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Background and Objective: Limbal stem cell deficiency (LSCD) is characterized by the insufficiency 
of limbal stem cells to maintain the corneal epithelium. Severe cases of LSCD may be treated with limbal 
transplantation from healthy autologous or allogeneic limbal tissue. Multiple cell-based therapies have been 
studied as alternative treatments to improve success rates and minimize immunosuppressive regimens after 
allogeneic transplants. In this review, we describe the success rates, and complications of different cell-based 
therapies for LSCD. We also discuss each therapy’s relative strengths and weaknesses, their history in animal 
and human studies, and their effectiveness compared to traditional transplants. 
Methods: PubMed was searched for publications using the terms LSCD, cell-based therapy, cultivated 
limbal epithelial transplantation (CLET), cultivated oral mucosal epithelial transplantation (COMET), 
and mesenchymal stem cells from 1989 to August 2022. Inclusion criteria were English language articles. 
Exclusion criteria were non-English language articles.
Key Content and Findings: current cell-based therapies for LSCD are CLET and non-limbal 
epithelial cells. Non-limbal epithelial cell methods include COMET, conjunctival epithelial autografts, and 
mesenchymal stem/stromal cells (MSCs). Moreover, several alternative potential sources of non-limbal cells 
have described, including induced pluripotent stem cells (iPSCs), human embryonic stem cells (hESCs), 
human dental pulp stem cells, hair follicle bulge-derived epithelial stem cells, amniotic membrane epithelial 
cells, and human umbilical cord lining epithelial cells. 
Conclusions: Cell-based therapies are a promising treatment modality for LSCD. While CLET is 
currently the only approved cell-based therapy and is only approved in the European Union, more novel 
methods have also been shown to be effective in human or animal studies thus far. Non-limbal epithelial cells 
such as COMET are also an alternative treatment to allogeneic transplants especially as a surface stabilizing 
procedure. iPSCs are currently being studied in early phase trials and have the potential to revolutionize the 
way LSCD is treated. Lastly, cell-based therapies for restoring the limbal niche such as mesenchymal stem 
cells have also shown promising results in the first human proof-of-concept study. Several potential sources 
of non-limbal cells are under investigation.
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Introduction 

Background

Limbal stem cell deficiency (LSCD) is characterized by 
damage to or loss of limbal epithelial stem cells, which 
maintain the continuous renewal of corneal epithelial 
cells (1). Limbal epithelial stem cells are located in the 
basal limbal epithelium, anatomically marked by the 
Palisades of Vogt located at the cornea-conjunctiva 
junction. Deficiency in these cells can result in persistent 
epitheliopathy, conjunctivalization of the cornea, and 
the loss of corneal transparency and visual function (2). 
Other LSCD consequences include persistent epithelial 
defects, corneal opacity, neovascularization, inflammation, 
ulceration, corneal thinning, and perforation. Several 
etiologies for LSCD have been introduced, which may be 
hereditary or acquired in origin. Inherited conditions such 
as aniridia are rare. Acquired conditions can be categorized 
as immune-related conditions such as Stevens-Johnson 
syndrome (SJS), mucus membrane pemphigoid (MMP), 
and non-immune pathologies like burns or previous 
multiple ocular surgeries (1,3).

The treatment of LSCD depends on the severity and 
extent of limbal stem cell loss. Conservative management 
with lubrication is suited for mild cases, while various 
surgical interventions can be utilized in severe cases. 
In unilateral cases, limbal stem cell transplantation is 
performed using limbal grafts taken from the patient’s 
healthy second eye [conjunctival limbal autograft (CLAU)]. 
Autologous limbal stem cell transplants from a patient’s 
unaffected eye in unilateral LSCD eliminate the need for 
immunosuppression, but it increases the risk of developing 
LSCD in the healthy eye. In allogeneic transplantations, 
limbal grafts are from healthy living-related donors or 
cadaver corneas. In all allogeneic transplants, systemic 
immunosuppression is required for a prolonged or 
indefinite period (1).

Rationale and knowledge gap 

More recently, various cell-based therapies have been 
explored as alternative treatment options. Interestingly, 
ophthalmology is one of the first medical disciplines to 

utilize stem cell application in regenerative medicine (4). 
The overall literature on LSCD and its treatment is growing 
rapidly and numerous papers are published annually on this 
topic. So, we aimed to provide and update on the cell-based 
therapies for LSCD to help clinicians and researchers alike.

Objective

This review discusses the mechanisms and utility of 
various cell-based therapies such as cultivated limbal 
epithelial transplantation (CLET) and other non-limbal 
and stem cell sources for transplantation (Figure 1). The 
key question to be explored is how cell-based therapies 
can play a role in LSCD treatment. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://aes.amegroups.com/article/
view/10.21037/aes-22-55/rc). 

Methods

The literature search identification process included years 
starting from 1989, English language, published status, a 
database of coverage including PubMed, and study designs 
consisting of original articles, review articles, and case series 
(Table 1). 

Limbal epithelial cells

CLET was first described in 1997 by Pellegrini et al. They 
showed that limbal epithelial cells could be cultured ex vivo 
and give rise to the stratified corneal epithelium. In this 
procedure, a 1 mm2 biopsy is taken from the healthy eye, 
cultured ex vivo with various serums and growth factors, and 
subsequently transplanted on the deficient eye with grafts 
containing 2×106 cells. It is of note that grafts may have an 
autologous or allogeneic origin (5).

More recently, CLET has been tested in more extensive 
studies which have shown reasonable success rates, defined 
as restoration of a stable, transparent, and avascular cornea. 
Rama et al. (6) reported a success rate of 68.2% at 1 year in 
107 eyes after the first autologous CLET transplantation. 
Sangwan et al. (7) similarly found a success rate of 71% in 
a retrospective study of 200 eyes that underwent CLET 
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for LSCD from ocular surface burns. Fasolo et al. (8) also 
showed a lower success rate of 41% in 65 consecutive 
CLET transplantations of 59 eyes. However, an additional 
39% of cases were classified as partially successful (relapsed 
neovascularization but not as extensive as admission). In 
the study by Rama et al., it is found that 11 eyes that were 
partially successful or failed after primary CLET were re-
grafted with 9 of the 11 (81.8%) classified as successful. 
This resulted in a final success rate of 76.6%. In this study, 
age, the underlying cause of LSCD, the severity of injury, 
culturing and postoperative complications, as well as 
inflammation were found to be associated with failure based 

on univariate logistic-regression analysis. The severity of 
injury and culturing and postoperative complications were 
confirmed on multivariate logistic regression analysis. An 
interesting finding in this study was the role of p63-bright 
cell density (representing holoclones which are enriched in 
stem cells) in the success rate of grafts; cultures containing 
>3% of p63-bright cells had a success rate of 78% while 
cultures containing ≤3% of these cells population resulted 
in the success rate of 11%. This finding shows that >3% 
p63-bright cell density is necessary but not enough for 
successful treatment since over 20% of cultures with this 
property had failed (6).
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Figure 1 This diagram summarized updated treatment options for cell-based therapies in limbal stem cell deficiencies.

Table 1 The search strategy summary

Items Specification

Date of search August 10th, 2022

Databases and other sources searched PubMed

Search terms used Limbal stem cell deficiency, cell-based therapy, cultivated limbal epithelial transplantation, 
cultivated oral mucosal epithelial transplantation, mesenchymal stem cells

Timeframe 1989 onwards 

Inclusion and exclusion criteria Inclusion: keywords in English literature from PubMed

Exclusion: all other items not included in the inclusion criteria

Selection process Conducted by Dr. Djalilian, we searched the literature, and a consensus was reached according 
to author experience and source assessment
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Basu et al. (9) performed a retrospective study focusing 
on repeat CLET. These repeat transplants do not increase 
the risk of rejection or necessitate immunosuppressive 
treatment given the autologous nature of the transplant 
and have a success rate of 66% in the 50 eyes included, 
similar to the rates noted in primary CLET. Most of these 
eyes undergoing repeat autologous CLET also exhibit 
improvement in best corrected visual acuity (BCVA) of at 
least 2 lines.

Autologous CLET transplantation significantly reduces 
the risk of iatrogenic LSCD in the donor’s eye compared 
to the larger traditional CLAU transplantations. However, 
as reported by the Holland group, if the donor’s eyes are 
carefully screened and selected, the risk of iatrogenic LSCD 
in the donor’s eye is minimal (10).

Although our knowledge regarding the long-term 
outcomes of CLET is limited, successful clinical results of 
up to 10 years (with a median of 2 years) were reported by 
Rama et al. (6). Regarding the comparison between long-
term outcomes of CLET and CLAU, Sharma et al. (11) 
reported equal effectiveness in restoration of the ocular 
surface after chemical burns for both procedures. They 
performed CLET on 10 patients and CLAU in 51 eyes and 
all of the eyes experienced improvement in ocular surface 
condition. Although CLET provides more stem cells in the 
recipient’s eye and avoids iatrogenic LSCD in the donor’s 
eye, CLAU is cheaper and also can simultaneously address 
the pre-existing symblepharon (11). 

Less data is available regarding clinical outcomes of CLET 
in children. One study looking at children under 15 years  
of age who underwent CLET for LSCD due to ocular 
burns showed a success rate was 37.4% in 107 eyes, with 
a significantly lower rate of success in children 6 years or 
younger (30%) compared to those over 6 years of age (70%). 
Multivariable analyses in this study also found that the 
survival rates of the grafts were significantly higher in eyes 
that underwent surgery more than 4 months after the injury. 
At 24 months, the survival rate was 12.8% in eyes operated 
at or earlier than 4 months after the initial injury, and 54% 
in eyes operated on more than 4 months after the injury. 
This lower success rate compared to the adult trials is likely 
multifactorial and may partially be attributed to an increased 
inflammatory response in children. In addition, children also 
have a much lower likelihood of visual improvement after 
surgery due to deprivation amblyopia (12). 

CLET has also been performed with allografts, especially 
in cases of bilateral LSCD, although this is less commonly 

performed than autologous CLET. A recent meta-analysis 
including 30 studies and 1,306 eyes reported a ratio of 
75.2% to 24.7% of eyes had undergone autologous versus 
allogeneic CLET. No statistically significant difference was 
found in terms of graft survival and visual improvement. 
However, autologous CLET, whenever feasible, eliminates 
the need for long-term immunosuppression (13).

The precise process by which limbal stem cells are 
cultivated ex vivo and transplanted back onto the human 
cornea in CLET varies slightly between studies. There are 
differences in the use of feeder cells, culture media, serum, 
and scaffolds across these studies. Feeder cells help to create 
a suitable microenvironment and vary from irradiated or 
mitomycin-treated murine 3T3 (mitotically inactive) cells 
to human mesenchymal stem cells and limbal melanocytes. 
Similarly, animal and human-derived serums and growth 
products are used for the culture media. A few studies 
have also investigated serum-free culture protocols (1). 
The cultured cells are then transported to the diseased 
cornea using various scaffolds, including human amniotic 
membrane (HAM), collagen, fibrin, contact lenses, or other 
hydrogels (1). 

In February 2015, CLET transplantation by the name 
of Holoclar® (Chiesi Farmaceutici SpA, Parma, Italy) was 
the first stem-cell containing advanced therapy medicinal 
product (ATMP) to be approved for use in the European 
Union by the European Medicines Agency and is approved 
to treat adult patients with moderate or severe LSCD due 
to burns, including chemical burns. It should be emphasized 
that at the time being, Holoclar has authorization only for 
application in cases due to burns with cultured grafts of 
autologous origin (7,14).

Non-limbal epithelial cells

In cases of total bilateral LSCD, allogeneic transplants 
are required either from living related donors or cadaveric 
donors, necessitating long-term chronic immunosuppression 
and increasing the risk of disease transmission. This has led 
researchers to seek other alternative non-limbal cells that 
may be used for autologous grafts. Studies have investigated 
a variety of non-limbal cells including oral mucosal epithelial 
cells (15-24), cultivated autologous conjunctival epithelial 
cells (25-28), induced pluripotent stem cells (iPSCs) (29-38), 
umbilical cord derived stem cells (39,40), hair follicle derived 
epithelial stem cells (41,42), dental pulp stem cells (43-46), 
and nasal mucosal cells (47,48).
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Autologous non-limbal epithelial cell transplantation

Cultivated oral mucosal epithelial transplantation 
(COMET)
Of the non-limbal epithelial cell transplantations studied 
for the treatment of LSCD, the most well-studied is 
COMET. This procedure is also called ex vivo cultivated 
oral mucosal autograft (EVOMAU). COMET was first 
performed on humans in 2004 by Nakamura et al. (15). 
Six eyes of 4 patients with bilateral LSCD underwent 
COMET in this study, showing the survival of the 
transplanted oral epithelium at 2 days and improvement in 
visual acuity at follow-up of at least 11 months. Peripheral 
neovascularization, however, was found in all eyes. It 
has been reported that COMET is the most common 
autologous non-limbal epithelial cell transplantation in 
cases with bilateral LSCD (20). Lack of graft rejection and 
immunosuppressive regimen may justify this point.

Several subsequent studies evaluating COMET have 
since been performed (16-19) and COMET has proven to 
be promising in the treatment of LSCD with a variety of 
etiologies including ocular burns, aniridia, SJS, and ocular 
cicatricial pemphigoid (OCP). Cabral et al. performed a 
meta-analysis of 24 studies and 343 eyes, for which COMET 
was used to treat various etiologies of LSCD. This study 
showed a relative success rate defined as a stable ocular 
surface of 70.8% of 243 eyes (20). Dobrowolski et al. (21) 
and Venugopal et al. (22) also examined the outcomes of 
COMET in limbal stem cell deficient eyes exclusively due 
to aniridia and SJS, respectively. Dobrowolski et al. reported 
that 76.4% of eyes undergoing COMET for LSCD due to 
aniridia had a stable corneal epithelial surface after COMET 
transplantation, with 88% endorsing an improvement in the 
quality of vision (21). In 45 eyes that underwent COMET 
for severe SJS, COMET was also shown to be beneficial 
in 88.8% of eyes with a reduction in LSCD severity scores 
after the transplant (22). Phenotypic characterization of cells 
after COMET has also been performed and shows that cells 
retain markers for oral epithelial cells on impression cytology 
with immunofluorescence staining, even in successful cases 
(24,49). In addition, peripheral neovascularization, while 
not visually significant and reportedly stable at 6 months in 
the above studies, may continue to progress as oral mucosal 
cells have greater angiogenic potential compared to limbal 
epithelial cells (49,50).

While COMET has the main advantage of eliminating 
the need for chronic immunosuppression, its visual 
outcomes are inferior to other limbal transplant procedures. 

This is partly because the oral mucosal epithelium is 
thicker and more opaque than normal corneal epithelium. 
A direct comparison study looking at allogeneic CLET 
and COMET by Wang et al. found a higher incidence of 
persistent epithelial defect, a worse ocular surface grade, 
a lower success rate, and a higher risk of graft failure after 
COMET compared to allogeneic CLET (23). Overall, 
while there is no consensus on the role of COMET in the 
management of bilateral LSCD, it may be considered a 
surface stabilization procedure especially when the patient 
is not a candidate for immunosuppression. 

Conjunctival epithelial autografts
Human conjunctival epithelial cells are another type of 
non-limbal epithelial cells that have been studied for 
LCSD (25-28). Ang et al. compared cultivated human 
corneal epithelial cells and cultivated human conjunctival 
epithelial cells transplanted into rabbit eyes and found 
that immunohistochemical analysis of the conjunctival 
epithelial cells showed similar markers of corneal epithelium. 
Clinical outcomes were also comparable, with the majority 
of rabbit eyes demonstrating smooth, transparent corneas 
without epithelial defects (25). Jeon et al. demonstrated 
similar findings, showing that the cultivated conjunctival 
cells can acquire a corneal epithelial phenotype after  
transplantation (26). Although most studies thus far 
have been in animal models, Ricardo et al. demonstrate 
preliminary results of ex vivo-cultivated conjunctival 
epithelial cells in 12 human eyes with promising results. Re-
epithelization with a transparent and regular epithelium 
without neovascularization was found in 8 of 12 eyes (66.6%) 
and they also demonstrated visual improvement. Overall, 
while the results are encouraging and avoid the need for 
immunosuppression, long-term restoration of the corneal 
phenotype is not likely with only conjunctival epithelial 
transplants (without any interventions to restore the limbal 
niche) and hence many of the problems associated with 
LSCD are likely to recur over time (28).

Allogeneic non-limbal stem cell-based transplantation

Mesenchymal stem/stromal cells (MSCs)
MSCs are a population of cells that can differentiate into a 
variety of mesodermal lineage cells including osteoblasts, 
adipocytes, and chondroblasts. In addition, MSCs 
secrete various cytokines and growth factors, creating an 
immunomodulatory and anti-inflammatory environment 
(51-53). Because of these features, MSCs have become 
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widely studied in a variety of conditions including severe 
corneal diseases. To date, more than 1,000 clinical trials 
have been registered using MSCs derived from bone 
marrow, fat, umbilical cord, and dental pulp. 

Multiple animal models have shown promising results with 
MSCs in the regeneration of the corneal surface in different 
ocular surface diseases (54-63) as well as in LSCD (64).  
More recently, a proof-of-concept study was performed 
comparing allogeneic bone marrow MSC transplantation to 
allogeneic CLET (65). After 6–12 months, 72.7–77.8% of 
CLET cases and 76.5–85.7% of MSC cases were successful 
with no adverse events related to cell products. Central 
corneal epithelial phenotype was also examined in this study 
via in vivo confocal microscopy and showed improvement in 
the epithelial phenotype in both groups with no statistically 
significant difference. This report is the only clinical 
application of MSCs in LSCD (65). 

Different routes of administration of MSCs have also 
been studied, including topical administration (56,66), sub-
tenon injections, and intravenous injections (55,67,68). 
While the first human trial utilized HAMs as a carrier 
for the delivery of stem cells, Galindo et al. also showed 
promising results in utilizing subconjunctival injections to 
deliver MSCs (69). This study used an animal model, which 
may be a good alternative for clinical use in the future.

MSCs may have several benefits compared to limbal 
epithelial cells, including harvesting from multiple tissues, 
independency from cadaveric donors, as well as a faster 
and cheaper process. Moreover, 100% of the MSCs in a 
transplant are stem cells, whereas the population of stem 
cells in CLET may be extremely smaller (70). It seems that 
usage of MSCs in the treatment of LSCD is safe without 
subsequent adverse reactions, toxicity, and tumorigenicity 
(54,67,71-79). Currently, we are conducting a clinical 
trial to evaluate the safety and maximally tolerated dose of 
locally delivered allogeneic MSCs. In this study, different 
doses of bone marrow-derived MSCs were used in the 
route of subconjunctival injection to evaluate safety as 
well as anatomical and functional results in adult cases of 
neurotrophic keratitis (80). The results of the first three 
patients were reported in the annual ARVO 2022 meeting. 

Alternative potential sources of non-limbal cells
In recent years, new promising options have been 
investigated and studied (81).
iPSCs
iPSCs have been at the forefront of regenerative medicine 

and investigated as another possible treatment modality in 
LSCD (29,30). iPSCs can be induced from differentiated 
cells and reprogrammed into a variety of cells including 
corneal epithelial cells. Over the years, researchers have 
successfully transitioned from using mouse models (31,82) 
to human models (32,33). Mikhailova et al. have more 
recently studied iPSC-derived limbal epithelial stem cells 
and showed that they are able to retain their capacity for 
proliferation on bioengineered collagen matrices (34). 
Additional protocols and studies are also promising and 
suggest that human pluripotent stem cell-derived limbal 
stem cells may become a valuable cell source for treatments 
in the near future (35-38). Currently, more work needs to 
be done before this method can be implemented in large-
scale clinical trials. Recently, a team of scientists from 
Osaka University reported the results of a world-1st trial on 
iPSC-based corneal transplantation (83). They performed 
this trial successfully on 4 patients without any rejection or 
tumorigenicity. 

It should be mentioned that this technique carries a 
considerable expense, is time-consuming, and concerns 
about immune-related problems remain. HLA-typed IPSC 
banks can be a solution to these issues (84,85). Moreover, 
rigorous genetic analysis should be performed before 
transplantation to ascertain the lack of mutagenicity (86).
Embryonic stem cells
Human embryonic stem cells (hESCs) are pluripotent stem 
cells with the capability of differentiation into corneal and 
limbal epithelial cells (87). Hence, application of these 
cells may be beneficial in LSCD. Although challenging, 
several in vitro models have been successfully used to 
differentiate hESCs into corneal epithelial-like cells 
(88-92). Nevertheless, ethical challenges and potential 
immunogenicity and tumorigenicity may act as possible 
limiting factors (93).
Dental pulp stem cells
A similarity between marker expression of immature human 
dental pulp stem cells, mesenchymal stem cells, embryonic 
stem cells, and limbal epithelial stem cells has been shown. 
The success of transplantation of these stem cells in 
restoration of ocular surface structure and diminishing 
pathological features such as conjunctivalization and corneal 
neovascularization has been reported in animal LSCD 
models (43,44). Further studies are needed to investigate 
the safety and efficacy of this before clinical application.
Hair follicle bulge-derived epithelial stem cells
By providing a limbal-like microenvironment with a special 
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culture medium, stem cells harvested from hair follicles may 
differentiate into corneal epithelial-like cells (94). Although 
this source of stem cells has been used successfully in a 
mouse LSCD model (41), our knowledge regarding this 
technique is limited.
Amniotic membrane epithelial cells
It seems that expressed markers of amniotic membrane 
epithelial cells have a significant overlap with mesenchymal 
and embryonic stem cells. The other advantage of these 
cells is in showing immunomodulatory characteristics 
(95,96). In rabbit models, these cells have been successfully 
applied to treat LSCD (97-100).
Umbilical cord lining epithelial cells
Human umbilical cord lining epithelial cells can be 
considered another potential source for the management 
of LSCD. Animal models using this type of stem cells are 
available in the literature (39). Lack of mutagenicity and 
low immunogenicity are among the advantages of these 
cells (101).

The strengths of this review are describing the success 
rates, and complications of different cell-based therapies for 
LSCD and also discussing each therapy’s relative strengths 
and weaknesses, their history in animal and human studies, 
and their effectiveness compared to traditional transplants. 

Conclusions

Cell-based therapies are a promising treatment modality 
for both unilateral and bilateral limbal stem cell deficiency. 
While CLET is currently the only approved cell-based 
therapy and is only approved in the European Union, more 
novel methods have also been shown to be effective in 
human or animal studies thus far. Non-limbal epithelial cells 
such as cultivated oral mucosal cells (COMET) are also an 
alternative treatment to allogeneic transplants especially as a 
surface stabilizing procedure. Induced pluripotent stem cells 
are currently being studied in early phase trials and have the 
potential to revolutionize the way LSCD is treated. Lastly, 
cell-based therapies for restoring the limbal niche such as 
mesenchymal stem cells have also shown promising results 
in the first human proof-of-concept study. Several potential 
sources of non-limbal cells are under investigation.
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