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Introduction 

Background 

Limbal stem cell deficiency (LSCD) is a rare disease. Its 
treatment is often difficult. LSCD is a condition in which 
normal corneal epithelization is not maintained because 
of the loss of limbal stem cells (LSCs) (1,2). Diseased 
corneal surface is covered by opaque conjunctiva with 
neovascularization. In severe conditions involving the visual 
axis, visual rehabilitation should be achieved using stepwise 
surgical approaches including multiple surgeries such as 
LSC transplantation and corneal transplantation. 

Rationale and knowledge gap

Since the pioneering works by Kenyon and Tseng who first 
proposed the role of LSCs in corneal epithelial homeostasis in 
1989, many basic and clinical studies have been reported in this 
field (1). Various cell markers for LSCs have been found and 
innovative surgical treatment modalities have been developed (3). 
Recently, advanced stem cell technology has been incorporated 
into the development of a novel cell therapy to replace LSCs. 
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The aim of this review was to summarize basic knowledge of 
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LSCD as clinicians and a general concept of its diagnosis and 
treatment. This article is presented in accordance with the 
Narrative Review reporting checklist (available at https://aes.
amegroups.com/article/view/10.21037/aes-22-51/rc). 

Methods

A PubMed literature review was performed to search for 
relevant articles on LSCs and LSCD published in English 
from May 1989 to May 2022. The search strategy is 
presented in Table 1.

Discussion

LSCs 

It has been known for a long time that stem cells for 
regenerating corneal epithelium exist. The exact location of 
these stem cells was found to be the limbus about 30 years 
ago. Using radio-labeling technique, Cotsarelis et al. (4) have 
verified that there are label-retaining, slow-cycling, and stem 
like cells at the limbus. These cells progressively lost radio-
labeling as they migrated toward the central cornea.

LSCs reside in the limbal stem cell niche, a unique 
environment at the junction between the corneal epithelium 
and the conjunctival epithelium. The limbal stem cell niche 
has the classical architecture of the palisade of Vogt, limbal 
stem cell crypt, and limbal crypt or focal stromal projection 
near the palisade of Vogt (5). These structures are more 
prevalent in the superior and inferior limbus. The niche 
provides protection from ultraviolet light and supplies 
LSCs with blood vessels and various signaling molecules. 
Recently, there were some evidences in animals and human 

to support the existence of LSCs even at the central cornea 
(6-8). However, it is still an established theory that most 
LSCs reside in the limbal area. 

Molecular markers of LSCs are important for isolating 
and harvesting LSCs and culturing them for transplantation. 
For a long time, many researchers have tried to find 
molecular markers to characterize LSCs. However, there are 
no established markers for LSCs yet. At present, cytokeratins 
(such as cytokeratin K15), ΔNp63α, C/EBPσ, Bmi1, ABCG2, 
and Notch-1 are well known candidate markers for LSCs (9).

Limbal stem cell niche

The LSC niche is located in the Palisades of Vogt that are 
radially oriented, usually pigmented, and more prominent 
in superior and inferior limbi. Unlike the cornea, basement 
membrane at Palisades of Vogt is undulating with papillae, 
crypts, or stromal projections and fenestrated. This unique 
structure can shelter LSCs from physical shearing stress 
and provide a larger surface area to accommodate more 
LSCs within the confined area. Pigments of surrounding 
melanocyte can protect LSCs from ultraviolet damage (10). 
Limbal stroma underlying the Palisades of Vogt is heavily 
innervated and vascularized.

The interaction of stem cell with the surrounding 
environment such as vessel, neurons, and extracellular 
matrix is important in the homeostasis or activation of stem 
cells. How LSCs divide and maintain homeostasis has not 
been clarified yet. However, many studies have speculated 
that the unique three-dimensional structure of the limbus 
might play a critical role. Characteristically, the basement 
membrane at the Palisades of Vogt expresses laminin α2β2 
chains, whereas the corneal basement membrane does not. 

Table 1 Search strategy summary

Items Specification

Date of search July 25th, 2022

Databases and other  
sources searched

PubMed

Search terms used Limbal, limbal stem cell, keratoprosthesis, limbal deficiency

Timeframe May 1989 – May 2022

Inclusion and exclusion  
criteria 

Inclusion: English publication, discusses limbal stem cell and limbal stem cell deficiency, partial LSCD, total 
LSCD, animal models, clinical studies, case 
Exclusion: non-English publication; not discussing limbal stem cell and limbal stem cell deficiency

Selection process The author reviewed the papers involved and agreed to review them based upon the relevance of the articles

LSCD, limbal stem cell deficiency.

https://aes.amegroups.com/article/view/10.21037/aes-22-51/rc
https://aes.amegroups.com/article/view/10.21037/aes-22-51/rc
https://aes.amegroups.com/article/view/6791/html#table1
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In addition, α1, α2, and α5 chains of type IV collagen are 
present in the limbal basement membrane, while α3 and α5 
chains are present in the central cornea. These properties 
may assist in sequestering and modulating concentrations 
of growth factors and cytokines for efficient and precise 
targeting to LSCs (11).

Etiology of LSCD

LSCD can be acquired or congenital. In most cases, it is 
acquired (12). The most common etiologies of LSCD are 

chemical/thermal burns, allergic conjunctivitis, Stevens 
Johnson syndrome, and mucous membrane pemphigoid, 
whereas the most common etiology of congenital LSCD is 
aniridia (2). Common etiologies of LSCD are described in 
Table 2. 

Symptoms and signs of LSCD

In its early stages, LSCD is usually asymptomatic. When 
LSCD progresses, various symptoms can occur, including 
blurring, ocular discomfort, photophobia, tearing, conjunctiva 
injection, and pain (3). Patients usually experience these 
symptoms months to years before diagnosis. 

Typical early sign of LSCD is extension of the 
conjunctival epithelium (slight loss of transparency of 
epithelium) with fine vessels crossing the anatomic limbus. 
This is more common in the superior limbus. Punctate 
epithelial staining, tear film dysfunction, and conjunctival 
injection can occur when the disease progresses. At the late 
stage, corneal vascularization (superficial and deep) and 
fibrovascular pannus can develop and lead to visual loss. 

Diagnosis of LSCD

The diagnosis of LSCD is primarily based on slit-
lamp findings. An irregular corneal epithelium and 
conjunctivalization with neovascularization of the involved 
area suggest LSCD. Close observation of the corneal 
limbus may reveal disappearance of the palisade of Vogt. 
Fluorescein staining highlights the irregular, whorl-like 
pattern of the corneal epithelium (5). Sometimes, the 
demarcation line between the cornea epithelium and the 
invading conjunctival epithelium can be observed (12). 
Persistent epithelial defect is another important sign of 
LSCD. When the disease progresses further, corneal 
melting and perforation can occur.

Various objective diagnostic tools for LSCD are 
available. Impression cytology can reveal the presence of 
goblet cells in the conjunctivalized area (12). However, 
the absence of goblet cells does not necessarily imply 
intact LSCs. Additional immunocytochemistry is useful 
to find cells expressing conjunctival epithelial markers 
(such as cytokeratins 7, 13, and 19) or goblet cell markers 
such as mucin 5AC (13,14). Cytokeratin 12 is a corneal 
epithelial cell marker (15). Goblet cells and decreased 
density of the sub-basal nerve plexus can be detected in 
patients with LSCD using non-invasive in vivo confocal  
microscopy (16). LSCD can induce subtle changes in cornea 

Table 2 Etiology of limbal epithelial stem cell deficiency

Primary causes

Aniridia

Peter’s anomaly

Ectrodactyly-ectodermal-dysplasia-clefting syndrome

Xeroderma pigmentosum

Turner syndrome

Dyskeratosis congenita

Multiple endocrine deficiency

Congenital erythrokeratodermia

Secondary causes

Thermal or chemical burn

Excessive contact lens wear

Ocular inflammation

Stevens-Johnson syndrome

Toxic epidermal necrolysis

Ocular cicatricial pemphigoid

Atopic keratoconjunctivitis

Herpes keratitis

Trachoma

Neurotrophic keratitis

Radiation therapy

Iatrogenic

Mitomycin C

5-FU

Cryotherapy

Extensive pterygium

5-FU, 5-fluorouracil.
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epithelial layers, such as thinning of the epithelial layer 
or increased reflectivity of the epithelium. These changes 
can be imaged using anterior segment optical coherence 
tomography (OCT) (17). OCT angiography can also detect 
limbal vascular changes in patients with LSCD (18).

Medical treatment of LSCD 

Except for sudden trauma such as chemical burn, diseases 
causing LSCD can slowly deplete LSCs. The damage is 
further promoted by uncontrolled inflammation, unstable 
tear film, and eyelid abnormalities. Therefore, treatment 
is needed to minimize LSC damage at an early stage of the 
disease to prevent further compromise of residual LSCs. 
Correction of the eyelid and tear film abnormalities with 
effective control of ocular surface inflammation may prevent 
the progression of LSCD to symptomatic stages. 

Growth factor therapy is also effective in protecting 
the remaining LSCs in the limbal niche (3). Autologous 
serum, platelet-rich plasma, and amniotic membrane extract 
eyedrops contain various growth factors that can revitalize 
the limbal niche have the potential to reverse LSCD at an 
early stage (19). However, these treatments have limited 
efficacy for LSCD at its advanced stages. 

Surgical procedures

Mild degree of partial LSCD can be treated by simply 
removing abnormal epithelium and allowing the denuded 
cornea to be resurfaced with cells from the remaining intact 
LSCs. However, if LSCD has progressed with invasion of 
the visual axis, advanced surgical treatment is required. The 
goal of surgery is to transfer a sufficient amount of LSCs or 
corneal epithelial-like cells to the diseased ocular surface to 
promote and maintain corneal epithelialization. Although 
many types of limbal epithelial cell transplantation technique 
have been developed, none of them is universally successful. 

Among various surgical methods introduced, the 
choice of surgical methods should be based on a thorough 
consultation between the patient and the surgeon. 
Depending on the surgical method, the patient may 
be at risk of damage to the healthy contralateral eye or 
long-term systemic immunosuppression if an allograft 
is used. Harvesting LSCs from the contralateral eye 
(e.g., conjunctival limbal autograft, CLAU) can induce 
iatrogenic LSCD in the donor eye (20). To avoid the risk 
of iatrogenic LSCD or bilateral advanced LSCD where 
enough autologous LSCs cannot be harvested, cell culture 

methods such as autologous cultivated limbal epithelial 
transplantation (CLET) can be used (21). Alternatively, 
simple limbal epithelial transplantation (SLET) recently 
introduced that requires only the use of 2×2 mm-sized small 
limbal block from the healthy donor eye can be used to 
minimize the risk of iatrogenic LSCD (22).

SLET deserves further discussion. Other surgical 
methods developed so far can transplant the harvested graft 
onto the limbus, the primary area of disease. However, 
in SLET, harvested limbal graft is cut into 6–10 pieces. 
These pieces are placed in the mid-periphery of cornea in 
a concentric pattern using fibrin glue (23). In some cases, 
human amniotic membrane graft is applied first followed 
by SLET. The hypothesis supporting SLET is that LSCs 
in each piece of graft can proliferate and form epithelial 
clump or island, which can then merge with each other 
to reconstruct corneal epithelial layer. LSCs may remain 
around the grafted area or slowly migrate toward the  
limbus (24). In a long-term (median: 1.5 years, range: 
1 to 4 years) outcome analysis of 125 cases of SLET in 
unilateral ocular surface burn, 76% of eyes maintained 
successful outcomes and 67% of successful cases achieved 
20/60 or better vision (25). In addition, analysis of 10 cases 
underwent penetrating keratoplasty for further visual gain 
revealed that basal cells expressing limbal stem cell markers 
[ΔNp63α(+)/ABCG2(+)] were observed in the trephined 
cornea after undergoing SLET (25).

In general, autografts have high success rates and better 
long-term prognosis. However, when LSCs cannot be 
obtained from the patient because of advanced bilateral 
LSCD, the use of allogeneic cells may be considered if the 
patient can tolerate systemic immunosuppression. The 
major limitation of an allograft is the risk of graft rejection 
because of the high vascular nature at the limbus. Allogeneic 
limbal stem cells can be used for conjunctival limbal 
allograft (CLAL), allo-SLET, allo-CLET, and keratolimbal 
allograft (KLAL). 

If patients cannot tolerate long-term immunosuppressive 
treatment owing to their general conditions, surgical 
methods using cells from other body parts of the patient, 
even those without LSCs, should be considered. Cultivated 
oral mucosal epithelial transplantation (COMET) can be 
used to harvest autologous oral mucosal cells, to culture 
cells in vitro on carriers such as the amniotic membrane, 
or as a cell sheet for transplanting on the diseased ocular 
surface (26,27).

Cabral et al. (28) have analyzed clinical outcomes of 
COMET studies published from 2004 to 2019. Among 
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243 eyes from 24 studies, 70.8% of eyes achieved a stable 
ocular surface. Visual acuity improvement was observed in 
63.5% of eyes. It is known that the presence of pre-operative 
epithelial defect and poor tear production can increase the 
failure rate of COMET. Therefore, these abnormalities 
should be corrected prior to surgery for better outcome. 
Although several studies reported that the oral mucosal 
cells grafted with COMET could transdifferentiate into 
corneal epithelial phenotype expressing cytokeratin such 
K12 (29,30) without expressing MUC5AC, it is still difficult 
to definitively determine whether cultivated oral mucosal 
epithelial cells have transdifferentiated to the corneal lineage 
or whether the presence of corneal epithelial cells indicates 
expansion and migration of the remaining corneal cells. 

With advances in stem cell technology, other stem cell 

populations can be transdifferentiated to mimic corneal 
epithelial cells. Although this is still at the laboratory level, 
it is a promising option for future treatment of LSCD. 

Figure 1  shows an example of how to select an 
appropriate surgical method according to various patient 
conditions. The flow chart was modified from suggestions 
of two recent publications (3,20).

Alternative cells to replace LSCs

With the advancement of stem cell technology, various 
attempts to use alternative cell populations to replace 
allogeneic cells are underway. These alternative cell 
populations can be utilized as limbal stem cell substitutes for 
ocular surface reconstruction. Pluripotent stem cells, oral 

Figure 1 Flowchart of current surgical therapeutic options for LSCD. LSCD, limbal stem cell deficiency; AMT, amniotic membrane 
transplantation; CLAU, conjunctival limbal autograft; SLET, simple limbal epithelial transplantation; CLET, cultivated limbal epithelial 
transplantation; KLAL, keratolimbal allograft; CLAL, conjunctival limbal allograft; COMET, cultivated oral mucosal epithelial 
transplantation.
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mucosa cells, dental pulp stem cells, and hair follicle cells 
can be cultured on the carrier substrate and transplanted to 
the eye with severe LSCD. The implanted cell population 
can transdifferentiate into more corneal epithelial-like cells 
and maintain ocular surface integrity and transparency. 
Although the usefulness of these cells is still being verified 
in the preclinical stages, corneal limbus reconstruction 
using these cells is possible in the future (Table 3).

Among alternative cells, mesenchymal stem cells (MSCs) 
deserve further explanation. In general, MSCs can be 
obtained from bone marrow or adipose tissues of patients. 
Transplanted MSCs can differentiate into corneal epithelial 
cells (44). Although a sufficient number of MSCs do not 

differentiate into corneal epithelial-like cells, transplanted 
MSCs are known to have anti-angiogenic and anti-
inflammatory properties (45). In addition, the secretomes 
of cultured limbal MSCs can promote corneal epithelial 
regeneration (46). MSCs found in the normal limbal stem 
cell niche are believed to be able to crosstalk with LSCs 
and control LSC proliferation and differentiation (3,47). 
Therefore, an exogenous supply of MSCs is expected to 
secrete trophic and growth factors to stimulate residual 
LSCs, to control inflammation preventing further 
damage to LSCs, and finally to improve the limbal niche 
microenvironment. The non-immunogenic nature of MSCs 
allows them to be used allogeneically without eliciting 

Table 3 Alternative cell populations for treating LSCD

Alternative cells Description Stage References

Oral mucosal cells Autologous oral mucosal cells are cultured on amniotic membrane or as a cell sheet 
and transplanted (COMET)

Clinical (26,27,31)

Clinical evidence of efficacy has been accumulated. However, oral mucosal cells are 
thicker and less transparent than corneal epithelial cells. Transplanted oral mucosal 
epithelial cells have been reported to survive up to 4 years after surgery

Human pluripotent 
stem cells

Human embryonic stem cells differentiate into corneal epithelial progenitor cells in 
conditions mimicking the LSC niche. Conditioned medium, feeder cells, amniotic 
membrane, and growth factors have been used to produce and LSC niche-mimicking 
environment

Under clinical 
trials

(32-36)

Human embryonic stem cell-derived corneal epithelial-like cells and endothelial-
like cells were co-cultured on an acellular porcine corneal matrix and transplanted in 
rabbits. The intact and transparent graft was maintained for 8 weeks

Corneal epithelial cells were generated from induced pluripotent stem cells derived 
from human dermal fibroblasts. The cell expressed specific corneal epithelium-related 
genes such as K12, K3, and Pax6

Mesenchymal stem 
cells

MSCs play immunomodulatory roles. They migrate to the injured area of the cornea 
and decrease inflammatory cell infiltration and cytokine production in animal models

Under clinical 
trials

(37-39)

MSCs can be delivered to the ocular surface either by MSC containing carriers 
transplantation or direct subconjunctival injection

Subconjunctival injection of MSCs was effective in the acute phase of severe ocular 
burn

Amniotic epithelial cells Amniotic epithelial cells can differentiate into corneal epithelial-like cells when they are 
co-cultured with human corneal epithelial cells

Preclinical (40,41)

Hair follicle cells A LSC niche-mimicking environment induces a cornea epithelial phenotype in stem 
cells isolated from the hair follicles of mice

Preclinical (42)

Dental pulp stem cell Dental pulp stem cells labeled with green fluorescent Qtracker 525 were seeded onto 
a pretreated contact lens and delivered to an ex vivo debrided human cornea. Dental 
pulp stem cells transdifferentiated into corneal epithelial progenitors and expressed 
keratin 12

Preclinical (43)

LSCD, limbal epithelial stem cell deficiency; COMET, cultivated oral mucosal epithelial transplantation; LSC, limbal epithelial stem cell; 
MSCs, mesenchymal stem cells.
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immunosuppression of the recipient. Several routes of 
MSCs application in LSCD are possible. Intravenous 
injection of MSC in acute phase of cornea damage can 
alleviate ocular signs such as opacity and neovascularization 
in animal models (48,49). Various carriers including 
amniotic membrane, contact lens, and biocompatible 
polymers can be used to deliver MSCs on the ocular surface 
(50-52). However, the actual number of transplanted MSCs 
in this method is known to be small compared to injection 
methods. Subconjunctival injection of MSCs has also been 
proven to be effective in LSCD (37). MSCs can migrate to 
the inflammatory area from the subconjunctival space and 
modulate inflammation and tissue damage. There is still 
debate whether injected MSCs can change to LSCs. 

Reprogrammed cells called induced pluripotent stem 
cells (iPSCs) are also promising stem cell sources to replace 
LSCs (32,53,54). iPSCs can be induced by culture in a 
cocktail of signaling factors. LSCs induced from iPSCs may 
allow personalized therapy according to the patient’s need 
without the risk of allogeneic rejection. Recently, iPSC 
derived corneal epithelial sheet have been transplanted to 
a patient suffering bilateral LSCD in Japan (55). Although 
clinical results have not yet been reported, this clinical trial 
shows clear advances in LSCD treatment. 

Keratoprosthesis for advanced bilateral LSCD 

When bilateral LSCD is combined with severe dry eye, 
fornix adhesion, lid abnormality, or previous failures of 
LSC transplantation, the success of LSC transplantation is 
limited and the use of keratoprostheses can be considered 
(12,56). Keratoprostheses do not require long-term systemic 
immunosuppression. Early visual rehabilitation is another 
advantage of keratoprostheses. However, risks of retinal 
detachment, endophthalmitis, glaucoma, and implant 
extrusion are serious limitations (56). In keratoprosthesis 
surgery, epithelialization of the corneal surface by the 
corneal epithelium is abandoned. Instead, an implant 
is inserted to replace the optically transparent cornea, 
allowing light to reach the retina. After keratoprosthesis 
surgery, the ocular surface is totally covered with the 
conjunctival epithelium except for a small optical opening in 
the implant. The most popular keratoprostheses are Boston 
KPro, AutoKPro, LV Pradad KPro, and modified osteo-
odonto-keratoprosthesis (MOOKP). Among these, Boston 
KPro type 1 is the most commonly used keratoprosthesis. 
It has an optical cylinder with a skirt of donor tissue. Good 
outcomes of visual rehabilitation have been reported with 

Boston KPro type. However, retroprosthetic membrane 
and corneal melting are common complications (57,58). 
In a retrospective analysis of 23 eyes receiving Boston type 
1 keratoprosthesis, postoperative corrective visual acuity 
of 20/50 or better was obtained in 67% of eyes at a 3-year 
follow up and persistent corneal epithelial defect and 
corneal necrosis were observed in 56.5% and 30% of eyes, 
respectively (59).

Limitations of this review

This review described basic knowledge of LSC and various 
treatment options for LSCD. Since the purpose of this review 
was to convey knowledge that a general ophthalmologist 
or ophthalmology resident could understand, contents that 
were too specialized or experimental had to be excluded. In 
addition, only studies published in English and full-length 
articles retrieved from PubMed search were included in this 
review. This approach has a limitation in that it does not 
include latest research studies presented as abstracts in recent 
academic conferences.

Conclusions

Our understanding of LSCs and LSCD has deepened 
over the past years. However, much details of LSCs 
or LSCs niche remains unknown as interesting future 
topics of research. Despite the enigmatic identity of 
LSCs, various treatments have been devised and proven 
effective in clinical practice. However, it should be 
kept in mind that the best chance of treating LSCD is 
in the early stages of the disease. In some cases, initial 
treatment is difficult, especially for hereditary cases, 
cases with frequent relapses, and cases with intractable 
underlying etiologies. Once LSCD has progressed, 
treatment becomes challenging. Nevertheless, in the 
early treatment of LSCD, every effort should be made to 
preserve as many LSCs as possible. 
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