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Background: In this investigation, we explore the literature regarding neuroregeneration from the 1700s 
to the present. The regeneration of central nervous system neurons or the regeneration of axons from cell 
bodies and their reconnection with other neurons remains a major hurdle. Injuries relating to war and 
accidents attracted medical professionals throughout early history to regenerate and reconnect nerves. 
Early literature till 1990 lacked specific molecular details and is likely provide some clues to conditions 
that promoted neuron and/or axon regeneration. This is an avenue for the application of natural language 
processing (NLP) to gain actionable intelligence. Post 1990 period saw an explosion of all molecular details. 
With the advent of genomic, transcriptomics, proteomics, and other omics—there is an emergence of big 
data sets and is another rich area for application of NLP. How the neuron and/or axon regeneration related 
keywords have changed over the years is a first step towards this endeavor.
Methods: Specifically, this article curates over 600 published works in the field of neuroregeneration. We 
then apply a dynamic topic modeling algorithm based on the Latent Dirichlet allocation (LDA) algorithm to 
assess how topics cluster based on topics. 
Results: Based on how documents are assigned to topics, we then build a recommendation engine to assist 
researchers to access domain-specific literature based on how their search text matches to recommended 
document topics. The interface further includes interactive topic visualizations for researchers to understand 
how topics grow closer and further apart, and how intra-topic composition changes over time.
Conclusions: We present a recommendation engine and interactive interface that enables dynamic topic 
modeling for neuronal regeneration. 
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Introduction

The scientific literature on neuro-regeneration and 
reinnervation began in the 18th century (1). Since then, 
hundreds of articles have been published on topics ranging 
from key regeneration genes (2-4) to the dynamics of 
remyelination (5). This knowledge corpus is vast and 
dynamic as new insights are continually emerging from 
research across multiple continents and topics. Given this 
vast accumulating body of research, it is hard to know 
how this literature is evolving. For example, which are 
the emerging research topics? Which ones have died out? 
Answers to such questions are important to scholars who 
want to pursue further research in this area or physicians 
who want to update their knowledge.

The purpose of this paper is to describe the design and 
implementation of a computational system that analyses 
digitally curated past research and provides researchers 
with an interface to query the corpus and get recommended 
papers. Furthermore, the web-based interactive interface 
provides a visualization tool to examine the evolution of 
topics over time. Using our proposed system, researchers 
can find answers to narrow queries such as the molecules 
that play a role in nerve regeneration or broad queries such 
as the gaps in the literature.

Our computational system relies on the advances made 
in natural language processing (NLP). Specifically, we use 
dynamic topic modelling (DTM) (6) to extracts topics and 
track changes of topics over time. It also shows users how 
keywords and topics evolve. Beyond applying DTM, we 
created a novel user interface for researchers to apply the 
trained model to their data. Overall, we make the following 
contributions to the interface of neural regeneration and 
computation:

(I) We compiled and curated a corpus of over 600 
published works in the neuroregeneration field 
spanning 1776 to 2020;

(II) We present an interactive time-dependent dynamic 
topic model specific for neuroregeneration 
neuroscience literature for researchers to grasp 
how topics change, how authors cluster based on 
topics, and how individual keywords rise and fall in 
popularity over time;

(III) We created a dynamic user interface for physicians 
and scientists to interact with the data. The 
interface displays visual results and ways to see how 
topic topology evolves. Moreover, the interface 
recommends literature for users to investigate.

The remainder of this paper is organized as follows: we 

review the literature and discuss related contributions from 
prior authors. Then we specify our algorithm design and 
computational tools. Next, we detail our experiments and 
report our results. We discuss the impact of our methods 
and opportunities for future investigation and present 
conclusions.

Researchers have developed computational tools for 
other domains, such as lipidomics and metabolomics. 
These tools help them garner insights from large scale 
non-structured text data. For example, Schomburg 
first composed the BRENDA (7) database in 2002, 
aiming to create a relational database between enzymes, 
proteins, and their respective biochemical pathways. By 
integrating information from KEGG metabolic pathways 
to diseases and other biomedical concepts, the researchers 
compose a translational database for scientists to examine 
changing terms over time. In 2017, Schomburg extended 
BRENDA by parsing 2.6 million papers in the PubMed 
corpus, extracting unstructured word tokens, and adding 
relevant labels (e.g., gene and enzyme names). This 
work represents a growing trend in biomedical sciences: 
applying NLPnatural language processing and Big Data 
techniques to derive structured insights. While BRENDA 
is powerful, it does not focus on the Neuroregeneration 
domain and does not focus on how terms and topics in the 
literature change over time. More importantly, BRENDA 
is applicable to detailed structural analysis rather than the 
analysis of broad topics and themes.

Besides relational databases and extraction of words, 
computational approaches like NLP have found use in 
biosciences. Chen (8) developed a Bio-DTM to explore how 
the traditional Chinese medical herb, ginseng, is discussed 
in the literature over time. While the corpus covers a 
wide array of topics, the literature lacks domain-focused 
DTM algorithms related to neuroscience, specifically 
Neuroregeneration.

Relatedly, van Altena (9) applied Latent Dirichlet 
Allocation (LDA) analysis methods to the PubMed and 
PMC corpora to model specific topics in those fields. After 
filtering for stop words and ranking their terms, the authors 
generated word clouds and other visuals to extract specific 
literature themes ranging from systems and security to 
disease prevention. The authors optimized their methods by 
tuning their number of topic hyperparameters to minimize 
the Akaike Information Criterion (AIC) (10) to choose 
the best model for their task. Other authors (11-13) use 
topic coherence (14,15) or other performance metrics (16) 
for optimizing the model architecture. After optimizing 
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their performance metric, van Altena reported results on 
the broad biomedical corpus, yet the results lack domain-
specificity.

LDA has applications beyond summarizing topics 
in a corpus: Wang (17) used Bio-LDA to discover key 
topics in PubMed, and then utilized entropy between 
keywords to generate a semantic ontology linking gene, 
disease, and other biological terms in an undirected graph. 
Beyond ontologies, Hu (18) derived LDA embeddings for 
unsupervised style suggestions for Etsy users. Although the 
domain is not related to medicine, their work shows how 
LDA can be used for inference and suggesting new content 
for users.

As we show, most of the current literature for Big 
Data NLP in Biomedicine handles broad corpora like the 
PubMed databases and lacks domain-specificity. Our focus 
on curating a corpus specific to Neuroregeneration and 
applying LDA-topic extraction methods provides nuanced 
insights in an important biomedical domain. Moreover, 
by applying DTM methods, we show how the literature 
evolves, allowing researchers to identify promising avenues 
for future research.

Methods

Curating the literature on regeneration

We began by curating the literature. To assemble this 

corpus, we searched in different databases, including 
Google Scholar and PubMed. We gathered 700 published 
articles and books within the Neuroregeneration domain 
and sorted them into bins based on their publication 
year. During our search, we also included papers in other 
languages, including French and German. In the 18th 
century, the scientific community was heterogeneous, and 
scientists often communicated their findings in their native 
languages. Despite this variation in language, the majority 
of the corpus is in English. Figure 1 illustrates the document 
distribution binned by time period. We chose to bin the 
entire corpus into 16 sequential time periods for training 
the DTM model.

Document optical character recognition (OCR)

We used optical character recognition (OCR) technology 
to convert PDF format research papers into a machine-
readable format that we can parse through. To achieve this 
end, we used the Adobe Document Cloud export PDF 
functionality (19), converting the .pdf files to .docx, which 
are parsed by specific Python libraries, as detailed below. 
When performing OCR, we discarded documents that the 
Document Cloud failed to process. These documents were 
primarily scanned images with complex figures or extremely 
large in disk space. Figure 2 details the overall process for 
handling the dataset.

Preprocessing words

After using OCR to convert the PDF documents into a 
usable string format, we preprocessed our text. We utilized 
simple regex to parse out words from non-letter characters. 
Additionally, we removed words lacking semantic meaning 
as stop words using the Python Natural Language Toolkit 
(NLTK)’s stop word list (20). Initial implementations 
yielded skewed results because the earlier periods contained 
some German, French, and other non-English articles. 
Thus, we also incorporated German, French, Dutch, and 
Spanish stop words to filter out words in languages beyond 
English.

To detect essential words in the literature, we assembled 
a collection of start words. We employed BioBERT (21) 
training tokens for this named entity recognition task. 
These tokens were derived from the BioCreative II Gene 
Mention corpus (22), the NCBI disease corpus (23), the 
CHEMDNER corpus of chemicals and drugs (24), and 
the Species-800 corpus (25), among others. We further 
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Figure 1 Literature distribution over time: 1771 to 2020. The 
curated papers from 1700–2020, x- and y-axis are years of citation 
and number of documents obtained respectively. These documents 
were used in preparation of RegenX database (http://regenx.
herokuapp.com). 
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included the indices of modern textbooks, including 
Netter’s Concise Neuroanatomy (26) and Bear’s Exploring the 
Brain (27), which contain significant named entities found 
throughout the corpus. Using these reference sources for 
start words created a clean filter when working with the 
data. Using our references for start words we removed these 
generic terms from the corpus, which allowed us to focus 
on domain-specific entities. Finally, we stemmed the words 
to remove redundancy, often found with word plurals and 
possessives. We chose to use Porter stemming (28) for this 
final preprocessing step.

Dynamic topic modeling

We used the DTM algorithm, a time-series generative 
model for data collections over time. The algorithm builds 
off of Latent Dirichlet Allocation (LDA) which takes 
advantage of Bayesian probabilistic modelling of words 
in documents to define an underlying representation of 
topics in a document (29). The algorithm models each 
topic by an infinite mixture over an underlying set of topic 
probabilities to create a topic distribution for each research 
paper in our corpus. DTM extends this already powerful 
algorithm by separating the documents in our corpus by 
time slices, allowing us to model the evolution of topics 
over time. We analyzed the change in embeddings of each 
topic’s underlying probabilities over time by sequentially 
ordering our corpus. To extract the DTM topics, we relied 
on the Python Gensim package (30). We then used these 
topics to analyze our corpus in a variety of ways. DTM’s 
advantage lies in observing evolving entities and comparing 
documents from different periods with different word 
usage. In our experiments, we define the number of topics, 
T, and the number of time bins, B, as tunable parameters. 
We define these hyperparameters for selecting the optimal 
model. Further, we used CV Topic Coherence (31) and 
Domain expert validation as measures to compare our 

hyperparameters and evaluate the coherence of the topics 
produced. The systematic study of the configuration space 
of coherence measures is abbreviated as CV. 

DTM applications for new regeneration text

As noted above, there are many applications of LDA and 
DTM. We present a novel application of using our trained 
DTM to provide recommendations related to neural 
regeneration. Users can input the contents of their current 
research, abstracts of papers they are investigating, or 
anything that contains the topics for a researcher’s search 
query. We then preprocess the text following the same 
pipeline as the documents in our corpus. This is extremely 
important, as any differences in preprocessing will result 
in differences in interpretations from the model, yielding 
poor paper recommendations. The algorithm filters out 
words that are not start words, stems, tokenizes, and uses 
our dictionary to convert the tokens into a Bag of Words 
matrix. The DTM then calculates the log probability 
distribution of topics and compares this value to every 
research paper’s topic distribution in our corpus. We do this 
by calculating the Hellinger Distance between each of these 
topic distributions. In other words, we calculate how similar 
the topics in the text entered are to the topics in our set of 
research papers. We then return the research papers with 
the most similar topics. Below we discuss further the results 
of this implementation of DTM into a neural regeneration 
recommender system.

Results 

Evaluating topic semantics

Topic coherence grid search
We ran a grid search to obtain the optimal hyperparameters 
for our DTM. Most notably, the tunable parameter with 
the most significant impact on this metric is the number 

BioBert entity
recognition

Parsing startwords
from textbooks

Startword/stopword
filtering

Stemming

Dictionary

Bag of words

Dynamic topic
modeling

Grid
search

Word
tokenizing

using Regex

Optical
character

recognition

Figure 2 Overall process pipeline. The different steps of dynamic topic modeling for RegenX database is depicted in this flow chart. 
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of topics, T. Having too few topics will not give the 
recommendation algorithm sufficient flexibility to compare 
nuanced latent topics, both in the query entered by the 
user and the research papers in our corpus. For example, 
when the number of topics increases past (T>5) (T>5), 
we see a new topic emerge from our corpus that solely 
relates to the eye. Words such as ocular, retina, and vision 
comprise of this new topic. On the contrary, a T that is too 
high will result in incoherent topics, comprised of words 
with little semantic significance to Neuroregeneration 
researchers. Since the model’s primary purpose is to serve 
as part of a recommendation algorithm, we erred on the 

side of more topics, since the benefit of outputting more 
specialized topics outweighs the downside of producing 
incoherent topics. These incoherent topics would likely 
return low Hellinger Distances unless the user also 
entered incoherent text.

Most significantly, we used the CV Topic Coherence, 
which calculates the similarity of top words in a topic, to 
examine inter-topic similarity. Topic coherence measures 
the robustness of the topic distributions which allowed us to 
test different hyperparameters and measure their impact on 
our model. Figure 3 displays the grid search results below.

Ultimately, using grid search and topic coherence 
metrics alone were insufficient to decide the most optimal 
combination of hyperparameters. When deciding on overall 
topic quality, we also shared our discovered words and topics 
with Neuroscience undergraduate and graduate students 
and faculty at a large Southeastern University. We factored 
in their input to determine the optimal number of topics. 
To complete this qualitative assessment, we retrieved the 
top 20 terms for each topic over each binned time period. 
Through discussions with these domain experts, we chose 
to match the ten topics to the overall concepts found in  
Table 1. To assign topics, we surveyed four neurologists and 
neurology researchers independently for their summaries 
on the top 20 topic words. We present here the most salient 
responses.

Validation from domain experts/emergent opinions of 
neuroscientists

The DTM model also shows how authors cluster based on 
topic and shows salient patterns over the years. Figure 4  
shows the results of authors found in the corpus and 
how they cluster together based on similar topics. We 
provide a key for the topics shown in the supplemental 
file (available online: https://cdn.amegroups.cn/static/
public/10.21037aes-21-29-1.xls).

Keyword popularity

Another exciting application that arises from utilizing 
Bayesian probabilities to model Neuroregeneration research 
topics is the resulting log probabilities of keywords. In 
LDA and DTM, each word belongs to a topic, or even 
multiple topics. Topic assignment depends on probability 
of that word appearing in that topic. As a result of this, we 
can study how certain words rise and fall out of particular 
literature topics over time. In Figure 5, we see several 
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Figure 3 The plot of coherence measures (CV) topic coherence 
as a function of the number of topics, using 16 time periods. We 
found that 10 topics have the highest topic coherence. The x- 
and y-axis denotes number of topics and systematic study of the 
configuration space of CV respectively. 

Table 1 Matching the topic numbers to their concepts

Topic number Concept

1 Vision

2 Processes and activity

3 Anatomy

4 Cells

5 Growth and regeneration

6 Spinal cord

7 Disease

8 Movement

9 Optic nerve regeneration

10 CNS neuroanatomy

CNS, central nervous system.

https://cdn.amegroups.cn/static/public/10.21037aes-21-29-1.xls
https://cdn.amegroups.cn/static/public/10.21037aes-21-29-1.xls
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keywords relating to neural regeneration research.

A practical user interface

As mentioned above, our algorithm’s advantage lies in 
its robustness in recommending research papers from 
different periods that may have different words, syntax, 
and sentence structure. The model considers papers from 
different periods differing in everything but the latent 
topics embedded in that text for recommendation. Since 
neural regeneration is such a diverse subject, with a lengthy 
past, usage of this algorithm for recommendations results 
in finding research papers that would not ordinarily 
come up with similar searches on Google or PubMed. 
Additionally, by using Biobert entity and keyword filtering, 
we can fine-tune our DTM further to study the topics 
relating to our specific domain resulting in even stronger 
recommendations. Since we filtered the text in this way, we 
can create a flexible yet specific, set of topics closely aligned 
with the research domain.

The website also provides the user with the most 
important topic from our corpus related to their query, 
which presents another application. Perhaps the researcher 
is interested in gaining insights into what topics of 
regeneration their inputted text contains. In this manner, we 
include a powerful summarization feature on the website.

Discussion

This article is the first to propose a computational 
approach to dynamic topic extraction from the corpus on 
Neuroregeneration literature. It serves as an entry point for 
future experiments using NLP to facilitate the broader key 
topic extraction from this research domain. We describe a 
text-mining pipeline for processing documents involving 
filtering techniques using BioBert. We also introduce a 
new approach for understanding topics, keywords, and 
subjects authors tend to write about over time. Finally, we 
implement all of the techniques above into a practical tool 
for the Neuroregeneration community to use involving our 
DTM that matches latent topics in the domain.

This paper’s limitations point to opportunities for further 
investigation. One such limitation is the link between 
the topics we derive from DTM. Specifically, to build an 
accurate knowledge system, we need to go beyond the 
bag-of-words approach and extract the text’s sequential 
information.

Finally, the DTM results herald further analysis and 
investigation. Our results are limited to analyzing temporal 
dynamics, yet geography is another crucial factor to 
ascertain when and where essential discoveries in the 
neuroscience field occurred. How do scientific discoveries’ 
time and location reflect geopolitical trends in history? 
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Figure 4 A cluster map illustrating how certain authors cluster around the same topic. Brighter intensity indicates higher topic log 
probability, which means the respective author’s work is more likely to align with a topic. The x- and y-axis denotes author name and topics 
respectively.
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These questions are open for future investigation, and 
forthcoming publications could focus on addressing these 
questions. We also hope to implement these future threads 
of research into additional practical functionality for 
researchers in the field to leverage.

Conclusions

This paper describes a computational system to investigate 
the dynamics of the Neuroregeneration literature. In 
particular, we curated a corpus of over 600 research papers 
and created a time-dependent dynamic topic model based 
on this corpus. This model is the backbone of a web 
application for researchers to visualize topics changing over 
time, to view how authors’ works cluster together, and to 
gain insights through an article recommendation system. 
By interpreting historical works, our applied tools advance 
neuroregeneration’s future development.
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