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Introduction

With a 5-year survival of 8% overall  and 52% of 
patients with distant disease at presentation, pancreatic 
adenocarcinoma (ACA) is the fourth leading cause of 
cancer death for both men and women in the United  
States (1). Current standard of care chemotherapy regimens 
for patients with metastatic disease center around a 
combination of 5-FU, leucovorin, oxaliplatin and irinotecan 
(FOLFIRINOX) and gemcitabine combined with nab-
paclitaxel (2,3) but are only associated with a response 
rate of up to 30%. Even those patients deemed resectable 
at initial presentation who undergo surgery and adjuvant 
therapy have 5-year overall survival rates in the range of 
20% with the most favorable subsets of patients undergoing 
node negative, margin negative (R0) resections at high 
volume centers still no higher than 39% (4). 

Recently, rapid advances in tumor immunology have 
improved the understanding of key regulators of T 

cell response and have led to the development of a new 
immunotherapeutic approach targeting immune checkpoint 
signaling pathways such as cytotoxic T lymphocyte 
associated protein 4 (CTLA-4) and programmed death-1 
(PD-1). CTLA-4 and PD-1 are negative immune regulators 
which play an essential role in the immunosuppression 
of antitumor immunity in the local tumor environment. 
CTLA-4, expressed on activated T cells, competes with 
CD28 for binding to B7 on antigen presenting cells to 
interrupt the costimulatory signal and blunt the T cell 
response (5). PD-1 is also expressed on the surface of 
activated T cells. The ligation of PD-1 and PD-L1 (a 
ligand of PD-1) inhibits T cell proliferation and activation, 
inducing apoptosis of antigen-specific T cells to prevent 
collateral tissue damage and autoimmune disease (6). 
The PD-1/PD-L1 pathway is hijacked by tumor cells to 
inhibit antitumor immunity, and various cancer cells have 
been reported to upregulate PD-L1 to escape immune 
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surveillance (7). Several different antibodies blocking 
these immune checkpoints such as ipilimumab (anti-
CTLA-4 antibody), pembrolizumab (anti-PD-1 antibody), 
nivolumab (anti-PD-1 antibody), atezolizumab (anti-
PD-L1 antibody), and durvalumab (anti-PD-L1 antibody) 
have been extensively studied in a wide spectrum of 
malignancies. These efforts are rapidly translating into 
remarkable success of PD-1 blockade agents in melanoma, 
non-small cell lung cancer, renal cell carcinoma, urothelial 
cancer, gastric cancer, hepatocellular carcinoma, mismatch 
repair deficient colorectal cancer and head and neck  
cancer (8), and immunotherapy has led to a paradigm shift 
in cancer therapy. However, remarkable success has not 
been replicated with pancreatic cancer. Several clinical 
trials of single agent CTLA-4 or PD-L1 antibodies failed 
to show antitumor activity in patients with locally advanced 
or metastatic pancreatic cancer (9,10). These data reinforce 
the concept that pancreatic cancer has a different tumor 
microenvironment which has direct implications for the 
integration of immunotherapy agents. 

Radiation therapy, one of the main pillars of cancer 
therapy, plays an essential role in the treatment of a wide 
variety of cancers. Approximately 60% of patients with 
solid tumors receive radiation therapy for local disease  
control (11). Radiation exerts tumoricidal activity through 
direct DNA damage leading to mitotic catastrophe, 
apoptosis, necrosis, autophagy and senescence (12). In 
addition to the direct target effect, radiation can modify 
the tumor microenvironment, which can lead to systemic 
antitumor activity at non-irradiated distant sites, a 
phenomenon known as the abscopal (ab, off; scopus, 
target) effect which was first described in 1953 (13). It 
has been believed that the abscopal effect is mediated by 
radiation induced antitumor immunity (14). In practice, 
clinical confirmation of the abscopal effect has been rare, 
with a systematic review evaluating studies reported 
between 1960 and 2014 reporting only 51 patients as 
having such responses (14). Barriers to higher rates of the 
abscopal effect are thought to be secondary to the tumor 
microenvironment causing local immune suppression 
characterized by local T-cell inhibition and inadequate 
priming by dendritic cells (15). Emerging preclinical and 
clinical data have demonstrated immune-stimulatory effects 
of radiation which may enhance antitumor immunity 
of cancer immunotherapy in pancreatic cancer. In this 
review, the immunomodulatory effects of radiation and 
the preclinical rationale of the combination of radiation 

and immunotherapy as a potential treatment strategy in 
pancreatic cancer will be discussed. 

Immunosuppressive tumor microenvironment of 
pancreatic cancer

The immune system plays a critical role in surveillance 
against the development and progression of tumors. 
Pancreatic cancer cells develop several strategies to induce 
an immunosuppressive tumor microenvironment and evade 
antitumor immunity in primary and distant metastatic 
sites, which may contribute to resistance mechanisms of 
checkpoint immunotherapy in pancreatic cancer. 

Primary and metastatic pancreatic cancer cel ls 
downregulate major histocompatibility complex (MHC) class 
I to inhibit tumor antigen cross presentation to cytotoxic T 
cells (16), which is one of the mechanisms incorporated to 
escape antitumor immunity. Indoleamine 2,3-dioxygenase 
(IDO) exhibits an immunosuppressive effect and induces 
immune tolerance by catabolizing tryptophan which is 
essential for T cell proliferation (17). High expression of 
IDO and correlation between IDO expression and poor 
prognosis were reported in pancreatic cancer (18). In 
addition, interferon-γ secreted by activated effector T cells 
for innate and adaptive immune activation upregulated IDO 
expression, and upregulation of IDO was associated with an 
increased number of regulatory T cells (Tregs) in metastatic 
pancreatic cancer (19). Interestingly, it has been suggested 
that IDO may be a critical resistance mechanism of cancer 
immunotherapy agents such as ipilimumab, and inhibition 
of IDO can augment the effectiveness of immunotherapy 
strategies such as CTLA-4 blockade and PD-1/PD-L1 
blockade in a preclinical study (20).

TGF-β is a well-known immunosuppressive cytokine 
and has direct and indirect immune suppressive effect by 
inhibiting NK cell mediated cytolysis (21), suppressing 
CD8 cytotoxic T cell function (22), expanding Tregs and 
enhancing the function of Tregs (23). Pancreatic cancer 
cells secrete TGF-β (24) which induce type 2 T helper cell 
(TH2) immune response associated with tumor growth and 
reduced survival in patients with pancreatic cancer (25).

To prevent autoimmune disease and minimize collateral 
damage, activated T cells express Fas, and its ligation with 
FasL induces apoptosis of activated T cells for immune 
homeostasis, a process known as activation-induced cell 
death (26). Pancreatic cancer cells take advantage of 
activation-induced cell death to escape immune surveillance 



Annals of Pancreatic Cancer, 2018 Page 3 of 13

© Annals of Pancreatic Cancer. All rights reserved. Ann Pancreat Cancer 2018;1:23apc.amegroups.com

by expression of FasL on pancreatic cancer cells and 
induction of apoptosis of cytotoxic T cells (27). 

PD-L1, which induces T cell exhaustion and deletion 
by binding to PD-1 on activated T cells, is expressed 
on various cancer cells to suppress antitumor immunity 
in the local tumor microenvironment. A majority of 
pancreatic cancers also express PD-L1 for immune  
evasion (28). Immunosuppressive cells such as Tregs, 
myeloid derived suppressor cells (MDSCs) and tumor 
associated macrophages (TAMs) play an essential role in 
inhibition of antitumor immunity (Table 1) (29). Infiltrated 
immune cells in the tumor and tumor environment of 
pancreatic cancer are predominantly Tregs, MDSCs and 
TAMs, and the immunosuppressive cell population is 
associated with progression of pancreatic cancer (30-32). 

Immunomodulatory effects of radiation

Radiation at conventional doses was considered to be 
immunosuppressive due to the inherent radiosensitivity 
of immune cells and the attendant normal tissue damage 

to lymphatic tissue and/or bone marrow secondary to 
non-conformal older treatment techniques. However, 
emerging preclinical and clinical data suggest that there 
are immune-stimulatory effects of radiation. Exposure to 
radiation can elicit changes in tumor cells and the tumor 
microenvironment which can enhance the vulnerability of 
cancer cells to immune attack as shown in Figure 1. 

Upregulation of MHC class I molecules and tumor antigens

Radiation enhances tumor antigen presentation to cytotoxic 
T cells by upregulation of MHC class I molecules. Cell 
surface expression of MHC class I molecules is increased 
in a radiation dose dependent manner as a consequence of 
(I) degradation of existing proteins by radiation, resulting 
in an increased intracellular peptide pool, (II) enhanced 
protein synthesis by radiation, resulting also in an increased 
intracellular peptide pool and (III) increased diversity of 
the intracellular peptide pool by the radiation induced 
novel proteins (33). In addition, radiation enhances 
immunological recognition of cancer cells by tumor specific 

Table 1 Immunosuppressive and tumorigenic activities of Treg, MDSC, TAM

Immune cell activity Immunosuppressive and/or tumorigenic activity

Treg suppression of 
antitumor immunity

•	 Direct cytotoxicity against effector cells via granzyme and perforin release;

•	 Conversion of ATP, an inflammatory molecule and a danger signal, to inhibitory adenosine by CD39 and 
CD73 expression;

•	 Inhibition of maturation of antigen presenting cells and induction of IDO in antigen presenting cells by 
expression of CTLA-4;

•	 Consumption of IL-2 via CD25 expression which are essential for T cell proliferation and differentiation;

•	 Release of immunosuppressive cytokines such as IL-10 and TGF-β.

MDSC 
Immunosuppressive and 
tumorigenic activities

•	 Deprivation of amino acids arginine and cysteine, which are essential for T cell proliferation;

•	 Production of nitric oxide and reactive oxygen species that causes the nitration of T cell receptors and 
chemokines for preventing T cell migration and inducing apoptosis of T cells and NK cells;

•	 Production of immunosuppressive cytokines such as IL-10 and TGF-β skewing immune reactions toward 
Th2 type with activation of Tregs;

•	 Upregulation of PD-L1 expression which induces T cell exhaustion and deletion;

•	 Downregulation of TCR ζ-chain expression which are essential for TCR signaling after antigen recognition.

TAM suppression 
of cytotoxic T Cell 
response in tumor 
microenvironment

•	 Secretion of immunosuppressive IL-10 and TGF-β;

•	 Expression of arginase-1 which suppresses T cell activity by depletion of L-arginine, essential amino acid for 
T cell function;

•	 Upregulation of PD-L1;

•	 Overexpression of IDO.

MSDC, myeloid derived stem cell; TAM, tumor associated macrophage; Treg, regulatory T cell; IDO, dioxygenase; CTLA-4, cytotoxic T 
lymphocyte associated protein 4. 
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CD8 T cells through increased expression of tumor specific 
antigens in tumor cells (34). 

Secretion of damage-associated molecular patterns 
(DAMPs) from tumor cells

Irradiated tumor cells can release DAMPs including 
calreticulin, adenosine triphosphate (ATP), high mobility 
group box 1 (HMGB1) and nucleic acids which elicit 
an antitumor immune response by activation of innate 
immune systems. Radiation exposure induces translocation 
of calreticulin from the endoplasmic reticulum to the 
plasma membrane in cancer cells (35). Calreticulin plays 
an essential role in the enrichment of endogenous peptides 
in the endoplasmic reticulum and assembly of MHC 
class I peptide complex for efficient antigen presentation  
export (36). Furthermore, the translocation of calreticulin 
acts as a phagocytic signal (eat-me signal) for antigen 
presenting cells such as dendritic cells (DC)s (37). 

During phagocytosis of irradiated tumor cells in antigen 
presenting cells, DNA fragments in irradiated tumor cells 
are released from phagosomes to cytoplasm (cytosolic 
DNA) (38). Cytosolic DNA induces type I interferons 
production by activation of stimulator of interferon genes 
(STING) (39). Type I interferons, bridging the innate 
immune response to the adaptive response, promotes the 

cross-priming of cytotoxic T cells and leads to effective 
tumor growth control.

ATP also stimulates innate immune system by activation 
of the purinergic receptor P2RX7 which is expressed in 
immune cells such as macrophages, DCs, monocytes, 
natural killer cells, B cells and T cells. The activation of 
P2RX7 by extracellular ATP following tissue damage 
mediates activation of the innate immune system through 
the release of pro-inflammatory cytokines such as IL-18 and 
IL-1β and stimulation of inflammasome and T lymphocyte 
survival and differentiation (40). 

HMGB1 is a soluble protein which is released from 
dying tumor cells after radiation. HMGB1, which binds 
to Toll-like receptor 4 (TLR4) on DCs and macrophages, 
promotes efficient antigen processing and cross presentation 
of tumor antigen presentations to T cells and induces a 
potent Th1 cell response by secretion of proinflammatory 
cytokines such as type I interferons, IL-12, MCP-1, MIP-
1α and IP-10 (41). 

Effects on regulatory immune cells

Tregs, MDSCs and TAMs are main regulatory immune cells 
to promote tumor growth and antitumor immune evasion 
in the tumor microenvironment. The effects of radiation 
on these regulatory immune cells have not yet been fully 

Figure 1 Schematic diagram outlining radiation-induced immune response and subsequent antitumor activity. APC, antigen presenting cell; 
MHC, major histocompatibility complex; CTL, cytotoxic T lymphocyte. 
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elucidated. Previous data demonstrated that Tregs were 
resistant to radiation induced death, and radiation increased 
the frequency of Tregs (42,43). However, the effects of 
radiation on Tregs may be dose dependent. Low dose 
irradiation (0.94 Gray) induces significant apoptosis of 
Tregs compared with effector T cells and activates naïve T 
cells (CD4+CD25−) to express CD25 (44). 

Several studies have demonstrated recruitment of 
MDSCs and TAMs into the tumor microenvironment 
after radiation treatment (45). Irradiation with a daily dose 
of 3 Gy for 5 days induces a systemic and local increase 
of MDSCs and TAMs with elevation of serum CSF1  
level (46). Blocking of the CSF1 receptor inhibited 
migrat ion of  MDSCs and TAMs into  the  tumor 
microenvironment leading to more effective and durable 
tumor growth control after local irradiation (46). In 
addition, a single 15 or 20 Gy fraction of radiation also 
recruits MDSCs and TAMs to the tumor by overexpression 
of hypoxia inducible factor-1 (HIF-1) and secretion of 
stromal derived factor-1 (SDF-1) which recruits MDSCs 
by binding CXCR4 (47,48). Inhibition of HIF-1 or SDF-
1/CXCR4 interaction prevents the influx of MDSCs and 
TAMs and delayed tumor regrowth (47,48). Interestingly, 
recent data showed that a single fraction of 12 Gy combined 
with anti-PD-L1 reduced the local accumulation of MDSCs 
by cytotoxic actions of TNF against MDSCs from activated 
CD8 T cells (49). 

Radiation can polarize myeloid cells and TAMs to a 
M2 phenotype which promotes tumor progression and 
suppresses an antitumor immune response. Irradiation 
with 15 fractions of 4Gy, 3 fractions of 20 Gy or a single 
fraction of 25 Gy polarized infiltrated macrophages 
towards immune suppression which was mediated by 
transcriptional regulation by NF-κB (50,51). However, it 
may be a radiation dose dependent manner. A recent study 
showed that low doses of radiation (≤ 2 Gy) polarized 
TAMs towards a M1 phenotype with induction of inducible 
nitric oxide synthase (iNOS), which led to normalization of 
aberrant vasculature, efficient recruitment of tumor specific 
T cells and T cell mediated tumor rejection (52).

Clinical role of radiation therapy in pancreatic 
cancer

Over the last 30 years, radiation treatment techniques 
have significantly improved with the integration of 
advanced computer planning and delivery. Treatment has 
thus become highly conformal, such that the dose can be 

precisely mapped to the tumor region with a sharp fall 
off to the normal tissue beyond. Such precision has now 
evolved to the focal delivery of high dose per fraction 
treatment in a course of 1 week or less termed stereotactic 
body radiation therapy (SBRT) (53). As pancreatic cancer 
moves with breathing (54), escalation of dose is complicated 
by the proximity of the adjacent normal stomach and 
duodenum which can change position with organ filling and  
peristalsis (55). Indeed, when extracranial SBRT techniques 
were first reported for pancreatic cancer they were 
typically delivered in a single fraction of 25 Gy (56,57), but 
maturation of these trials showed an increase in late toxicity 
with reports of duodenal perforation and stricture; delivery 
in 5 fractions instead of one fraction reported significantly 
less late toxicity and no worse local control with current 
clinical practice favoring multi-fraction treatment (58). 
With continued advances, the ability to change the 
treatment plan during a course of treatment (adaptive RT, 
ART) is now possible, with results showing less duodenum 
in the high dose range with ART and controlling for the 
breathing motion with respiratory gating (19%) vs no image 
guidance nor gating (72%) with a concordant reduction in 
grade 2 or greater duodenal toxicity from 23% to 7% (59).

The optimal role of radiation therapy (RT) in the 
pancreatic cancer treatment paradigm is currently not 
well defined (60). In the adjuvant setting, although early 
trials showed a survival benefit to regimens containing RT 
(61,62), these results were not replicated in subsequent 
European studies (63-65). With the introduction of 
gemcitabine, an appropriate standard of care became 
adjuvant gemcitabine with/without capecitabine (66,67) 
or with appropriately quality assured RT to 50.4 Gy in 28 
fractions, biologically effective dose (BED) of 59.47 Gy  
in patients with a postoperative CA 19 9<90 (68,69). In the 
neoadjuvant setting, there is data to support RT as part 
of the regimen to facilitate a margin negative resection, 
ranging from long course chemoradiation (70,71) to 
short course SBRT (72,73). In the setting of locally 
advanced pancreatic cancer, data from a recently published 
randomized trial did not show a survival advantage to the 
integration of conventionally fractionated chemoradiation 
to 54 Gy after systemic therapy (74). This phase III trial 
data of conventional dosing differed from retrospective 
data of patients with tumors at least 1 cm away from a 
luminal GI organ which suggested improved survival and 
local control if the BED was escalated to 70 Gy (75). In the 
context of SBRT for locally advanced disease, prospective 
data in a multi-institutional trial of 6.6 Gy × 5 fractions 
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has shown that RT integration is safe, well tolerated, and 
associated with a 10% rate of surgical resection (76). With 
MRI onboard imaging, recent data presented by Rudra et al 
showed that with ART and dose with a maximum BED >90 
Gy, there was a near doubling of local control and overall 
survival for patients with locally advanced disease (77). 

Safe dose escalation in pancreatic cancer is thus of 
considerable clinical interest. Despite these advances, we 
are still not able to prospectively personalize the dose of RT 
for each patient although a number of strategies to integrate 
radiosensitivity have been described (78). One such model 
is called the Radiation Sensitivity Index (RSI) which is a 10-
gene expression model based on a systems biology approach 
(79,80). Similarly, a 12-gene model has been developed 
based on 12 chemokine genes that are immune related and 
inflammation related called the 12-CK (81,82). Recent data 
now suggests that RSI and 12-CK are associated and, if 
combined, may serve as a future pretreatment biomarker 
to identify individual tumors that would have an increased 
response to immunotherapy and RT treatment (83). 
Future prospective trials will need to validate the findings 
that radiosensitive tumors are more frequently present in 
tumors with a phenotype of immune activation since these 
signatures could significantly impact patient selection for 
treatment modality.

Combination of radiation and immunotherapy

Despite the remarkable success of PD-1 blockade 
immunotherapy in diverse cancers, a single agent immune 
checkpoint inhibitor therapy failed to improve the outcome 
of metastatic pancreatic cancer (84). Several resistance 
mechanisms of pancreatic ACA to immunotherapy have 
been suggested. As discussed above, pancreatic cancer has 
an immunosuppressive tumor microenvironment with 
downregulation of MHC class I, high expression of IDO, 
low level of TIL, abundant immune suppressive molecules 
such as TGF-β and predominant immune suppressive cell 
population such as Tregs, MDSCs and TAMs. In addition, 
pancreatic cancer has a low tumor mutation load and low 
immunogenicity compared with other cancers (85). Tumor 
mutation burden is associated with neoantigen burden 
and response to immune checkpoint inhibitor therapy 
(86,87) since neoantigens can be recognized as non-self by 
immune cells and elicit cytotoxic T cell immune response. 
Interestingly, a subset of pancreatic cancers with mismatch 
repair protein (MMR) deficiency, which is approximately 
2% of all pancreatic cancers, (88) harbors greater than  

100-fold frameshift and missense mutations compared with 
MMR proficient tumor (89), and pembrolizumab showed 
significant anticancer activity in the subset of pancreatic 
cancer with MMR deficiency (88). Finally, the tumor 
microenvironment of pancreatic cancer consists of complex 
and heterogeneous stroma with extracellular matrix protein, 
cancer associated fibroblasts and endothelial cells, and 
this dense, fibrotic stroma works as a barrier to effector 
T cell infiltration (90). To overcome the resistance and 
improve clinical outcomes, immune checkpoint inhibitors 
are combined with targeting other immunosuppressive 
molecules such as LAG-3, TIL-3 and IDO or with 
chemotherapy, cancer vaccine, T cell therapy or radiation 
therapy. Here we focus on the combination of immune 
checkpoint inhibitors and radiation therapy.

Preclinical rationale in solid cancer

The question, then, is how to consider the best way 
to explore combined RT strategies incorporating 
immunotherapy to enhance T cell  activation and 
modulate the tumor microenvironment to decrease 
immunosuppression. Conventionally fractionated radiation 
relies on the induction of DNA damage to directly kill 
tumor cells with DNA double-strand breaks leading 
to mitosis associated cell death or to TP53-mediated  
apoptosis (91). Doses delivered with stereotactic technique 
in the 8–10 Gy or higher range have shown higher 
biological effectiveness, the mechanism of which is still 
not entirely known, but thought to be related to increased 
damage to the acid sphingomyelinase apoptotic system 
of microvascular endothelial cells (92,93). Further, such 
ablative doses are thought to induce more significant effects 
on the tumor vasculature, stroma and antitumor immune 
responses within the local microenvironment, thus causing 
more cell death (94,95). The question of optimization of 
dose to achieve this effect is under active investigation 
since data has shown that a single high dose RT fraction 
can enhance presentation and T-cell recognition of tumor 
associated antigens (96). Preclinical data from a murine 
colorectal tumor model showed that a single dose of  
30 Gy, and not fractions of 3 Gy delivered in 10 fractions, 
was associated with significantly more T cell infiltration in 
the tumor bed and improved systemic antitumor responses 
compared with single doses of 15 and 20 Gy (95). 

With the enthusiasm for the potential synergy of SBRT 
and immunotherapy comes a need to further understand 
the possible mechanisms of interaction. In addition to the 
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immunomodulatory effects of RT discussed above, recent 
preclinical models have demonstrated the upregulation of 
PD-L1 by tumors as a response to both fractionated and 
single high dose RT regimens (49,97), suggesting PD-L1 
upregulation may be one of the resistant mechanisms to RT. 
In the studies, the combination of PD-1/PD-L1 blockade 
with RT induced higher treatment response and generation 
of tumor antigen-specific memory immune responses 
(49,97). Another preclinical study suggests upregulation of 
PD-L1 expression may be one of the resistance mechanisms 
of anti-CTLA-4 with RT and dual checkpoint blockade 
with anti-CTLA-4 and anti-PD-L1 plus RT can reverse 
the resistance and increase antitumor activity (98). The 
combination of RT with anti PD-1 therapy has also shown 
improved local tumor control by upregulation of tumor 
associated antigen-MHC complexes, enhancement of 
antigen cross presentation and increased T cell infiltration 
into tumors in murine melanoma and breast cancer  
models (96). 

Preclinical rationale in pancreatic cancer

Applying this data to pancreatic cancer poses specific 
challenges due to the highly immunosuppressive tumor 
microenvironment of pancreatic cancer as discussed above. 

Furthermore, pancreatic tumors have a lower cumulative 
mutational load (85) which is associated with poor responses 
to immunotherapy (86,87). This resulting milieu creates a 
non-immunogenic tumor microenvironment. 

Recent preclinical data suggest the combination of 
RT, vaccination and checkpoint inhibition may be a 
new strategy for shifting non-T-cell inflamed pancreatic 
cancers to T-cell inflamed cancers which respond to 
immunotherapy (99). In the study, sequential combination 
of RT, vaccination and PD-L1 blockade enhanced the 
effector function of tumor infiltrating T cells, leading to 
significantly improved tumor regression in engineered 
murine pancreatic cancer expressing SIY antigen to 
mimic non-inflamed cancer. The findings are provocative, 
suggesting a new model for converting non-T-cell inflamed 
cancers to T-cell inflamed cancers with a combination 
of RT, vaccination and checkpoint blockade. Further 
preclinical data supports RT’s potential to convert a “cold” 
pancreatic tumor microenvironment to a “hot” state with 
data in a mouse pancreatic cancer model showing any 
combination of an immune checkpoint inhibitor with RT 
significantly improved overall survival when compared to 
activity without RT; the best outcome was radiation plus 
dual checkpoint blockade (anti-CTLA-4 and anti-PD-L1 
antibodies) (98).

Table 2 Clinical trials of radiation and anti-PD-1/PD-L1 therapy*

Malignancy
Immunotherapeutic 
agent

Radiation fraction
Treatment 
intent

Phase Primary endpoint
Clinical trial 
identifier

Locally advanced pancreatic 
adenocarcinoma

Pembrolizumab 
and GVAX

SBRT (6.6 Gy × 5) Definitive II DMFS NCT02648282

Metastatic melanoma, NSCLC, 
breast and pancreatic carcinoma

Pembrolizumab SBRT Metastatic I Number of AEs NCT02303990

Borderline resectable pancreatic 
adenocarcinoma

Nivolumab and 
GVAX pancreas 
vaccine

SBRT Neoadjuvant II pCR at surgical 
resection

NCT03161379

Resectable/borderline resectable 
pancreatic cancer

Pembrolizumab RT (50.4 × 28) Neoadjuvant I/II Number of TIL, 
incidence of DLTs

NCT02305186

Borderline resectable and 
locally advanced pancreatic 
adenocarcinoma

Durvalumab SABR  
(6.6 Gy × 5)

Neoadjuvant/
definitive

I/II Number of DLTs, 
PFS, Proportion of 
participants who have 
resectable disease

NCT03245541

*, anti-PD-1/PD-L1 therapeutics included in the table are limited to (A) nivolumab, (B) pembrolizumab or (C) durvalumab. DMFS, distant 
metastasis free survival; AE, adverse event; pCR, pathologic complete response rate; TIL, tumor infiltrating lymphocytes; DLT, dose-
limiting toxicities; PFS, progression free survival; NSCLC, non-small cell lung cancer; SABR, stereotactic ablative radiotherapy; SBRT, 
stereotactic body radiation therapy; GVAX, granulocyte-macrophage colony-stimulating factor (GM-CSF) gene transfected tumor cell 
vaccine. 
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Ongoing clinical trials of combination of radiation 
and immunotherapy in resectable, locally advanced or 
metastatic pancreatic cancer

To date, multiple clinical studies are underway that combine 
RT with anti-PD-1/PD-L1 (Table 2), RT with anti-PD-1/
anti-PD-L1 plus cancer vaccine (Table 2) or with dual 
checkpoint blockade (anti-CTLA-4 and anti-PD-1/PD-
L1) (Table 3) in borderline resectable, locally advanced 
or metastatic pancreatic cancer. The most common form 
of radiation therapy in these studies involves high dose 
SBRT delivery alone, most commonly delivered in multiple 
fractions. A majority of the studies are the combination of 
SBRT and immune checkpoint blockade using PD-1/PD-
L1 inhibitors to evaluate safety and clinical outcome of the 
combination in the locally advanced or metastatic disease 
setting (NCT02648282, NCT02303990, NCT02866383, 
NCT02311361, and NCT02868632). This combination is 
also investigated in the neoadjuvant setting with borderline 
resectable disease (NCT03161379, NCT02305186 and 
NCT03245541). Although most of the clinical trials are 
currently in early stages, the results will help characterize 
the proper fractionation of radiotherapy, dosing and 

sequencing of treatment for future clinical application.

Conclusions

Despite the remarkable success of immune checkpoint 
blockade immunotherapy in diverse cancers ,  the 
immunotherapeutic approach has very limited clinical 
activity to date in pancreatic cancer. Accumulating 
evidence demonstrates that radiation is a potent immune 
stimulator which induces antitumor immune response 
locally and systemically in addition to direct cytotoxic 
activity. Ablative radiation may have a significant role 
as part of the therapeutic strategy in combination with 
immune therapy to convert non-T cell inflamed (“cold”) 
tumors into highly immunogenic (hot) tumors by 
upregulation of MHC class I molecules and tumor antigen, 
secretion of DAMPs, regulation of immunosuppressive 
cells, and potentially damaging the tumor stroma and 
microenvironment. However, it is still unclear how to 
optimally combine radiation and immunotherapy in 
pancreatic cancer, including optimal sequencing, radiation 
dose and fractionation to effectively overcome the 

Table 3 Clinical trials of radiation and combination anti-PD-1/PD-L1 and anti-CTLA-4 therapy*

Malignancy
Immunotherapeutic 
agent

Radiation fraction
Treatment 
intent

Phase Primary endpoint
Clinical trial 
identifier

Metastatic pancreatic 
carcinoma

Nivolumab or nivolumab 
+ ipilimumab

SBRT (15 Gy × 1) Metastatic II CBR NCT02866383

MSS and MSI high 
colorectal cancer, 
pancreatic cancer

Nivolumab + ipilimumab Not specified Metastatic II DCR NCT03104439

Unresectable pancreatic 
carcinoma

Durvalumab, 
tremelimumab 
or durvalumab + 
tremelimumab

SBRT  
(8 Gy × 1; 5 Gy × 5)

Definitive I AE frequency NCT02311361

Unresectable and non-
metastatic pancreatic 
cancer

Durvalumab, 
tremelimumab 
or durvalumab + 
tremelimumab

SBRT (6 Gy × 5) Definitive I OS NCT02868632

Metastatic melanoma, 
NSCLC, breast 
cancer, pancreatic 
adenocarcinoma

Durvalumab + 
tremelimumab

SBRT  
(8 Gy × 3 or 17 Gy × 1)

Metastatic I Number of AEs NCT02639026

*, anti-PD-1/PD-L1 therapeutics included in the table are limited to (A) nivolumab, (B) pembrolizumab or (C) durvalumab; anti-CTLA-4 
therapeutics included in the table are limited to (A) ipilimumab and (B) tremelimumab. CBR, clinical benefit rate; DCR, disease control rate; 
OS, overall survival; NSCLC, non-small cell lung cancer; SBRT, stereotactic body radiation therapy; AE, adverse event; CTLA-4, cytotoxic 
T lymphocyte associated protein 4. 
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immunosuppressive pancreatic tumor microenvironment. 
Completion of ongoing preclinical and clinical studies with 
the combination of radiation and checkpoint inhibitors is 
eagerly awaited to answer these questions and may one day 
improve clinical outcomes in this resilient cancer.
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