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Review Article

Preclinical models in ophthalmic oncology—a narrative review 
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Objective: This review serves as a comprehensive description and summary of currently available 
preclinical models of three tumors in ophthalmic oncology: conjunctival melanoma (CM), uveal melanoma 
(UM), and retinoblastoma.
Background: Malignant melanomas are the most common tumors of the eye in adults, most often localized 
in the uvea and conjunctiva. Although the primary tumor can be successfully eliminated in many cases, nearly 
one in two UMs—and one in three CMs—are fatal to the patient due to metastasis. Effective therapies for 
metastatic uveal and CMs are unfortunately still not available, so there is an urgent need for new therapeutic 
strategies to improve prognosis quoad vitam and prolong the survival of melanoma patients. Another widely 
known tumor of the eye is retinoblastoma, which is the most common pediatric ocular malignancy, occurring 
in approximately 1 in 15,000–18,000 live births. Overall, it is considered well treatable, with a survival rate of 
approximately 90% at 3 years, although fatal if untreated. For a long time, enucleation was also considered 
the treatment of choice, with bilateral cases having one eye irradiated and the eye with the more advanced 
tumor removed. Since the 1990s, however, systemic chemotherapy has been predominantly used to preserve 
the quality of life and vision of young patients, although the cellular activity of the retinoblastoma often 
remains after treatment with chemotherapeutic agents. Prognosis of the disease is immensely depending on 
the stage and time of diagnosis and is varying between countries due to different developmental status of 
health care systems.
Methods: We review recent advances in the available literature on established preclinical models in CM, 
UM, and retinoblastoma. In addition, we discuss the advantages and limitations of these models and provide 
an overview of current alternatives to animal testing in preclinical studies.
Conclusions: In the case of all three diseases, further research is needed for improved therapeutic options. 
Animal models in particular are indispensable for cancer research in order to mimic the extremely complex 
processes of human carcinogenesis, physiology and progression. Certainly, animal studies do not easily 
translate to human diseases due to biological differences and limitations. However, they continue to serve 
as the primary source and link between in vitro testing and clinical studies in patients. In order to minimize 
animal experiments and possibly even replace them in the future, alternatives such as 3D cell cultures and 
in silico predictions are useful and insightful additions and require further development. Still, no currently 
available preclinical model can be fully translated to some of here described diseases. Nevertheless, they all 
provide essential insights and knowledge that should be of use in the future for better understanding and 
pursuit of new therapeutic strategies.
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Introduction 

Conjunctival melanoma (CM)

CM is the second most common ocular surface malignancy 
representing melanocytic lesions and occur specifically in 
the conjunctiva (1-3). CM arises from melanocytes. While 
CM arises from melanocytes, CM can form from three 
different precursors: primary acquired melanosis (PAM) in 
74% of cases, nevus in 7%, and 19% arise spontaneously 
de novo (4). The prevalence is 0.5–1.0 cases/million in the 
US and Europe, with an increasing trend in recent years 
(5-7). The current treatment of choice is surgical excision 
in combination with adjuvant radio-, cryo-, chemo- and 
immunotherapies, with recurrence occurring in 30–60% of 
patients, leading to metastasis in approximately 12–15% of 
cases and not infrequently fatal (8-10). Metastases in general 
befall predominantly the adjacent lymph nodes, which 
suggests transmission of metastases via lymphangiogenic 
route (11-14). Treatment options for metastatic CM 
are very limited; therefore, a better understanding of 
the mechanisms is essential to develop novel successful 
therapeutic approaches. All melanomas arise originally 
from melanocytes, sharing the same origin but often 
have different disease progression (15,16). At genetic and 
clinical level, many CMs share similarities with cutaneous 
melanomas that include genetic aberrations, metastatic 
behavior, and clinical course (2,17-19). Mutations shared 
between cutaneous and CM include BRAF (V600E), 
NRAS, and NF-1 mutations (19-24). Often, the mutations 
involve cytosine-to-thymine transitions, which may indicate 
damage from UV exposure, once again showing parallels 
to cutaneous melanoma (25). Although there are new 
promising therapies in development, e.g., the application 
of systemic BRAF/MEK inhibitors (26,27), there is still 
a tremendous lack of knowledge and reliable preclinical 
testing possibilities. 

Uveal melanoma (UM)

UM is  the  most  common melanoma ent i ty  a f ter 
cutaneous melanoma and account for approximately 5% 
of all melanoma (28-31). The incidence is approximately 
5.1/1,000,000 cases in the Caucasian population, making 
them the most common intraocular tumors in adults  
(32-34). UMs most commonly manifest in the choroid, 
but could also affect the iris and/or the ciliary body  
(35-38). Risk factors for the development of UMs are 
light skin, blue iris color, nevi in the choroid/iris or also 

skin (39,40). In addition to conventional pathological 
features such as tumor size and location, the clinical 
prognosis is influenced by genetic factors, such as the 
presence of monosomy 3 (41) or gain on chromosome  
8q (42), which generally correlate with a poorer prognosis. 
Also unfavorable are mutations in genes such as GNA11/
GNAQ (43-46), BAP1 (41,47,48), SF3B1 (45,49), and 
EIF1AX (45). Although uveal and CMs both originate 
in ocular melanocytes, the clinical pathology and genetic 
features are very different (33,50). Therefore, the molecular 
understanding and therapeutic options of CMs cannot be 
easily transferred to uveal melanomas. 

Therapeutic options range from transscleral resection, 
enucleation and radiotherapy, with distinctions between 
plaque brachytherapy with plaques loaded with iodine-125, 
ruthenium-106, palladium-103, cobalt-60, and radiotherapy 
with proton beam therapy, helium ion therapy or a 
stereotactic radiosurgery such as Cyber Knife, Gamma 
Knife or linear accelerator (51-56). None of the listed 
therapies, however, provides an evidence-based treatment 
option for metastatic uveal melanoma. Approximately 
25% of all UMs develop metastases at 5 years and 34% at  
10 years (53) after local treatment, which predominantly 
settle to the liver via the hematogenous route (57-59), 
which is one of the main distinction between CM and UM, 
as CM predominantly metastasizes via lymphatic routes. 
Long-term survival in metastatic melanoma has remained 
very low and unaffected by therapy.

Retinoblastoma

Retinoblastomas are the most common tumors of the eye 
in childhood and occur in about 1 in 15,000–18,000 births 
in European countries (60). Retinoblastomas are almost in 
all cases caused by biallelic loss of Rb1 and develop after 
additional genetic alterations (61,62). 

Retinoblastomas have a very good chance of cure if 
treated in time. In cases with late discovery of the tumor, 
which still occurs in developmental countries an appropriate 
treatment cannot be initiated. Subsequently the vision may 
be enormously affected and distant metastases may occur, 
leading to a fatal diagnosis. Therapy options range from 
classic chemotherapy alternative treatment options like 
cryo- and thermotherapy, plaque radiation, external beam 
radiation.

Even if retinoblastoma is one of the most well studied 
tumor entities, there are still a lot unanswered questions 
about the origin of the tumor making it difficult to find 
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new development approaches in the design of novel drugs. 
Late detection at advanced stages often makes enucleation 
unavoidable, decreasing the life quality of young patients 
making it a top priority to be able to reproduce the disease 
using different models and be able to develop more efficient 
and non-invasive therapy options. 

Modelling in cancer

Preclinical models are a top priority to gain a better 
understanding of tumorigenesis and key mechanisms in 
tumor development, as well as for testing therapeutic 
approaches (63). In vitro testing with cell lines and primary 
tumor cells are popular in this respect. These are easy 
to perform, inexpensive and provide rapid results. In the 
case of cell lines, the resources are self-replicating and are 
well suited for a variety of tests, such as new drugs. On 
the other hand, pure two-dimensional cell cultures cannot 
reflect the heterogeneity of tumors and do not map the 
tumor microenvironment and its effects. Furthermore, it 
is not always easy to establish new cell lines, especially for 
rare tumors that are not frequently diagnosed. In this case, 
an improvement could be achieved by using organoids 
and 3D cell cultures, where the tumor tissue could be 
better remodeled (64-71). Clear advantage is the use of 
co-cultivation, as well as higher heterogeneity and cell-
environment interaction. At this point, however, these 
models are still in their infancy, so further optimization is 
also needed and the tumor cannot be completely replicated 
and is not yet possible for every tumor type. In addition, 
optimization and establishment is more expensive and time-
consuming compared to two-dimensional cell culture. 

Still, there is no way to avoid in vivo testing in preclinical 
research. In this case, a distinction is made between 
different forms of applications, as well as between different 
host animals. There are many studies with non-mammalian 
animals, such as zebrafish embryos and chicken embryos, 
which are relatively easy to use and inexpensive and allow 
a high-test throughput, making them ideal for testing 
agents (72-81). Of course, biologically the differences to 
mammals are immense here, so that these systems are 
not always ideally suited. Xenografts using mammals, 
such as mice, remain quite popular as they are easy to 
establish and can provide rapid results using human cells  
(74,82-91). However, a disadvantage is the use of 
immunodeficient animals and the associated loss of 
microenvironment and tissue specificity in the tumor, 
as well as lack of heterogeneity when cell lines are used. 

Instead of cell lines, however, so-called patient-derived 
xenografts (PDX) can be used, whereby a tissue section can 
be utilized in order to map heterogeneity and epigenetic 
factors. 

Another method is the use of syngeneic models, in which 
case species-derived cell lines are used to induce a tumor in 
the host animal. In this case, effects of the immune system 
and tumor microenvironment can be considered. However, 
there are not enough suitable murine or other syngeneic 
cell lines for every type of cancer available at date (92). 

Through biotechnological progress in the field of gene 
engineering, genetically engineered models (GEM) are 
becoming increasingly common. Through the targeted 
regulation of oncogenes it is possible to study tumorigenesis 
and to investigate the effects with a fully functional immune 
system and microenvironment. However, these models are 
still relatively complex to handle, especially in multigenic 
diseases. Targeted spontaneous tumors are not available 
for every species and there are also discrepancies to actual 
disease in humans (63,93-96). 

It is important to evaluate in advance which type of 
model is best suited for one’s research, depending on what 
is to be studied. In this narrative review, we discuss the most 
current and promising models for three types of tumors in 
ophthalmic oncology: UM, CM, and retinoblastoma. We 
present the article in accordance with the Narrative Review 
reporting checklist (available at https://aes.amegroups.com/
article/view/10.21037/aes-21-39/rc). 

Methods

Using electronic bibliographic databases, PubMed, Embase, 
Web of Science and Google Scholar were searched for 
the following keywords with different combinations: 
“ocular melanoma”, “retinoblastoma”, “uveal melanoma”, 
“conjunctival melanoma”, “animal models”, “preclinical 
testing”, “syngeneic”, “xenografts”, “transgenic mice”, “in 
vitro”, “in vivo”, “modeling” and “preclinical research”. 
Searches were limited to English and German studies until 
May 30th, 2021.

Discussion 

CM

Syngeneic models are very useful when investigating 
immune responses in addition to tumorigenesis in 
experiments designed for this purpose. A common model 

https://aes.amegroups.com/article/view/10.21037/aes-21-39/rc
https://aes.amegroups.com/article/view/10.21037/aes-21-39/rc
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in CM involves the use of cutaneous melanoma cell lines, 
most commonly using the B16 murine melanoma cell 
line derived from a spontaneously occurring melanoma 
in a C57Bl/6J mouse (97-99). In this process, to induce 
intraocular tumors, the cells previously cultured in vitro 
are introduced in murine conjunctiva by microinjection, in 
most cases resulting in solid tumors after a few weeks. In 
order to develop a more invasive model, some alterations 
were made by serial passaging, resulting in a more invasive 
B16LS9 subline (100), which actually showed occurrence 
of liver metastases after injections. Another approach for a 
syngeneic model with focus on metastasis used C57BL/6N-
derived HGF-Cdk4R24C melanoma cells (92), which also lead 
to solid tumors and metastases, due to the impairment of 
the cell cycle by Cdk4R24C mutant and allowing maintenance 
of melanocytes in interfollicular epidermis through HGF 
overexpression. 

Certainly, there were also numerous studies apart from 
mice, using other animals, such as the application of Greene 
melanoma cells (hamster origin) in rabbits (101,102). Rabbit 
models in eye diseases have the advantage that compared 
to mice, rabbits have larger eyes, making application and 
monitoring much easier. Recently, this approach is hardly 
used in basic research, but much more for testing treatment 
options, since rapid tumor growth and the absence of 
metastases, compromised the model (103). 

However, syngeneic models have some advantages, 
providing the perfect basis for studying angiogenesis and 
metastasis, as well as immune responses and, consequently, 
a reasonably reliable assessment of treatment strategies. 
Unfortunately, there are no syngeneic CM cell lines, but 
only murine cutaneous melanoma cell lines available at  
date (92). 

Besides syngeneic model, the use of xenografts in 
preclinical studies is one of the tools of choice. Human 
tumor cell lines are cultured in vitro and subsequently 
injected in conjunctiva of immune suppressed hosts, 
including mice, rabbits and zebrafish. These models are 
mainly used for drug screening, different therapeutic 
options and tumor growth in general (92,97,104-106). 
Permanent human cell lines have the advantage that 
they are already characterized immunohistologically and 
genetically, so that biological and pharmaceutical effects can 
thus be better viewed in context. Unfortunately, relatively 
few established cell lines are available (Table 1) from CM 
cells (107-110), so that the heterogeneity of a tumor 
population can only be mapped to a limited extent, due to 
testing variety limitations.

Another possibility for extensive investigation of the 
efficacy of new therapeutics is the use of so-called PDX. 
In this case, instead of cells from a cell line, biopsies 
from patients are transplanted into a model animal and 
subsequently investigated in further approaches. This offers 
the advantage that more consideration can be given to 
heterogeneity of a tumor population and also provides an 
opportunity for personalized medicine (89). To date, there 
are no current studies in CM with PDX but some with 
cutaneous melanoma that have been able to provide not 
only opportunities in drug discovery but also basic insights 
into metabolism and metastatic behavior of melanoma  
cells (84,111).

In addition to animal testing, there are also in vitro 
alternatives in preclinical testing. For example, there is an 
interesting study by Fiorentzis and colleagues from 2020 
that uses 3D cell cultures with CRMM1 and CRMM2 cell 
lines to test an approach with electrochemotherapy (69,70). 
In contrast to standard cell cultures with cells grown in a 
two-dimensional environment, 3D cultures are much better 
able to reproduce the spatial complexity of tumor tissue 
and mimic the tumor microenvironment (68). Thus, clearly 
representative results on the efficacy of e.g., new compounds 
can be obtained. 3D spheroids consists of aggregates 
of tumor cells that provide more natural conditions in 
terms of metabolism and oxygen distribution than 2D cell  
cultures (112). They can be evaluated using different assays 
on tumor growth while testing therapeutic application 
and furthermore bear the possibility to be transplanted as 
a PDX in xenograft animal studies. Apart from spheroids, 
there are also carrier substrates such as Matrigel (113) 
widely used in in vitro preclinical testing investigating the 
migration and invasion potential of melanoma cells. 

Certainly, any of these models have to be viewed with 
caution, as they only partially represent the systems, cells 
and tissues of human organisms. Nevertheless, they are 
an important tool for understanding basic biochemical 
processes of tumor biology, such as proliferation, expression 
of angiogenic factors, intra- and extravasation and 
migration. 

Another increasingly important method is the use of in 
silico predictions. In silico modeling can be used to accurately 
test binding affinities and efficacies of chemical compounds, 
as well as predict protein-protein interactions. Thereby, 
costly testing can be reduced to truly promising therapeutic 
candidates and is an interesting possibility for high-
throughput screening of drug libraries in the future (114). 
Currently, there are several studies in cutaneous melanoma, 
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Table 1 Overview of current preclinical experimental models with regard to advantages and limitations 

Experimental model Advantages Limitations

Syngeneic mice models • Immune-competent hosts • In CM and UM no murine cell lines available at date 

• Ideal conditions for investigations on TME 
and immune system 

• Many differences in tumor biology between mice and 
humans

Xenograft model • Ideal for high throughput testing of novel 
chemotherapeutic agents 

• Purchase and maintenance of immunodeficient animals is 
often very cost-intensive

• Metastasis models possible • Effects of immune system and TME interaction are 
disregarded 

• Many different hosts available—mice, chick 
embryos, zebrafish

• In the case of non-mammals very high differences in 
biology 

Genetically engineered 
models  

• Optimal for studies on cancerogenesis and 
fundamental research 

• Generation very time and cost-intensive 

• Immunocompetent hosts • One or several genes mostly not sufficient for exact 
representation of the disease 

• Metastatic models possible • Manipulation of genes often leads to multiple tumors 

3D culturing • Time-saving alternative - relatively fast 
establishment 

• Long-term studies in terms of tumorigenesis and relapses 
not possible 

In vitro testing • No living organisms needed • Not all cell types spontaneously form spheroids 

Stem cell culture • Scientific progress enables simulation of 
real tumors in cell culture-making testing of 
compounds and therapy options easier 

• Despite diverse cell cultures with different cell types no 
complete representation of a TME so far

In silico • Fast and inexpensive method for pre-
selection of chemotherapeutic candidates 

• Calculation of binding affinities alone not indicative 
for actual effect—efficacy must always be additionally 
evaluated in vitro or in vivo 

• Prediction of molecular docking, protein-
protein interactions and pathway analyses

• For a better prediction, an expansion of biobanks would 
be necessary to complement pathways and to be able to 
include interactions and side effects

CM, conjunctival melanoma; UM, uveal melanoma; TME, tumor microenvironment.

e.g., on the efficacies of BRAF inhibitors but also on 
proteomic profiles in tumors (115-117), implying that this 
techniques could also be applicable for CM. 

UM

Similar as in studies with CM, cutaneous melanoma 
cells have been used for syngeneic models of UMs for 
decades. For this purpose, cell lines derived from different 
animal species are used, such as Greene melanoma cell 
lines in rabbits (101,103,118) and B16 melanoma cells in 
mice (100). Even though the cutaneous cell lines are not 
derived from the choroid and accordingly have different 
properties, these models are still suitable for studying the 
intraocular growth of melanoma cells, and many of these 

models, actually lead to metastasis in the liver. Thus, the 
metastatic process including intra- and extravasation and 
growth in other organs can be monitored. Besides studying 
metastatic behavior, it is obviously very advantageous that 
the experiments take place in immunocompetent animals, 
to date remaining the greatest strength of these models. 

As with CM, there are many murine models of UM 
most commonly involve inoculation of C57BL/6 mice 
with the B16LS9 cell line, a derivative of the B16 skin 
melanoma line. Serial passaging induced the metastatic 
potential of this cell line to form hepatic metastases, which 
has led to valuable insights into the biology of metastatic  
melanoma (43,46,100). 

Although the syngeneic models are very useful, they are 
not suitable for UM. Since the used melanoma cells are 
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from cutaneous origin, the molecular drivers differ from 
drivers in UM. There were efforts made to compensate this 
by introducing canonical UM mutations in some studies. 
For this purpose, e.g., immortalized melanocytes were 
transduced with specific mutations like GNAQQ209L, actually 
leading to solid tumors and metastasis as well (119). 

The desirable outcome would be the use of murine UM 
cell lines, so eventually in the future it will be possible to 
establish a stable murine cell line from transgenic animals, 
allowing the investigation of interactions of an actual UM 
in an immunocompetent host. 

Just as in cutaneous and CM, xenografts are also being 
used in UM. Commonly, permanent UM cell lines are 
used, whose genetic and histological profile is already 
known (88,120-124). The great advantage of human 
xenografts is that cells derived directly from patients display 
characteristics of UMs at molecular level. The models are 
therefore ideal for testing new drugs and for screening 
intraocular tumor growth. Hence, the biological and 
pharmacological aspects can be studied in vivo with a view 
to interaction with new compounds identifying potential 
candidates for clinical studies. The selection of cell lines 
is of utmost importance as very few UM cell lines are 
available, as some cell lines turned out to be of cutaneous 
origin, by exhibiting e.g., BRAF mutations (125), which 
usually are not present in UM. Furthermore, some could 
be identified as identical cell lines by short tandem repeat 
(STR) analysis, which further limits the choice of reliable 
cell lines (126). Orthotopic mouse models of UM basically 
result in inoculation to the iris, ciliary body, or choroid. 
Suprachoroidal injection models have been described (98) 
and rapidly demonstrated tumors in the ciliary body and 
choroid. There are also methods to perform the injection 
intravitreally. Although in humans UMs do not arise in 
the vitreous body, animal models showed similar invasive 
behavior to human melanoma, making it well suited for 
preclinical testing (127,128) 

A major disadvantage of these models is that even if the 
characteristics of the cell lines are well described to date, 
cell lines yet evolve through frequent passaging and become 
increasingly distant from the tumor of origin. In this way, 
results obtained in animals are not readily translationally 
applicable with regard to original tumors (71,120,129). 

PDX models are a suitable solution and are becoming 
increasingly popular in cancer research. This often involves 
implanting tumor samples into mice, with resulting in 
solid tumors in nearly one-third of cases. Often the studies 
are using severe-combined immunodeficient (SCID) 

(63,87,90,91,120,122,130) and next-generation sequencing 
(NGS) (87,131) mice. 

This method enables producing heterogeneous tumors 
that share the same molecular and genetic abnormalities as 
tumors in patients, making them particularly good models 
for testing combination therapies. 

Xenotransplantation is  primari ly performed in 
immunodeficient mice and less frequently in rabbits 
(118,132). Nevertheless, in both cases, these are very costly 
and time-consuming variants. For this reason, approaches 
that allow high-throughput testing of entire compound 
libraries in UMs are becoming increasingly common. 

Another suitable model for preclinical screening is 
zebrafish, due to its low maintenance cost and ease of 
manipulation of zebrafish embryos, as the adaptive immune 
system of the animals is not formed until 4 weeks after 
fertilization. In addition, there are similarities between 
zebrafish and human tumors at the histopathological level, 
as well as there is the presence of tissue-specific transgenic 
zebrafish lines that facilitate imaging. In general, melanoma 
cells are implanted by injection into the embryos and then 
growth and migration are identified using various imaging 
methods (63,74,75,80,133). The studies showed that the 
zebrafish xenograft model is useful for preclinical testing of 
a variety of compounds and has the advantage over mouse 
models in terms of cost-efficiency and time-saving. 

Another method for preclinical testing is the use of 
chicken embryos in so called chorioallantoic membrane 
(CAM) assays. UM cells are applied to the CAM on tenth 
day after fertilization and subsequently tumor growth, 
angiogenesis and metastasis can be observed and analyzed 
in this model. The immune advantage of inducing tumor 
cells without rejection is due to the lack of an immune 
system in chicken embryos to this point of embryonic  
development (72). Considering the accessibility and 
application diversity of this method, it could be as well a 
very helpful tool in the future. 

Like all preclinical models, xenografts also have 
deficiencies. In addition to the aforementioned use of cell 
lines, some of which are not translatable to the tumors 
in patients, the use of immunodeficient hosts is also an 
extreme disadvantage. With the increasing importance of 
immunotherapies, it does not seem reasonable to work 
with models that cannot represent the immune interaction 
with tumor cells. Although response rates to PD-1 and 
CTLA4 inhibition have been low in UM (134), there are 
other aspects of the immune system that play important 
roles and fundamentally affect angiogenesis, metastasis, and 
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ultimately prognosis. In addition, xenografts, even PDX, 
are often very expensive and have a low transplantation rate 
or, as with CAM assays or zebrafish, are not performed in 
mammals, which also challenges the transferability of these 
models.

Besides xenografts and syngeneic models, there is another 
subclass of animal models—GEMs. In this case, GEMs 
allow the study of autochthonous tumorigenesis coupled 
with the influence of the immune system (85,93,95)—given 
that spontaneous tumors arise. 

This  method,  in  combinat ion with  the  use  of 
immunocompetent hosts, has the advantage that signal 
transduction of tumorigenesis can be studied at genetic level 
and fundamental understandings of the disease can be gained. 

Older models of UM primarily used pigment-specific 
promoters such as tyrosinases and HRAS, which resulted 
in not only uveal tumors but also retinal and cutaneous 
malignancies. Apart from that, these were gene alterations 
that cannot be observed in UM patients, which limits the 
clinical applicability immensely (135). 

The discovery of the oncogenic drivers GNAQ/GNA11 
has been one of the most important contributions in recent 
years, allowing the development and study of several 
mouse models using GNAQQ209L transgenic mice. These 
mice also did not develop UMs initially, but still showed 
some molecular similarity in the cutaneous lesions, such as 
activation of the YAP protein (133,136-138). 

Another GNAQQ209L model resulted in the formation 
of UMs within a few months, although intravasation 
and metastasis were also observed here. However, there 
were also dermal neoplasms derived from melanocytes 
in addition to lesions on the choroid. Other models 
combined, for example, BAP1 deletion and expression of 
GNAQQ209L, in which, unexpectedly, choroidal melanomas 
turned out smaller but with overall increased dermal tumor  
burden (119). 

These models allow us to have a more detailed look on 
tumorigenesis than before, for example, the role of GNAQ 
and GNA11 as oncogenes could be verified by this kind of 
modelling (40,119,136,137). 

By all means, like other models, GEMs are not without 
drawbacks. First, the introduction of GNAQQ209L leads 
to melanocytic neoplasms in other organs leading to 
undesirable side effects and to a premature termination of 
the studies without the possibility to sufficiently observe 
the development of UMs. In addition to this, the time 
factor also plays a role, since the occurrence of spontaneous 
lesions certainly is more time-dependent than inoculation 

in xenografts and syngeneic models. Another factor is the 
lack of distinction between primary tumors and metastases, 
as the tumor burden of the transgenic mice is generally  
very high. 

Finally, yet importantly, despite all the advances, the 
immense differences in the biology of mice and humans are 
not to be overlooked and always have to be considered in 
preclinical testing. 

In addition to basic preclinical metastasis assays 
such as migration assays, ring assays, and chemotaxis  
assays (139), there are a number of approaches to overcome 
two-dimensional cell cultivation and to establish more 
realistic methods for the evaluation of preclinical tests 
in UM. Based on the success of PDX, it has been shown 
that three-dimensional cultures from tumor samples can 
grow in mice. Thus bears the possibility to represent the 
molecular phenotypes and possibly also include the role of 
tumor microenvironment with fibroblasts and lymphocytes 
(71,129). There are already successful approaches to 
cultivate cell culture lines with e.g., added macrophages 
as well as to cultivate patient cells (66), which result in 3D 
spheroids and could also be used successfully in first tests. 
If these 3D cell models become established, this will be a 
superior tool for testing cell-matrix interactions and tumor 
microenvironment and probably could be used for in vitro 
testing as well as act as a xenograft model.

Retinoblastoma

Although the extraction of live cells from retinoblastomas 
was initially very difficult, some cell lines are now available 
that allow the application of xenografts. Therefore, 
retinoblastoma cell lines could be transplanted into 
immunodeficient animals by microinjection, which also lead 
to formation of tumors (83,132,140,141). 

Among the animals used were rabbits, in which 
immunohistochemistry was used to demonstrate that 
the tumors had indeed grown (132,142). Both stronger 
vascularization and persistent tumor growth could be 
detected, as well as the presence of necrotic areas and 
hypoxic conditions, which can also be observed in human 
retinoblastomas. However, these models were inaccurate 
since the subretinal space was affected rather than the retina. 

Another approach used athymic nude mice including 
the injection of a primary cell line and freshly derived 
patient samples after surgery (143). The fresh cells were 
transplanted into the anterior chamber and grew in the eye, 
but failed to grow if injected subcutaneously. On the other 
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hand, cells from the Y-79 cell line invaded orbit, brain and 
optic nerve and showed severe tumor growth.

There are also several models using zebrafish in an 
orthotopic approach, showing promising results in terms of 
high throughput screening of drug libraries (76-79,81,144). 
Like the most xenograft models they are used to test new 
chemotherapeutic agents and photodynamic therapies and 
allows a high number of agents to be tested in short time. 

Besides the preclinical testing of novel drugs, xenograft 
models delivered some diagnostic advances in non-invasive 
imaging, such as micro CT, MRI and fluorescence and 
bioluminescence imaging (145-147). By labeling cell lines 
with fluorescent proteins like green fluorescent protein 
(GFP), it is possible to study the metastatic behavior of 
retinoblastomas. 

However, like all xenograft models, these models 
have the disadvantage that they only reflect the disease 
to a limited extent and the tumor microenvironment of 
tumors cannot be monitored due to immunodeficiency. In 
addition, there are also differences in the various biological 
species: for instance, the optimal body temperature for 
zebrafishes is 28 ℃, while tumor cells show the best growth 
performance at 37 ℃ degrees, so naturally, the conditions 
are not limitless comparable (77). This limitation has 
been addressed by many groups and the Langenau group 
actually succeeded in performing preclinical experiments 
with zebrafish at 37 ℃. For this purpose, adult zebrafish 
of the Casper strain prkdc−/−, il2rgα−/− with weakened 
immune systems were used, in which human cancer cells 
could actually be implanted over a period of more than  
28 days (73).

In addition to xenografts, there are a number of 
approaches to knockout models of retinoblastoma. Even 
though the Rb1 gene is considered an oncopromoter in 
human retinoblastomas, it was initially insufficient to 
generate a retinoblastoma in the mouse eye. Only with 
the identification of p107 in the signal pathways and the 
knockout combination of both genes was it possible to 
generate successful transgenic models. 

One of the first models is the LH-β T-Ag mouse model, 
in which the oncogenic unit of the SV40 protein is expressed 
and can be induced by an LH-β promoter, and is combined 
with T-Ag-expressing mice (148-151). On histological 
level, the resulting retinoblastomas were also very similar 
to human retinoblastoma samples and therefore became a 
first basis for better understanding of retinoblastoma. The 
model was primarily used to test local therapies, yet had the 
disadvantage of using viral oncoproteins, whose impact on 

tumor and experimental animal is not completely evaluated. 
Consequently, it was inevitable to develop other transgenic 
models that could mimic retinoblastoma tumorigenesis in 
humans.

Although the original model provided some important 
results on therapeutic testing, the advent of gene knock-
out technology (152) first provided important tools for 
developing new translational retinoblastoma models. The 
first attempts resulted in the knockout of the Rb1 gene in 
the retinal hat of mice (153). However, this alone didn’t 
bring the desirable retinoblastoma. It was not until the 
discovery of another protein, p107 (154-157) and its role in 
inhibiting retinoblastoma formation in Rb-deficient mice 
until multiple knockout mouse lines were developed from 
it actually getting retinoblastoma tumors. Unfortunately 
most of the animals died very early in development, 
since Rb, as well as p107, plays a major role in embryonic 
development (158). Hence, a Cre-Lox model was generated 
to facilitate viable mutants and still knock out the genes. 
This way, it was indeed possible to obtain a group of 
animals in which retinoblastoma developed (156,157). This 
model also showed high apoptotic sensitivity and cell death 
resistance, which is very similar to human retinoblastomas. 
Unfortunately, the delayed tumorigenesis was unfavorable; 
in addition, little penetrance and invasiveness could be 
observed in this model. 

Inclusion of an additional mutation of p130 in these 
models resulted in enhancement of several developmental 
phenotypes seen with loss of Rb in the retina (157,159,160). 
This indicated that there is a functional synergy between 
these family members.  The α-Cre Rb/p130  DKO 
mouse turned out as a suitable model to study advanced 
retinoblastoma with tumors rapidly progressing and also 
producing metastases. Rb/p130-DKO retinoblastomas 
appear similar to Rb/p107-DKO retinoblastomas on 
histologic examination, and both resemble human 
retinoblastomas with neuroblastic differentiation. Numerous 
variations of this murine model exist, also e.g., including 
p53 mutations as well, while a lot of them are considered 
genetically and histologically translatable to humans. 
Obviously, there is always the fact that tumor biology of mice 
and humans is distinctive and the findings on tumorigenesis 
can only be transferred to a limited degree.

While many mouse models rely on the deactivation 
of Rb1 and Rb1l, there are other models that make use of 
this principle. For example, there is a promising study in 
Xenopus tropicalis where means CRISPR/Cas9 techniques 
using a combination of double mutation of Rb1 and Rbl1 
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resulted in tumors, while knockout of Rb1 or Rbl1 alone 
did not result in tumor formation in the tadpoles (161). 

Many approaches have tested the use of immortalized Rb 
cell lines for 3D cell culture for biological and preclinical 
testing, but failed due to self-assembled structures and 
formation of cell-cell matrices in three-dimensional space.

A successfully tested study instead uses human pluripotent 
stem cells (hPSCs) that could mimic retinogenesis in vitro. 
Consequently, human embryonic stem cells with biallelic 
Rb1 mutation were generated and did grow stepwise into 
Rb organoids. Through this model, it was indeed possible 
to identify genetic signatures and successfully test potential 
therapeutics (162). The use of pluripotent stem cells could 
therefore become an interesting innovative way to screen 
retinoblastoma therapies, without the time and cost effort 
of mice models. 

In summary, it is certain that the one perfect preclinical 
model does not exist for any of the three cancer entities 
described here. All animal models as well as in vitro testing 
have their advantages and disadvantages. Crucially, to 
realize the experimental potential, it is definitely necessary 
to create more molecular datasets for ocular melanomas in 
order to create successful therapies and treatment options 
despite the rarity of the respective diseases. Besides the 
optimization of the respective preclinical models, it is 
also a top priority to support the expansion of biological 
databases in order to consolidate the state of knowledge and 
to combine all known findings and use them well in future 
scientific approaches. 
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