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Introduction

Radiation therapy is a widely adopted and effective 
treatment in nasopharyngeal carcinoma (NPC).

With the complicated disease nature, intensity-
modulated radiation therapy (IMRT) and volumetric 
modulated arc therapy (VMAT) are the key treatment 
techniques for maximizing cancer control while minimizing 
toxicity to normal organs (1-3). Inverse planning techniques 
which optimize the doses to both the planning target 
volumes (PTVs) and organ-at-risks (OARs) are required for 
the planning of IMRT and VMAT (4). Universal planning 
goals can be used to judge whether the plan can meet the 
acceptance standards, whether the plan could be further 
improved is dependent on the patient’s anatomy and thus 

differs from case-to-case. This relies on the planner’s 
ability to observe and pinpoint particular areas for further 
improvements and ultimately guide the optimization to 
obtain better results (5-7). To explore various possibilities of 
achieving a better plan, some trial-and errors processes are 
inevitable. Simply knowing what to try and when to stop 
could largely reduce the time spent on unnecessary trials. 
Thus not only the quality of the treatment plan but also the 
planning time are highly dependent to the knowledge and 
experience of the planners (8,9).

As early as 1980s, automatic planning systems have been 
experimented to aid the design of computerized radiation 
treatment plans (10). Those systems mainly translate the 
knowledge and experience to rules and algorithms that help 
to automate the tedious and repetitive manual manipulations 
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in the planning process. With the improvement of computer 
power and speed, these systems have further advanced and in 
recent years, some of them were developed as commercially 
available solutions. One example is AutoPlanningTM within 
Philips Pinnacle TPS (11). Similar to the steps that a human 
planner would take in planning, the software optimizes the 
plan iteratively by creating additional ROI and optimization 
constraints based on transient dose distribution using a fix 
set of proprietary rules. These systems are typically efficient 
in generating clinically acceptable plans, however, they offer 
limited control on the trade-off between target coverage 
and OAR sparing. To tackle this limitation, multi-criteria 
optimization (MCO)—another type of auto-planning 
algorithm—has emerged. As of year 2020, various MCO 
planning tools are available commercially including Eclipse 
(Varian) (12), Raystation (RaySearch Laboratories) (13),  
Erasmus-iCycle (Erasmus MC, Rotterdam) (14), etc. MCO 
automatically generates a series of Pareto-optimized plans 
(plans of which no objective quantity can be improved 
without impairing at least one another) with a variety of 
trade-offs and the clinician can choose from the pool the one 
that best suits the patient. Choosing an optimal trade-off 
could be challenging and requires good clinical knowledge 
and experiences. As clinical experiences with IMRT/VMAT 
accumulates over the past two decades, a new data-driven 
method, known as knowledge-based planning (KBP), 
has been developed to extract the best clinical judgement 
and knowledge from prior good cases and apply them to 
generate new plans automatically (15-24). In the big data 
era, such approach allows the sharing of knowledge between 
different oncology centers and shows great promise in the 
development of fully automated planning with improving 
planning quality and efficiency.

General overview of KBP

KBP engines are generally comprised of three components: 
(I) an input library/database consisting of ensembles of prior 
clinical data, (II) extraction of knowledge from the database 
and conversion into optimization parameters, (III) an 
optimization algorithm that uses the optimization parameters 
determined to guide the creation of a deliverable plan.

Input library/database

The input data may include the planning CT images, 
delineated structures, planning parameters, dose volumes, 
patient demographic characteristics, etc. Usually the inputs 

are restricted to only a particular anatomical site, sometimes 
even disease type and protocol. These variations could also 
affect the minimum amount of input plans required for 
a good KBP system. One would normally expect a larger 
number of plans required for KBP in head and neck cancers 
due to the sophisticated and diversification natures of the 
diseases (many PTVs/OARs, various dose levels, large 
variation in PTV shapes and locations).

Extraction of knowledge from database

There are two main ways of extracting key knowledge from 
past data—atlas-based and model-based.

In atlas-based KBP, the reference patient(s) in the 
database best matching the subject patient to be treated is 
first identified from whose plans the knowledge is extracted. 
Various methods have been explored to pick out the best 
matched patient. A popular approach is to look for maximal 
similarities between patients in terms of the relative spatial 
locations of targets and OARs [e.g., overlapping area of the 
overlap volume histograms (OVH) (25)] which are most 
critical factors affecting the attainable target coverage and 
normal tissue sparing. Among the reference patients that 
are sufficiently similar to the subject patient, one might 
also want to choose the one with the best plan quality, for 
instance, choose a plan with minimum OAR dose, but with 
sufficient target coverage (26).

Model-based KBP, on the other hand, instead of extracting 
knowledge from only the best matched reference patient(s), 
incorporates the essence of knowledge and experience of 
all reference plans in the database into a single prediction 
model. The model fits upon features and patterns available 
in the reference plans and output the estimation of the best 
geometrical configuration for planning or the best dosimetric 
outcome that should be achievable in the new plan. A large 
variety of prediction model exist, majority of them are 
based on Machine learning methods such as regression, 
random forest, support vector machine, etc. Deep learning, a 
particular type of machine learning based on artificial neural 
network, has also been applied in KBP (27) and is starting to 
gain increasing popularity and has shown significant promise 
as the next generation of auto-planning algorithm.

Generating optimization parameters

The knowledge extracted in the atlas-based KBP or 
predictions from model-based KBP are used to generate 
optimization parameters for optimization of new plans. 
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For instance, the fluence map of the new plan can be 
obtained by deformation registration of the fluence map 
of the best matched patient plans in an atlas-based KBP 
system, dose-volume histogram (DVH) prediction from 
a model-based KBP can be fed to inverse optimization 
algorithm to generate new plan. Other examples of 
knowledge transferred/optimization parameters include 
beam parameters (e.g., gantry/collimator/couch angles, 
jaw settings), voxel dose distribution, objective function 
weights, etc. DVH estimates are by far the most commonly 
used. However, one potential pitfall in the DVH approach 
is that DVH contains no geometrical information, as such 
the plan produced might fulfil all the DVH criteria but still 
presented with an inferior 3D dose distribution (e.g., slow 
fall-off). This provokes new research and developments in 
voxel-based planning. For instance, Chen et al. has recently 
implemented a convolutional neural network, ResNet, a 
specialized architecture for imaging and vision purposes, for 
3D dose distribution prediction for simultaneous integrated 
boost (SIB) radiotherapy in NPC (28).

Creation of deliverable plans

The prediction or knowledge transferred can only be used 
as a guide for further optimization since (I) every patient 
is inevitably different, no matter how similar with one 
another; (II) the plan needs to be deliverable, i.e., ones that 
are physically possible with the modality of interest, e.g., 
linac, Cyberknife, etc.). Examples of optimization engines 
include DVH guided inverse-planning algorithms (the most 
commonly used), voxel-based dose mimicking algorithms 

[McIntosh et al. (29)/Raystation], etc.

Example of KBP (RapidPlan) applied to NPC 
IMRT planning

To demonstrate how actually KBP is implemented, we will 
look at a specific example of using RapidPlanTM (RP) in 
NPC IMRT planning. This is the custom NPC model that 
was employed in the study of Chang et al. (30). It had been 
commissioned and used clinically in our oncology center to 
assist NPC planning since 2016.

RP in a nutshell

RP is a knowledge-based optimization application that is 
provided as an integrated option in the Eclipse treatment 
planning system (Varian Medical Systems, Palo Alto, USA) 
since release 13.5.

The RP model is first trained using prior high quality 
plans to establish the relationship between geometry (both 
anatomy and field arrangement) and dosimetry. The model 
can be used to estimate the OARs’ DVH in a new plan when 
given the patient information (structure sets, prescription, 
field geometry). The DVH estimation (Figure 1) and the 
automatically generated priorities are then fed into inverse 
optimizer to generate a deliverable plan (Figure 2).

RP DVH Estimation algorithm (31)

Volume sub-division
Each OAR is sub-divided into four regions (Figure 3): out of 

Figure 1 Workflow of RapidPlanTM (RP). DVH, dose-volume histogram.
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field, in-field, leaf transmission, overlapping region. DVH 
of the in-field region could be highly variable depending on 
how the plan is optimized, and will be modelled with the 
help of prior data. Variations of DVH in other regions are 
limited and are estimated using relatively crude models.

Evaluation of geometry
The geometry is represented through the construction of 

the geometry-based expected DVH (GBDVH). Details of 
GBDVH construction is beyond the scope of this article, 
more detail can be found in reference (31).

Principle component analysis (PCA)
PCA is performed to both the GBDVH and the in-field 
DVH to extract principle components (PCs) that maximizes 
the variance of the DVHs in the training set. PC score 

Figure 2 Examples of DVH predictions and optimization objectives created using the RapidPlan model. (A) Predicted ranges of DVHs 
(shaded regions) for cord + 3 mm and brainstem + 1 mm. Line objectives are placed along the inferior boundary of the predicted DVHs (dotted 
lines). The arrow represents the fixed optimization objective at maximum dose; (B) predicted ranges of DVHs (shaded regions) for left and 
right parotid. Line objectives are placed along the inferior boundary of the predicted DVHs (dotted lines). Since PTV takes priority at the 
overlapping region between the PTV and the parotid, the line objective appears to be “stair like” near maximum dose. DVH, dose-volume 
histogram; PTV, planning target volume.

Figure 3 The four functional regions of an OAR. OAR, organ-at-risk.
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(PCS)/coefficient of each plan for each OAR is calculated.

Regression
For each OAR, stepwise-regression is performed to 
correlate the PCS of GBDVH and PCS of in-field DVH 
across all plans in the training set.

DVH estimation of new plan
PCS of GBDVH for the new plan is calculated. Using 

coefficients obtained in the regression, PCS of the in-field 
DVH can be determined which are in turn used to generate 
the in-field DVH estimates. By combining DVH estimates 
from the other OAR sub-volume, DVHs of the OARs can 
be estimated. Line objectives for OARs are then created 
along the lower DVH estimation boundaries for inverse 
optimization along with other fixed objectives manually 
chosen for PTV (and OAR) structures. The priority of the 
line objective can also be automatically generated.

Figure 4 Statistics of the trained RapidPlan model. (A) Regression plot; (B) in-field DVH plot; (C) training log. DVH, dose-volume 
histogram.
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Input library for the NPC RP model

In order for the model to be applicable in most clinical 
cases, the input library should contain enough samples that 
can represent the majority of the NPC population. In our 
model, plans of 79 NPC patients, with no differentiation 
made regarding the stage of disease, were included for 
training. These NPC patients were given SIB treatments in 
35 fractions to three prescription dose levels (70, 63, 56 Gy)  
using IMRT technique (six MV photon). VMAT was not 
included in the model because our Institute only used 
IMRT for NPC treatment and no previous knowledge of 
using VMAT was available for the KBP model.

PTVs of different dose levels were individually cropped, 
and were made to separate from each other by 3 mm 
margins. OARs of left and right side were grouped together 
(for instance, left and right parotid as “parotid” in the 
model). Altogether, nine OAR structures that were included 
in the model. They were Brainstem + 1 mm, Cochlea, 
Cord + 3 mm, Eye, Lens_PRV, Op_Chiasm + 1 mm, Optic 
Nerve, Parotid and Temporal Lobe.

Training and refinement of RP model

The DVH Estimation model of each OAR is trained 
using the plans imported in the library. The statistics of 
the trained model are summarized in the geometry plot 
(containing statistics of OAR/target volume, percentage 
overlapping of OAR to target, PCSs of the GBDVH), 
regression/residual plots as well as in-field DVH/overall 
DVH. By analyzing these statistics together with the 
training log (Figure 4), possible geometric/dosimetric 
outliers that can impact the reliability of the model 
can be detected [more information can be found in the 
manual (31,32)]. Metrics such as regression coefficient of 
determination, studentized residuals and Cook’s distance in 
the training log help to pinpoint particular outlier plans that 
should be removed from the model. To further improve the 
reliability and precision of DVH estimation, the model was 
re-trained iteratively and recursively (33), i.e., the model 
was used to re-plan cases if the estimated DVHs of OARs 
outperform that of the input plans. The input plans were 
then replaced by these re-optimized plans and re-training 
was performed. Finally, all cases were re-planned with 
the re-trained model and all the new data were imported 
to train and create a new RP model. As illustrated by the 
example shown in Figure 4A, a strong correlation is found 
between the geometry and dosimetric PCS, indicating that 

the model is well-configured. The model performance 
could probably be further enhanced by adding more quality 
plans into the input library.

Performance and validation of the NPC RP model

The performance of the RP model was evaluated against 
manual planning for a set of twenty NPC patients that 
are independent of the training set (30). In general, the 
target coverage for both the manual and RP plans (plans 
generated using line constraints and priorities suggested by 
the RP model) were similar. The mean doses of OARs were 
generally reduced with the help of DVH line constraints. 
However, control on the maximum OAR dose was inferior 
to the manual plans with about half of the plans not 
fulfilling the acceptance criteria of the top priority serial 
OAR structures [the summary of the target and normal 
tissue constraints are described as in the article (30)].  
Nevertheless, the difference was very small and all these 
plans could be made acceptable with minimal manual 
adjustments. The planning time using RP plan followed by 
manual adjustments is still significantly less than the time 
required for full manual plans: 64 vs. 295 minutes. These 
results demonstrated the current status and feasibility of RP 
employed in IMRT planning of NPC. RP does not limit 
the application of VMAT planning even though the model 
is configured using IMRT plans only, however, the result 
concerning the IMRT KBP model might not be applicable 
to VMAT plans and the reader should interpret these results 
with cautions.

Use of KBP in head and neck cancers

Previous reports on KBP are based on two main types of 
validation studies comparing KBP-predicted dose metrics, 
or KBP-produced dose distribution with those of manual 
clinical plans. General findings suggest that KBP methods 
are capable of achieving clinically acceptable target volume 
coverage with improvements in OAR sparing. Universally, 
planning time was found to be significantly reduced, 
especially for complex cases. In head and neck cases, various 
studies have shown sparing to parotids, submandibular 
glands, oral cavity, and swallowing muscles (such as 
pharyngeal constrictor muscles); a study by Tol et al. (21) 
showed that significant improvement in mean parotid dose 
(more than 4 Gy) can be achieved with RP when compared 
with the original plans from an older series, reflecting 
most benefit for inexperienced centers. It is also noted that 
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plan quality is less consistent for some “outlier” cases. In 
building the model, anatomical features of PTV and OAR 
and their spatial relationships are important parameters, 
such as median OAR and PTV distance, proportion of 
OAR volume within a specific distance range or overlapping 
with PTV etc. (34-36). It is controversial as to the number 
of cases required to train a model as it is expected that head 
and neck cancers contain higher complexity and likely 
require more training cases, compared with other tumor 
types such as prostate cancer with fewer OAR’s to consider.

Automated treatment planning has also been adopted 
in the context of clinical trials. The Radiation Therapy 
Oncology Group (RTOG) 0920 and 3501 utilized a model 
which incorporated data from head and neck cancer patients 
who had previously received helical tomotherapy or VMAT, 
to re-plan VMAT patients who were recruited into these 
clinical trials. Model plans were shown to improve OAR 
sparing compared with manual plans with maintenance of 
clinically acceptable dose uniformity. A clear advantage is 
significantly improved planning efficiency (37-39).

Other applications on KBP

Patient selection for different modality

The predictive power of KBP in dosimetric outcome can 
also be exploited for patient selection purposes. Due to the 
limited availability and high cost of proton therapy, as well as 
the capability of modern IMRT techniques, there is always 
a need to select the right patients who can benefit most 
from proton therapy. Usually treatment plans of these two 
modalities need to be produced, optimized and compared, 
which is time and labor intensive. Delaney et al. (40)  
demonstrated the idea of patient selection by KBP-predicted 
mean OAR doses for 10 head and neck cancer patients. The 
mean doses of parotid glands, contralateral submandibular 
gland and swallowing muscles were predicted for both 
intensity-modulated proton therapy (IMPT) and IMRT 
plans and then compared. Using 6 Gy as the threshold 
mean dose difference for selection, the method identified 
four out of five eligible patients (out of a total of ten) for 
IMPT, and four out of five that would not qualify. The 
study was subject to the limited capability of applying the 
KBP model on proton therapy as the KBP algorithm was 
not yet designed to handle proton beam characteristics, it 
did however clearly demonstrate the potential of KBP in 
patient selection to receive the most appropriate treatment 
modality.

Quality control of IMRT planning

A study by Zhou et al. utilizes knowledge library of reference 
plans for the quality control of IMRT planning (25).  
New measures derived from OVH and DVH were used 
as additional parameters to control IMRT plan quality. 
Twenty-eight NPC IMRT plans were included and 
compared against one another according to these new 
measures; and those for which a better “reference” plan 
could be found were re-optimized using reference plan 
DVHs as additional objectives. Significant improvement 
could be achieved for these plans; in particular, the parotid 
median dose was reduced by 3.4 Gy on average. The 
method successfully identified the sub-optimal plans and 
provided an easy mean for improvement.

IMRT plan quality check is also an important issue in 
a multi-center clinical trial setting. As sub-optimal plans 
that still achieve the minimum plan acceptance criteria 
are usually not considered in trial’s stratification, they 
can introduce bias and affect final trial outcomes. To 
demonstrate the use of KBP for planning quality assurance 
(QA), Tol et al. (41) produced KBP plans for 100 head 
and neck cases submitted by thirteen different institutes 
participating in the EORTC-1219-DAHANCA-29 trial, 
and compared the difference in the mean OAR doses. Only 
the dose to parotid/submandibular glands and swallowing 
muscles were compared as the serial OARs constraints must 
be met for plan submission. They found that the mean dose 
could be improved by more than 3 Gy for 293/570 OARs. 
In fact, the mean OAR doses predicted by the knowledge-
based model are found to be sufficiently close to that can be 
achieved in the optimized KBP-plan so that the predicted 
doses can be used directly for QA purposes without needing 
to produce a KBP plan at all. Using DVH prediction alone 
identified 60 submitted plans that the OAR mean dose 
can be potentially reduced by more than 3 Gy. The KBP 
prediction provides a quick means for plan QA and the 
predicted DVH can also be passed to the institutes for plan 
re-optimization if needed.

Evaluation of dosimetric consequences due to contouring 
inconsistencies

A study utilized automatically generated treatment plans 
to evaluate the impact on contour variation was reported 
by Lim et al. (42). Twenty-two residents contoured the 
clinical target volumes of different dose levels (54.12, 59.4 
and 69.96 Gy), both parotids and cochleae for a T1N1 
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NPC patient and the contours were compared with the 
“gold standard” contours created by two expert oncologists. 
Sixty-seven VMAT plans with four full coplanar arcs were 
generated with KBP model for four different combinations 
of resident-drawn and gold-standard PTV and OAR 
contours. Analysis of the dosimetric indices (PTV D98 and 
OAR Dmean) provided clinically meaningful conclusion 
on the consequence of contouring discrepancy, and the 
inadequacy of the commonly-used geometric indices for 
contour evaluation (poor correlation between geometric and 
dosimetric indices with R2 <0.2 for 61 % of the correlations 
studied). The authors of this study recommended using 
KBP-produced plans for future contour evaluation studies.

Limitations and future developments

As suggested by the name, KBP approach draws from 
the experience of previous high quality plans. The KBP 
performance will suffer if poor quality plans have been 
used to construct the model library. Usually individual 
institutions construct their own library based on their own 
treatment protocols with specific prescription dose levels, 
fractionations, OAR constraints, contouring convention, 
etc. The KBP plans thus produced would be limited by 
the institute’s previous planning capability, and the models 
may not be transferrable to another institute using different 
protocols. Panettieri et al. (43) demonstrated the feasibility 
of constructing a universal KBP model for prostate cancer 
trained with 110 treatment plans contributed from five 
centers employing different treatment protocols, and then 
distributed and revalidated by eight centers. A standardized 
OAR constraint was developed in the process and the 
KBP model was able to produce quality plans with general 
improvement in OAR sparing despite the variations 
in target dose prescription and fractionation scheme. 
We believe future KBP algorithm will be developed to 
accommodate a large diversity of treatment schemes, dose 
constraints, modalities, and even with tuning features; so 
that with sufficient number and variety of training plans, 
the resultant model will be sufficiently flexible and easily 
transferrable to a large number of users with different 
planning aims.

Conclusions

KBP could improve the efficiency of IMRT planning 
for NPC patients and produce less planner dependent 
treatment plan with good quality, although some manual 

touch-up was occasionally needed for the KBP plans to 
meet the clinical acceptance criteria. The performance 
of the model could be further improved by adding more 
quality data and tuning of the model, potentially removing 
the need of manual touch-up. With the help of auto-
contouring (44) and scripting, fully automated planning 
might become plausible. Such potentials would be worthy 
for further exploration. The benefit of improved planning 
quality and efficiency can also be enjoyed by a large 
number of patients with the construction of universal KBP 
models that are highly flexible and transferable to different 
radiotherapy centers with limited resources.
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