In the eye, however, these 
actions primarily deteriorate tissue homeostatic recovery, and could even contribute to the progress of severe 
conditions, e.g., blindness. Angiogenesis in diabetic retinopathy (DR) and age-related macular degeneration 
(AMD) is the primary cause of vision loss in working-age and elderly populations. Current treatment of 
anti-vascular endothelial growth factor (VEGF) agents has limited action efficacy, working in less than 50% 
patients. Understanding cellular and molecular networks associated in retinal vascular remodeling may 
provide an insight to develop novel therapeutic strategies. 
Methods: Here, we highlight ocular cells—endothelial, mural, retinal pigment epithelium (RPE), glial 
and macrophages, as well as inflammatory molecules—such as the complement system, stromal derived 
factor-1, chemokine CXC receptor-4, inflammasome, interleukin-18, programed cell death ligand-1, insulin-
like growth factor (IGF) and sphigosin-1-phosphate receptor, associated with retinal and choroidal NV, and 
discuss their recent and future therapeutic approaches.
Conclusions: A deeper understanding on pathogenesis, pathobiology including ocular immunobiology of 
retinal and choroidal NV will pave the way to expand and overleap the current therapeutic approach.
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Introduction

The retina works with a high metabolic demand, and 
vascular maintenance is vital to sustaining normal metabolic 
function, visual processing and retina homeostasis (1). 
Improper vascular maintenance and/or blood supply 
affect normal visual function and cause disease conditions. 
Dysregulated angiogenesis is one pathological aspect 
of vision-impairing retinal diseases, such as diabetic 
retinopathy (DR) and age-related macular degeneration 
(AMD). In these diseases, neovascularization (NV) 
accelerates structural and functional damage in the retina 
(asterisks in Figure 1). At the early and intermediate 
stages of DR and AMD, prior to NV, there are activated 
endothelial cells (ECs) and immune cells, local and systemic 
inflammatory responses, and retina degeneration (2). 

DR and AMD are the leading causes of the blindness 
among working adults, and elderly population, respectively. 
The prevalence of diabetes mellitus (DM) was 442 million 
in 2014 and continues to increase throughout the world (3).  
More than one-third of DM patients develop DR, one 
of the most common complications (4,5). DR patients 
may appear asymptomatic at early stages, but the ongoing 
progression of leukocyte adherence, capillary dropout, and 
mural cell activation and loss can advance to a later stage 
known as proliferative DR (PDR). PDR is characterized 
by retinal NV at the vitreoretinal interface and/or the 
inner retina (Figure 1A). In contrast, AMD, a multifactorial 
degenerative disorder of the central retina, advances to 
geographic atrophy and/or choroidal NV (Figure 1B). DR 
and AMD are characterized by the loss of inner and outer 
blood retina barrier (BRB) integrity, respectively. Inner 
BRB is maintained by tight junctions of endothelia, mural 
and glial cells (Figure 1A), whereas outer BRB is maintained 
by tight junctions of retinal pigment epithelium (RPE) and 
Bruch’s membrane (BrM) (Figure 1B). 

In this review article, we aim to describe and discuss the 
pathological aspects of cells associated in inner and outer 
BRB and retinal and choroidal NV, as well as the role of 
inflammatory molecules. Finally, we will discuss current 
advances in the therapeutic targets for retinal and choroidal 
angiogenic conditions. We present the following article in 
accordance with the Narrative Review reporting checklist 
(available at http://dx.doi.org/10.21037/aes-21-4)

Cells in retinal and choroidal NV 

The final effector cells in angiogenesis are ECs, but the 

main pathological cells that initiate the process are mural 
and RPE cells in retinal and choroidal NV, respectively. 
Mural and RPE cells are essential in maintaining the inner 
and outer BRB. Further, there are many cell types associated 
with the pathological processes of retinal and choroidal NV. 
We categorize them for the convenience of description: 
EC and mural cell, RPE, glial cells, and microglia and 
macrophages.

Cells in retinal and choroidal NV: vascular EC and mural 
cell 

Retinal vasculature consisting of ECs, basement membrane 
and mural cells, is the essential component for inner BRB 
and protects the inner retina (Figure 1A). Retinal blood 
vessels contain an abundance of mural cells (1:1 ratio with 
EC), which is quite uncommon in other body regions. For 
an example, the varying ratio of mural cell to EC is 1:100 
in skeletal muscle (6,7). Mural cells support EC survival 
and vascular stability, inhibiting angiogenesis in normal 
retina (8). During DR progression, the loss of mural cells 
is an early feature in retinal capillaries (9), causing capillary 
dilation, microaneurysms, leakage and edema, as well as 
EC death, leading to vascular closure and eventual retinal 
NV (8,10,11). There are some notable differences in 
fenestration between retinal and choroidal vasculatures. 
The choriocapillaris (innermost layer of choroid) is highly 
permeable and consists of only ECs, with very little 
basement membrane and mural cells (12,13) (Figure 1B), 
whereas RPE contains tight junctions which protect the 
outer neural retina. 

Cells in retinal and choroidal NV: RPE

RPE is a polarized monolayer, with apical microvilli 
processes adjacent to the photoreceptors and a folded basal 
aspect on the BrM (Figure 1B). RPE tight junctions, located 
apical-laterally to the adjacent cells, provide an essential 
property of the outer BRB. RPE controls the passage 
of ions, water, and metabolites between the retina and 
choriocapillaris, and takes up nutrients, such as glucose and 
fatty acids, from the choroid to nourish photoreceptors, 
and removes metabolic wastes from the photoreceptors 
to the choriocapillaris. RPE, also participates in the 
visual cycles, providing 11-cis retinal to photoreceptors 
and taking all-trans retinal from photoreceptors (14,15). 
RPE dysfunction, therefore, disturbs the healthy outer 
retinal environment. Aged RPE increases lipofuscin and 
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Figure 1 Retina and choroidal neovascularization in DR and AMD. The diagram depicts retinal and choroidal blood vessels, as well as 
structures and cells associated with inner and outer blood-retina barriers, and their association with DR or AMD. Inner blood-retina barrier 
is more associated with DR (A), whereas outer blood-retina barrier is more associated with AMD (B). Blue line indicates close association 
with DR pathogenesis, and red line indicates close association with AMD pathogenesis. Dotted lines indicate less association. DR, diabetic 
retinopathy; AMD, age-related macular degeneration; BrM, Bruch’s membrane; Ch, choroid; EC, endothelial cell; GC, ganglion cell; INL, 
inner nuclear layer; IPL, inner plexiform layer; IS, inner segment of photoreceptor; NFL, nerve fiber layer; OPL, outer plexiform layer; OS, 
outer segment of photoreceptors; Ph, photoreceptors; RPE, retinal pigment epithelium.
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basal deposits, forming drusen. In AMD, RPE is a major 
degenerated cell type and secretes vascular endothelial 
growth factor (VEGF), an angiogenic molecule, and the 
increased VEGF induces choroid NV (14) (Figure 2). 
RPE disturbance, along with reduced phagocytic and 
electrophysiological function, is observed in DR as well 
(16-18) (Figure 2). 

RPE secretes a variety of growth factors to support 
photoreceptors and ECs and regulate angiogenesis: 
fibroblast growth factor (FGF), transforming growth 
factor β (TGFβ), ciliary neurotrophic factor (CNTF), 
pigment-epithelium-derived factor (PEDF) and VEGF, 
etc. FGF2 (19) and TGFβ (20) are upregulated in RPE/
choroid tissue of choroidal NV, and the inhibition of FGF2 
(21,22) and TGFβ (20,23) prevents the NV formation in 
animals. However, there are controversial observations 

that the absence of TGFβ signaling in microglia (24) or 
EC (25) exacerbates choroidal NV. Therefore, TGFβ 
function is either pro- or anti-angiogenic, depending on 
the intracellular signaling pathways and the cell types (26).  
CNTF (27) and PEDF (28), secreted from the apical 
surface of RPE, support photoreceptor survival and 
suppress NV in retina, while VEGF is mainly secreted from 
the basolateral surface of RPE to support choroid (28,29). 
VEGF expression decreases with age but continues to 
persist (30-32). Furthermore, RPE secretes cytokines and 
chemokines, such as monocyte chemoattractant protein 
1 (MCP1), in a polarized manner (33,34), recruiting 
leukocytes and amplifying inflammation (Figure 3A). The 
balance and polarized secretion of anti- and pro-angiogenic 
and inflammatory molecules maintains a healthy outer 
retinal environment (Figure 3B-3D). 
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Figure 2 Cells associated in pathogenesis of DR and AMD. Major pathological function of cells associated with DR and AMD is described. 
Blue line indicates association with DR, and red line indicates association with AMD. Solid lines indicate close whereas dotted lines less 
association. DR, diabetic retinopathy; AMD, age-related macular degeneration; EC, endothelial cell; RPE, retinal pigment epithelium; 
VEGF, vascular endothelial growth factor.
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Cells in retinal and choroidal NV: astrocytes and Müller 
glia

Astrocytes and Müller glia in neurovascular units of the 
retinal vascular plexus (Figure 1A) are altered and associated 
with pathogenesis of retinal and choroidal NV (Figure 2). 
Astrocytes located in nerve fibers and ganglion cell layers 
are initially damaged before Müller cell activation during 
DR progression (35,36) and astrocyte alteration is also 
reported in AMD patients (37,38) (Figure 2). Müller glia, 
located across the entire retina, support and modulate 
all neuron types in the retina and is the major cell type 
to secrete the pro-angiogenic molecule VEGF, in DR 
(15,39,40). Müller glia activation and alteration are also 
observed in AMD: Glial fibrillary acidic protein-positive 
Müller glia processes are extended to the outer limiting 
membrane (41,42), and are sprouted on the vitreal surface 
of the inner limiting membrane (38) (Figure 2). 

Cells in retinal and choroidal NV: microglia and 
macrophages 

Microglia, the retina resident immune cell type (Figures 2,3A),  
are normally found in two plexiform layers, but they are 
relocated to damaged areas (43) (Figure 3A). The activated 
microglia produce inflammatory cytokines and other 
molecules, such as metalloproteases and nitrous oxide, 
which potentiate chronic pathological inflammation (44). 
There is further direct evidence that microglia are involved 
in NV: the lack of microglia exhibits a reduced vascular 
density (45,46) and co-culture of microglia and aortic ring 
enhances the vascular branches from the ring (47). The NVs 
recruit cells from peripheral blood stream and bone marrow 
as well (48-50) (Figures 2,3A). The resident microglia and 
recruited monocytes and macrophages activate into two 
subgroups: M1 and M2 microglia and macrophages, and 
neutrophils activate into, typically, N1 and N2 (51-53). M1 
microglia and macrophages, and N1 neutrophils secrete 
Th1-derived cytokines, such as interferon (IFN)-γ, whereas 
M2 macrophages and N2 neutrophils secrete Th2-derived 
cytokines, such as IL-4. IL-4 is either pro-angiogenic (54) 
or anti-angiogenic (55,56) (Figure 3C). M2 macrophages 
and N2 neutrophils additionally secrete pro-angiogenic 
molecules, such as VEGF and matrix metalloprotinase 9 
(51,57-59) (Figure 3C). 

Besides local unbalanced inflammation, peripheral 
inflammation is also associated with DM/DR and AMD. 
The deletion of peroxisome proliferator activated receptor-γ 

(PPAR-γ), a nuclear receptor transcription factor that 
mediates M2 macrophage phenotype (60), contributes to 
obesity and insulin resistance (61,62). On the other hand, 
choroidal NV patients have higher counts of macrophages 
and neutrophils, and elevated levels of inflammation 
markers, such as C-reactive protein, and platelets in blood 
(63,64). VEGF+ M2 activated macrophages are peripherally 
observed at the initial choroidal NV stage (65) as well, 
and CCR2 monocyte depletion suppresses choroidal NV 
formation (66). Transgenic ccl2, ccr2, cx3cr1 and ccl2/cx3cr1 
deficient mice are associated with aberrant monocyte 
trafficking and exhibit choroidal NV features with other 
AMD phenotypes (67-70). Finally, peripheral monocyte 
depletion induced by clodronate (48) and neutrophil 
depletion (CC chemokine receptor 2 knockout mice) (66) 
result in a reduced size of laser-induced choroidal NV, 
indicating the direct contribution of peripherally circulating 
immune cells in the NV process. 

Inflammatory pathways in retinal and choroidal 
NV

It is well known that inflammatory pathways are highly 
activated in retinal and choroidal NV, owing to dysregulation 
of complement activities in DR and AMD (71,72), as well 
as increased environmental risk factors such as obesity, 
hypertension, smoking and high-fat diet (73-76). Genetic 
studies have indicated that a dysregulated complement 
system is linked with DR (77,78) and AMD (72,79). The 
inflammatory features of local resident and recruited cells 
from peripheral blood stream and bone marrow contribute 
to the NV environment of DR and AMD. We review the 
current advances in inflammatory molecular pathways of 
the complement system, stromal derived factor-1 (SDF-1) 
/chemokine CXC receptor-4 (CXCR4), inflammasome 
nucleotide-binding oligomerization domain (Nod)-like 
receptor containing domain 3 (NLRP3), interleukin 18  
(IL-18), programed cell death ligand-1 (PD-L1), insulin-
like growth factor (IGF) and sphigosin-1-phosphate 
receptor (S1PR), to gain insights into potential candidates of 
therapeutic targets to treat retinal and choroidal NV.

Inflammatory pathways in retinal and choroidal NV: 
complement system 

The complement system, part of the innate immune 
system, participates in pathogen elimination, but also 
becomes involved in diverse biological processes including 



Annals of Eye Science, 2021Page 6 of 17

© Annals of Eye Science. All rights reserved. Ann Eye Sci 2021;6:24 | https://dx.doi.org/10.21037/aes-21-4

Complement system

Classical 
Pathway

Intrinsic 
Pathway

Terminal 
Pathway

Lectin 
Pathway

Alternative 
Pathway

Recruited 
Cells

EC

CFB
CFD

CFH

CD80

PD-1

CXCR4
SDF-1

VEGF

VEGFR

pro-cas1

pro-cas1

HIF1a

Retina

cas1

cas1

NLRP3

NLRP3

ASC

ASC

NLRP3

ASC

cas1pro-cas1

pro-IL1b
pro-IL18

pro-IL1b
pro-IL18

pro-IL1b 
pro-IL18

M1 activation 
M2 activation

Cytokines 
release

NLRP3 activation
M1 activation  
M2 activation

LDLS1P

S1PR1

S1PR1

Gal-1 HIF1a

EMT, NLRP3 activation

IL1b
IL18

IL1b
IL18

IL1b 
IL18

PD-L1

C3

C5

C6
C7
C8
C9

C3b

C5b

MAC

IGF/ IGFR, IGFBP

IGFBP-3
Fragmented IGFBP-3

IGF-I
IGF-I

IGF-IR

VEGF

IGFBP-3R

EC, RPE, Müller glia

RPE, Müller glia, Astrocytes

Recruited Cells  EC Microglia

S1P/S1PRs

C3a

C5a

SDF-1/CXCR4, NLRP3, PD-L1B

D

A

C
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cell differentiation, synaptogenesis, tissue clearance, 
degeneration, regeneration, lipid metabolism, tumorigenesis 
and angiogenesis (80). Activation of the complement 
system is accomplished through three pathways: classical, 
lectin, and alternative (Figure 4A). Classical pathway is 
associated with humoral immune system, activated by 
antigen-antibody binding, and lectin pathway is associated 
with innate immune system, activated by glycoproteins and 

glycolipids, whereas the alternative pathway is particularly 
implicated in sterile/pathogen-free inflammation of chronic 
neurodegenerative diseases (80,81). 

While the initiation of each pathway is distinct, all three 
eventually converge to produce C3 and C5 convertases 
(80,81). Complement factor B (CFB), complement 
factor D (CFD) and serine proteases are required for the 
generation of C3 convertase, while complement factor 
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H (CFH) is the main inhibitor of C3 activation. The 
anaphylatoxins C3a and C5a are the chemo-attractants 
that guide monocytes, macrophages, neutrophils and the 
other immune cells. Complement activation is implicated 
in DR and AMD pathogenesis and pathobiology (71,81,82). 
In retinal and choroidal NV, there are high levels of 
complement activators, such as CFD, C3 and C5, and 
low level of regulators, such as CFH (Figures 3B and 4A). 
Resistance to streptozotocin (STZ)-induced diabetes 
was observed in C3 knockout mice (83), and the genetic 
association of C5 genes in type 2 diabetes and PDR was 
observed (78,84). Complement components are found in 
patient choroidal NV (71,72), and the deficiency of C3a 
and C5a receptors, as well as C3 and C5 knockouts, have 
shown reduced VEGF expression and resistance to laser-
induced choroidal NV formation (85,86). In addition, the 
overexpression of C3 and C5 induces choroidal NV (86).  
However, mice lacking receptors for C3a and C5a show 
early onset of retinal degeneration, and were more 
susceptible to light-induced retinal dysfunction (87). These 
findings indicate that the complement system is a double-
edged sword regarding tissue protection and degeneration, 
and should be tightly balanced: The plenty contributes 
to NV, but sparsity contributes to retina degeneration. 
Clinical trials have often attempted to target complement 
components, not only for geographic atrophy Dry AMD, 
but also for choroid NV Wet AMD (82,88). It is of note 
that while CFD inhibitor Lampalizumab (NCT02247479; 
NCT02247531, Phase 3, Genentech), C3 inhibitor 
Compstatin (NCT01157065, Phase 2, Apellis) and C5 
inhibitor Eculizumab (NCT00935883, Phase 2, Alexion 
pharmaceuticals) failed in clinical trials to treat Dry  
A M D  ( 8 9 ) ,  c 3  i n h i b i t o r  A P L - 2  P e g c e t a c o p l a n 
(NCT03525600, NCT03525613, Phase 3,  Apell is 
Pharmaceuticals) and c5 inhibitor (Zimura; NCT02686658; 
Phase 2/3, IVERIC bio) are currently in clinical trials and 
awaiting the results (90,91). IB1302 Bispecific antibody 
fusion protein targeting VEGF and complement cascade 
(NCT04820452, Innovent Biologics, Inc.) finished Phase 1 
and just started Phase 2 for Wet AMD in April, 2021. 

Inflammatory pathways in retinal and choroidal NV: 
stromal cell derived factor-1 (SDF-1)/chemokine CXC 
receptor-4 (CXCR4) 

Chemokines and their cognate receptors are involved in 
the migration of peripheral cells to injury sites. SDF-1 (also 
known as chemokine ligand 12, CXCL12) and the receptor 

CXCR4 are considered an essential chemokine signaling 
pathway in NV (92) (Figure 4B). CXCR4 was initially cloned 
from leukocytes (93,94) and is cofactor for HIV-1 entry 
into T cells (95). Both SDF-1 and CXCR4 contain hypoxia 
response elements within the promoters and are induced 
by a major transcription factor, hypoxia-inducible factor-1 
(HIF-1). SDF-1/CXCR4 axis is involved in recruitment 
and differentiation of hematopoietic progenitors to hypoxic 
sites. In either ischemic retinopathy or laser-induced 
choroidal NV, both SDF-1 and CXCR4 are up-regulated 
and co-localized in astrocytes, Müller glia, RPE, choroid 
(96,97), hematopoietic and bone marrow-derived CD45+ 
cells and microglia/macrophage, but not in ECs (97).  
CXCR4 blockade (97,98) reduces movement of bone 
marrow-derived CD45+ cells and F4/80+ macrophages into 
ischemic retina, and suppresses the formation of retinal and 
choroidal NV (97), but has no apparent regression effect for 
established choroidal NV (98). 

Inflammatory pathways in retinal and choroidal NV: 
Nucleotide-binding oligomerization domain (Nod)-like 
receptor containing pyrin domain3 (NLRP3) 

Chronic and sterile inflammation is a hallmark of chronic 
diseases, including DR and AMD. The inflammasomes, 
as one of the pattern recognition receptors in the innate 
immune system, regulate secretion of pro-inflammatory 
cytokines via caspase-1 activation, in response to endogenous 
damage and infectious signals. Inflammasome activation 
leads to conversion of procaspase-1 into active caspase-1, 
and the maturation of pro-interleukin (IL)-1beta and pro-
IL-18 (Figure 4B). The NLRP3 (known as cryopyrin) is 
mostly characterized among other NLR inflammasomes 
and has been a growing area of interest, given its association 
with chronic degenerative and metabolic diseases (99,100). 
Upregulated activation of NLRP3 inflammasome was 
observed in macrophages, liver and kidney of diabetic 
patients (101-104), and in vitreous fluid and retina 
of DR patients (105,106), as well as animals (107).  
The attenuation of NLRP3 inflammasome activation 
and oxidative stress, as a result of treatment with IL-22, 
curcumin, cepharanthine or piperine or fenofibrate, has 
mitigated diabetic nephropathy (108-111), and recently, 
intravitreal injection of MCC950, a specific inhibitor of 
NLRP3 ameliorated retinal NV in an oxygen-induced 
ischemic retinopathy model (112). Similarly, AMD animal 
models of Dry and Wet forms have shown increased 
levels of NLRP3 inflammasome activation (113-116),  
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and the clinical aspects of AMD, such as drusen and 
complement activation, suggest inflammasome’s association 
in pathophysiology conditions of AMD. However, it 
is still unclear how NLRP3 is directly associated with 
choroidal NV. Laser-induced choroidal NV in NLRP3 
genetic deficiency exhibited exacerbation (114), but VEGF-
Ahyper choroidal NV model in NLRP3 genetic deficiency 
exhibited decline (113). When it is considered that laser-
induced acute model does not fully represent clinical 
Wet AMD pathophysiology and VEGF-Ahyper is relatively 
chronic, studies in other animal models such as knockout of 
very-low-density lipoprotein receptor (VLDLR) (117) may 
confirm NLRP3 association further. Since inflammation 
itself is neutral like weapon, NLRP3 inflammasome might 
take either protective or deleterious roles, depending on 
the stages and conditions of diseases, and the studies on 
the associated-downstream pathways and cell specific 
mechanisms will be important. 

Inflammatory pathways in retinal and choroidal NV: 
interleukin (IL)-18

Proinflammatory IL-1beta and IL-18 are downstream 
cytokines of NLRP3 activation. Like NLRP3 upregulation 
in retinal and choroidal NV, as mentioned above, IL-
1beta and IL-18 are also upregulated in aqueous and 
vitreous fluids of non-PDR and PDR (105,106,118), and 
are considered increased in choroidal NV patients as well 
based on cell and animal studies (114,115,119-121). The 
upregulation of IL-1beta seems to be associated with 
oxidative stress, BRB permeability and tissue deterioration 
in DR and AMD (113,114,121-125). However, there 
are controversial results of IL-18 function in retinal and 
choroidal NV, indicating the physiological complexity of 
IL-18 functions. Deficiency of IL-18 resulted in severe 
choroidal NV development and treatment of IL-18 
attenuated choroidal NV formation via reducing VEGF 
in laser-induced choroidal NV model (114,119), and IL-
18 deficiency in VEGF-Ahyper model increased choroidal 
NV compared to that in NLRP3 and IL-1beta deficiency 
in VEGF-Ahyper (113). Interestingly, NLRP3 and IL-1beta 
targeting resulted in inhibition of Dry AMD pathology but 
IL-18 inhibition deteriorated AMD pathology in CEP-
adducted serum albumin-immunized model. However, any 
deficiency of either IL-1beta, NLRP3 or IL-18 did not 
inhibit choroidal NV formation in VEGF-A hyper model. 
It was later argued that IL-18 does not exhibit either pro- 
or anti-angiogenic effects on laser-induced choroidal NV 

formation (120,126). Nevertheless, anti-VEGF treatment 
increases ocular IL-18 levels, and the increased IL-18 level 
is correlated with good visual outcome in patients with 
macular edema. Similarly, upregulation of IL-18 by anti-
VEGF treatment occurs in ischemic retinopathy animal 
model, suggesting anti-angiogenic activity of IL-18 (127). 
It is noteworthy that the expression level of pro-IL-18 and 
IL-18 is known to be permanent in RPE cells, and not 
increased by NLRP3 inflammasome activity (125). It is 
also well known that endothelium and epithelium cells are 
hardly activated by inflammation, thus the cytokine roles 
of resident and recruited immune cells will be important. 
Finally, the level of IL-18 concentration may have a 
protective role in retinal and choroidal NV, whereas higher 
amounts of IL-18 combined with other cytokines, may be 
detrimental.

 

Inflammatory pathways in retinal and choroidal NV: 
programed cell death ligand-1 (PD-L1) 

Programmed cell death receptor (PD-1) and its ligand 
PD-L1, immune checkpoint proteins, are essential in 
ocular immune privilege. PD-L1 is found in ocular 
tissues, including ECs and RPE, and PD-L1 expression is 
increased under inflammatory conditions (128,129). PD-1 is 
expressed on lymphocytes and antigen presenting cells. PD-
L1 blocking/downregulation using anti-PD-L1 antibody 
and siRNA treatment enhances pro-inflammatory cytokine 
production (128) and increases EC proliferation with 
upregulation of VEGFR2 expression. Further, the cornea 
in PD-L1 knockout mice induces higher level of angiogenic 
responses than wild type, via CD80 not PD-1 (130), 
suggesting that the ratio of CD80 and PD-1 expression 
on the recruited immune cells could determine either 
angiogenesis or immune deviation (Figure 4B). CD80, 
known as B7.1, is expressed on antigen presenting cells such 
as monocytes. In addition, VEGF treatment induces PD-
L1 in tumors (131). Taken together, PD-L1 is essential in 
ocular immunobiology and its molecular signaling pathway 
could be part of the NV process. Further understanding 
of PD-1/PD-L1 in retinal and choroidal NV should be 
pursued and compared with cancer studies. 

Inflammatory pathways in retinal and choroidal NV: IGF 
system

The IGF system consists of IGF-I and IGF-II ligands and 
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their cognate receptors, IGF-binding proteins (IGFBPs), 
and IGFBP-specific proteases, all regulating cell growth 
and differentiation. IGF-I and IGF-I receptor (IGF-IR) are 
detected in retinal ECs, RPE and Müller cells (132-134)  
(Figure 4C). IGF-I is considered one of pro-angiogenic 
factors in PDR (135) and Wet AMD (136). In PDR, vitreous 
IGF-I levels are elevated (137-139), and genetic (140) and 
injected overexpression (139,141,142) of intravitreal IGF-l 
results in BRB breakdown, VEGF upregulation, loss of 
vascular integrity and retinal NV. On the other hand, IGF-
lR inhibitors decrease VEGF secretion and retinal and 
choroidal NV (143,144). 

IGFBP-3 is a major IGFBP species in circulation 
and its binding to IGF-I decreases IGF-I bioactivity by 
preventing IGF-1 binding to IGF-IR (145). IGFBP-3 
further exerts IGF/IGF-R-independent cellular functions, 
including anti-inflammation, either pro- or anti-apoptosis 
and DNA damage repair (145-147). Interestingly, obese 
populations display a decrease in functional IGFBP-3 
levels and an increase in proteolytic IGFBP-3 fragments 
in circulation (148,149). Cell and animal studies have 
shown the protective role of IGFBP-3 in retinal NV. The 
restoration of intravitreal IGFBP-3 results in protection of 
ischemic retinal injury and DR in murine models (150,151). 
IGFBP-3 reduces retina vascular permeability, inhibits 
pro-inflammation and protects from retinal EC apoptosis 
(152-155). IGFBP-3 further recruits bone marrow-derived 
cells, vascular progenitors and hematopoietic stem cells to 
sites of retinal hypoxia and ischemic injury, and stabilizes 
mural cells, maintains endothelial integrity, and reduces 
inflammation (150,154). Taken together, increased IGF-I 
and nonfunctional IGFBP-3 fragments seem to be early 
players in retinal and choroidal NV formation. 

Inflammatory pathways in retinal and choroidal NV: 
sphigosine-1-phosphate (S1P)/S1P receptors (S1PRs)

S1P is a sphingosine-containing bioactive lipid generated 
from ceramide, mainly secreted by RBCs, ECs and 
activated platelets. It binds five G protein-coupled surface 
receptors (S1PRs1-5). S1PRs are found on retinal ganglion 
cells, RPE, ECs, astrocytes, microglia, monocytes, dendric 
cells and lymphocytes (156-159). The function of S1P/
S1PRs is not fully understood, but they are associated with 
vascular barrier function and inflammatory responses (159).  
Increased level of S1P is observed at inflammation sites and 
recruits immune cells. SIP/SIPRs signaling also induces 
NLRP3 activation (158), and triggers M1 and Th1-polarized 

proinflammatory responses (160,161). However, the S1P/
S1PRs axis also activates negative feedback, reducing 
vascular leakage (162), as well. In retina (Figure 4D),  
RPE is considered a major source of S1P during choroidal 
NV progression (163), and astrocytes and Müller glia might 
be other sources of S1P during retinal NV. Photoreceptors 
also express S1P in response to light damage (159,164,165), 
and S1P is generated by sphingosine kinases that are 
upregulated by HIF1α (166). Hypoxia upregulates S1P/
S1PRs axis, subsequently generates nitric oxide and 
increases vasodilation of ECs (167). Since S1PR modulator, 
FTY720 (fingolimod, S1PR agonist) was approved for 
multiple sclerosis in 2010 (168,169), fingolimod and other 
S1P/S1PR modulators are under clinical trial for brain 
diseases such as acute stroke, amyotrophic lateral sclerosis, 
schizophrenia, Rett syndrome, glioblastoma and other 
autoimmune and inflammatory diseases, like psoriasis and 
Crohn’s (170). The modulation of S1P/S1PR using anti-
S1P antibody (Sonepcizumab, S1P antagonist) suppresses 
retinal and choroidal NV by suppressing inflammation 
and reducing the recruited microglia and macrophages in 
animals (166). However, Sonepcizumab did not show a 
statistically significant improvement in the visual acuity of 
Wet AMD patients, as a monotherapy and adjunctive to 
anti-VEGF agents in the Phase 2 clinical trial (166,171). 
Since S1P and complex signaling of S1P/S1PRs1-5 have 
a dual role in inflammatory responses (170), the cellular 
and molecular knowledge of SIP and S1PRs in retina 
diseases might provide a possible intervention strategy for 
retina inflammatory diseases. Of note, S1PR1 expression is 
upregulated by galectin-1 (Gal-1) and overexpressed Gal-
1 and SIP/S1PRs are known to be associated with epithelial 
to mesenchymal transition (EMT) in cancer (172). EMT is 
a process where epithelial cells lose polarity and adhesion 
but obtain migratory and differentiated properties. These 
similar mechanisms might be associated with RPE inward 
migration, causing broken outer BRB.

Conclusions 

We reviewed cells and inflammatory pathways associated 
with retinal and choroidal NV in DR and AMD here to 
provide the current available knowledge and insight in 
their therapeutic targets. Therapy of anti-VEGF agents for 
ocular NV diseases has offered substantial improvement 
in outcomes (173-175), but therapeutic innovation is 
still a requisite, as approximately up to 40–50% of both 
Wet AMD (163,176) and PDR (177,178) patients do 
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not fully respond to anti-VEGF therapy. Given that the 
pathogenesis and pathobiology of DR and AMD has yet to 
be clearly elucidated, a deeper understanding of unbalanced 
inflammation will warrant a continued effort in expanding 
our knowledge. Furthermore, additional studies may 
complement current anti-VEGF therapeutic approaches 
and pave the way for next generation therapeutics to treat 
chronic retinal and choroidal NV. 
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