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Introduction

Nasopharyngeal carcinoma (NPC) is a specific type of 
head and neck cancer, occurring at the epithelium surface 
of the posterior nasopharynx (1,2). NPC incidence is ~2–3 
times more common in males than in females, with a peak 
at ages 45–59 years (3). NPC is highly prevalent in some 
regions of southern China, Southeast Asia, North Africa, 
and the Arctic/Alaska (4). Due to its limited geographic 

and ethnic distribution, genetic susceptibility and 
environmental factors have been considered to contribute 
to its development. These include Cantonese ancestry, 
eating habits like food preserved with salt, tobacco smoking, 
as well as herpesvirus Epstein-Barr virus (EBV) infection 
(5,6). All undifferentiated NPC cases are associated with 
EBV infection, especially the high-risk EBV variants (7). 
In terms of the distinct expression pattern of EBV latent 
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genes, NPC is classified as type II viral latency. Although 
the current clinical treatment could achieve an overall 
5-year survival rate of >80% for NPC patients especially at 
early stages, still ~20% of patients eventually present with 
local-regional relapse and distant metastasis (8). Thus, 
developing useful biomarkers for the early diagnosis of 
NPC is in good need.

A unique epigenetic etiology of NPC 
pathogenesis

Epigenetic modifications can occur at multiple levels, from 
direct DNA CpG modification to more complex histone 
modifications/chromatin conformational changes, as well as 
the newly discovered various RNA modifications (9-11). The 
dysregulation of these epigenetic modifications contributes 
critically to multi-tumorigeneses, including NPC. 

As the vast majority of NPC is EBV-associated, EBV 
acts as a strong epigenetic driver during NPC pathogenesis 
(12,13). Previous methylome studies have shown a special 
epigenetic phenotype of NPC: a significantly higher 
grade of methylation at cellular CpG islands (CGIs)  
(14-16). EBV dysregulates host cell epigenetic mechanisms 
through abducting cellular epigenetic machinery (DNMTs,  
TETs) (17), then causes methylation aberrations (epi-
mutation) of both viral and cellular genes, especially the 
promoter CpG methylation of multiple tumor suppressor 
genes (TSGs). Therefore, genetic and epigenetic alterations 
are complementary to each other during early NPC 
pathogenesis, and potentiate NPC initiation and progression 
altogether. For example, high frequency of chromosome 
3p deletion is an early event in NPC development (18). 
Meanwhile, TSGs at this region like RASSF1A (19), DLEC1 
(20,21), PLCD1, ZMYND10/BLU are also frequently 
methylated in NPC primary tissues but not in normal 
nasopharyngeal (NP) epithelia. p16 (INK4A) inactivation 
by promoter CpG methylation is one of the most common 
and earliest epigenetic events in human carcinogenesis 
including NPC (22). Recently, direct functional evidence 
using engineered mice model demonstrated that p16 (INK4A) 
epi-mutation is an epigenetic driver for tumor formation and 
malignant progression (23). Thus, CpG methylation are ideal 
and valuable tumor biomarkers for NPC early diagnostics.

Advantages of detecting CpG methylation 
biomarkers for NPC

Epigenetic modifications can be accurately and repeatedly 

detected, in line with the definition of biomarkers. 
Epigenetic molecular markers include CpG methylation, 
5hmC of DNA, histone protein modifications, and even 
various RNA modifications. Among these, CpG methylation 
of DNA has its unique advantages and feasibility as a good 
biomarker: (I) DNA molecules of clinical samples can exist 
stably for many years even after routine histopathology 
treatment, thus can be used in archival samples; (II) CpG 
methylation detection is a positive test with absolute 
indication and remains relatively stable, thus methylation 
detection does not need internal control design; (III) CpG 
methylation of TSG promoters is tumor-specific, thus its 
detection has great specificity for tumor cells; (IV) CpG 
methylation detection can use polymerase chain reaction 
(PCR) amplification-based detection systems, thus with 
great sensitivity; (V) different patients usually have different 
gene mutations while promoter CpG methylation is 
commonly present in most individuals, thus its detection 
is more convenient; (VI) most importantly, aberrant 
TSG promoter methylation occur at the early stage of 
tumorigenesis, thus makes it a valuable biomarker for early 
cancer diagnosis.

Methods of detecting CpG methylation and 
clinical sample sources

To develop CpG methylation biomarkers with high 
sensitivity and specificity for NPC diagnostics, proper 
selection of appropriate methods for methylation biomarker 
screening and detection is very important. Various 
techniques to detect DNA methylation levels have been 
established. Genome-wide screening using next-generation 
sequencing- or microarray-based platforms can screen 
candidate methylation biomarkers comprehensively. These 
approaches are based on affinity enrichment, methyl-
sensitive restriction enzyme (RE) digestion, and bisulfite 
conversion. Affinity-based enrichment methods enrich 
methylated DNA fragments using antibodies specific to 
5mC (as in MeDIP) or methyl-CpG-binding domain 
(MBD) proteins, followed by profiling with microarray 
(MeDIP-chip, MBD-chip) or sequencing (MeDIP-
seq, MethylCap-seq). DNA bisulfite conversion coupled 
with sequencing, or methylation array or RE digestion 
can quantitatively measure genome-wide methylation, 
including whole-genome bisulfite sequencing (WGBS), 
Illumina Infinium Array (MethylationEPIC, Infinium 
Methyla t ion850,  450  BeadChips ) ,  and  reduced-
representation bisulfite sequencing (RRBS, dRRBS, 
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xRRBS). NPC methylomes have been carried out by 
methylated DNA immunoprecipitation (MeDIP) (14) and 
Illumina HumanMethylation450 BeadChip (15). 

Selected single specific methylation biomarkers or 
a panel of limited methylation markers can be further 
examined in large cohort samples, using rapid and cost-
effective gene-specific methylation detection assays. For 
this purpose, bisulfite DNA sequencing remains as a gold 
standard for DNA methylation analysis at high resolution. 
Other methods include methylation-specific PCR (MSP), 
quantitative MSP (qMSP) such as MethyLight assay, and 
pyrosequencing. All can detect the methylation status of 
single genes with high sensitivity and specificity, which 
meets the key requirements for biomarker validation 
and subsequent clinical usage. However, for each gene 
with epigenetic alterations, careful optimization of its 
methylation detection system for rapid detection is 
necessary and critical. We list some common methods of 
CpG methylation marker detection for NPC with different 
purposes in Table 1. 

DNA samples could be acquired from clinical tissues or 
body fluids. NPC, due to its unique anatomical location, 
traditional diagnosis of primary tumor is usually the 
pathological assessment of tissue biopsy obtained by invasive 
nasal endoscopy, which is not easy for large population 
screening and disease monitoring. Moreover, tissue biopsy of 
early-stage NPC is difficult to obtain due to the absence of 
clinical symptoms. Thus, NP brushing (14) and circulating 
cell-free nucleic acids (ccfNAs) (30) from body fluids 
(plasma, serum) are ideal samples for NPC methylation 
marker detection. Previous studies have shown that these 
clinical samples are well suitable for EBV viral copy number 
quantitative assessment as a biomarker for NPC non-
invasive diagnosis (47). The detection of CpG methylation 
as non-invasive biomarkers for NPC, in parallel with EBV-
DNA copy number analysis, would provide a highly specific 
diagnostic tool for NPC risk assessment and early diagnosis. 

TSG methylated DNA as biomarkers for NPC 
diagnostics

Aberrant promoter CpG methylation of TSGs occurs at 
the early stage of cancer development, and has become 
an attractive biomarker for cancer screening and early 
detection. We summarize the reported CpG methylation 
biomarkers for NPC screening and diagnosis in Tables 1,2. 
Multiple methylation biomarkers in a variety of sample 
sources, tested as a single gene (Table 1) or panels of genes 

(Table 2), appeared to be effective in discriminating NPC 
from non-cancer controls. Biomarkers mostly investigated 
in both NPC tumor biopsy and liquid biopsy (NP brushing, 
plasma) include RASSF1A, p16, CDH1, DLEC1, UCHL1, 
which achieves good sensitivity and specificity. 

The sensitivity and specificity of methylation detection 
using NPC tissue or liquid samples (plasma, brushing, 
swabs) are often similar: for examples, methylation 
panel of DAPK, E-cadherin, RASSF1A, p15, p16 by MSP 
(methylation: tissue: 97%, swabs: 80%); methylation panel 
of RASSF1A, WIF1, DAPK1, RARβ2 by methylation-
sensitive high resolution melting (MS-HRM) [plasma: 
sensitivity 96%/specificity 64.6%, area under the curve 
(AUC) =0.87; brushing: sensitivity 95.8%/specificity 
67.4%, AUC =0.82], although some variations among 
different sample types have also been observed. Gene 
methylation panels are always satisfactory based on 
sensitivity, while the specificity could be improved by 
combining with EBV DNA or antibodies markers. The 
majority of methylation biomarker data mentioned 
above are based on comparing primary NPC tissue with 
healthy control samples. For screening and early diagnosis 
purposes, future NPC methylation marker studies should 
be more focused on high-risk populations and suspected 
patients at early stages.

Conclusion and future perspective

The special epigenetic feature of high-grade CpG 
methylation of NPC highlights the importance of its 
epigenetic etiology, and also the good perspective of 
developing methylation biomarkers for its early detection 
and diagnostics. Methylation biomarker is actually 
complementary to other non-invasive markers such as 
EBV-DNA for NPC diagnosis. The studies reviewed here 
exemplify recent progress of CpG methylation biomarkers 
in NPC diagnostics, including both single methylation 
biomarker and panel of multiple methylation biomarkers 
with diagnostic power. Although methylation biomarkers 
are very promising, there is still  no reliable NPC 
methylation diagnostic kit available for clinical use so far. 
Further in-depth technical investigations are still needed to 
facilitate the realistic usage in-clinic diagnostics of NPC, 
such as optimized sample storage, standardized DNA 
extraction, and selection of methylation detection systems. 
With the recent technical advance of CpG methylation 
detection, the future of methylation biomarkers for NPC 
early detection and diagnostics is indeed bright.
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Table 1 DNA methylation biomarkers for NPC diagnostics

DNA 
methylation 
marker or gene

Sample Method
Methylation 
frequency

Sensitivity/specificity Ref. Comments

RASSF1A Tissue, 
brushing, 
blood 

MSP, 
MethyLight, MS-
HRM

– Tissue: 72%/99%, AUC =0.98 (19,24-30) Meta-analysis enrolled 16 
eligible studies

Brushing: 56%/100%, AUC =0.94

Blood: 11%/98%, AUC =0.97

RERG Tissue methyl qPCR – Tissue: 78.3%/100%, AUC =0.897 (31,32) 

ccfDNA qAMP ccfDNA: 60%/100%, AUC =0.855 (33) All cases are non-keratinizing 
carcinoma

ITGA4 Tissue, 
ccfDNA

qAMP – Tissue: 69.1%/94.4%, AUC =0.871

ccfDNA: 75%/60%, AUC =0.683

ZNF671 Tissue: 91.5%/89.5%, AUC =0.946

ccfDNA: 64.7%/80%, AUC =0.724

SHISA3 Tissue: 74.1%/84.2%, AUC =0.809

ccfDNA: 42.9%/90%, AUC =0.600

SLIT2 Tissue, 
plasma

Bisulfite 
pyrosequencing

– Tissue: 77%/81.6%, AUC =0.846 (34) Patients were treatment-naïve; 
the diagnostic value of SLIT2 
methylation in plasma is better 
than that from tissue samples

Plasma: 70.5%/94.7%, AUC =0.866

EBNA1 Tissue MSP – 82%/94% (26) Samples from Morocco

LMP1 59%/94%

ITGA9 50%/100%

P16 45%/100%

WNT7A 69%/80%

CHFR 40%/67%

CYB5R2 47%/75%

WIF1 100%/25%

FSTL1 57%/87%

SEPT9 Tissue, 
swabs

qMSP Tissue: 92% 
(23/25)

AUC =0.882 (35) NPC biopsies and paired swabs 
had a good correlation

Swabs: 72.7% 
(16/22)

CDH13 Tissue, 
swabs

MSP Tissue: 89.7% 
(52/58)

Swabs: 81%/100% (36) Methylation was not detected 
in swab samples whose 
corresponding biopsies were 
unmethylatedSwabs: 81% 

(34/42)

DAPK Tissue, 
plasma, 
buffy coat

MSP Tissue: 75% 
(24/32)

– (26-30,37) 12 patients with blood samples 
available are all DAPK-
methylated in tissue samples

Plasma: 50% 
(6/12)

Buffy coat: 25% 
(3/12)

Table 1 (continued)
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Table 1 (continued)

DNA 
methylation 
marker or gene

Sample Method
Methylation 
frequency

Sensitivity/specificity Ref. Comments

RARβ2 Tissue, 
brushing, 
plasma

MS-HRM Brushing: 53.1% 
(51/96)

Brushing: 50.0%/83.7%, AUC =0.68 (27)

Plasma: 15.9% 
(35/220)

Plasma: AUC =0.58

E-cadherin Swabs, 
M&T rinsing 
fluid, 
plasma, 
buffy coat

MSP Tissue: 53% Swabs: 50%/100% (28,38) 

Swabs: 27% M&T: 81%/100%

M&T: 43% Plasma: 13%/100%

Plasma: 7% Buffy coat: 38%/100%

Buffy coat: 20%

p15 Tissue: 80% Swabs: 67%/100% (28,30)

Swabs: 53% M&T: 46%/98%

M&T: 40% Plasma: 0/98%

Plasma: 0 Buffy coat: 8%/100%

Buffy coat: 7%

p16 Tissue: 33% Swabs: 50%/100%

Swabs: 17% M&T: 50%/100%

M&T: 17% Plasma: 0/100%

Plasma: 0 Buffy coat: 0/100%

Buffy coat: 0

CDKN2A Serum MSP 22.5% (9/40) 22.5%/97.6%, AUC =0.6 (29) Number of early-stage NPC 
patients was limited (stage I/II: 
4/40)DLEC1 25.0% (10/40) 25%/92.7%, AUC =0.59

UCHL1 64.9% (24/37) 64.9%/80.5%, AUC =0.7

AIM1 Tissue qMSP 30% (15/50) 30%/92%, AUC =0.61 (39) All tumor tissues enrolled 
were type II non-keratinizing 
carcinomas and EBV+. This is 
the first study utilizing qMSP for 
the examination of NPC

APC 34% (17/50) 34%/96%, AUC =0.65

CALCA 44% (22/50) 40%/92%, AUC =0.68

DCC 50% (23/46) 50%/96%, AUC =0.77

DLEC 60.4% (29/48) 60%/96%, AUC =0.73

DLC1 43.8% (21/48) 43%/100%, AUC =0.71

ESR 26% (13/50) 26%/96%, AUC =0.61

FHIT 44% (22/50) 44%/21%, AUC =0.38

KIF1A 56% (28/50) 56%/96%, AUC =0.76

UCHL1/
PGP9.5

64% (32/50) 66%/96%, AUC =0.78

TIG1 30% (15/50) 26%/92%, AUC =0.43

Table 1 (continued)
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Table 1 (continued)

DNA 
methylation 
marker or gene

Sample Method
Methylation 
frequency

Sensitivity/specificity Ref. Comments

CDK10 Tissue, PB MSP Tissue: 52.5% 
(21/40)

PB: 37.5%/100% (40) Methylation was observed only 
in blood samples derived from 
patients with tissues exhibiting 
methylation PB: 37.5% 

(15/40)

RIZ1 Tissue, 
swabs, M&T 
rinsing fluid, 
plasma, 
buffy coat

MSP Tissue: 60% 
(18/30)

Tissue: 0/100% (26,41) Methylation in tissues was 
necessary but not sufficient for 
methylation detection in PB

Swabs: 37% 
(11/30)

M&T: 30% (9/30)

Plasma: 23% 
(7/30)

Buffy coat: 10% 
(3/30)

HIN-1 Tissue, 
swabs, 
throat 
rinsing fluid, 
plasma, 
buffy coat

MSP Tissue: 77% 
(36/47)

Swabs: 67%/100% (42) High specificity and moderate 
sensitivity; might be used in 
combination with EBV antibody 
markersSwabs: 46% 

(12/26)
Throat rinsing fluid: 28%/100%

Throat rinsing 
fluid: 19% (5/26)

Plasma: 18%/100%

Plasma: 18% 
(2/11)

Buffy coat: 46%/100%

Buffy coat: 45% 
(5/11)

CDH1 Plasma qMSP 46% (19/41) – (30)

ECRG4 Tissue, PB MSP, BGS Ttissue: 72.5% 
(29/40)

– (43) The first study to detect ECRG4 
methylation in PB samples of 
NPC patients

PB: 57.5% 
(23/40)

LOX Tissue, 
swabs

MSP, BGS Tissue: 85.7% 
(42/49)

– (44)

Swabs: 18.75% 
(3/16)

FEZF2 Tissue, 
swabs

MSP, BGS Tissue: 75.5% 
(37/49)

– (45) All NPC tissues were EBV+

Swabs: 75% 
(12/16)

BRD7 Tissue, PB MSP Tissue: 100% 
(18/18)

– (46) A provocative observation 
based on limited samples

PB: 100% 
(18/18)

NPC, nasopharyngeal carcinoma; MSP, methylation-specific polymerase chain reaction; MS-HRM, methylation-sensitive high resolution 
melting; AUC, area under the curve; qPCR, quantitative polymerase chain reaction; ccfDNA, circulating cell-free DNA; qAMP, quantitative 
analysis of DNA methylation using real-time polymerase chain reaction; qMSP, quantitative methylation-sensitive polymerase chain 
reaction; M&T, mouth and throat; EBV, Epstein-Barr virus; PB, peripheral blood; BGS, bisulfite genomic sequencing. 
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Table 2 Panels of DNA methylation biomarkers for NPC diagnostics

Panels of markers or 
genes

Sample Method Methylation frequency Sensitivity/specificity Ref. Comments

LMP1, ITGA9, 
RASSF1A, P16

Tissue MMSP – 97%/94% (26) EBNA1+ NPC cases and normal 
samples; MMSP assay allows 
analyses of multiple marker 
methylation in a single reaction

RASSF1A, WIF1, 
DAPK1, RARβ2

Tissue, 
brushing, 
plasma

MS-HRM Tissue: 100% (52/52) Brushing: 95.8%/67.4%, 
AUC =0.82

(27) The sensitivity of methylation 
panel was higher than EBV DNA 
at the early stage of NPC

Brushing: 95.8% (92/96) Plasma: 96%/64.6%, 
AUC =0.87

Plasma: 72.7% (160/220)

DAPK, E-cadherin, 
RASSF1A, p15, p16

Tissue, 
swabs, M&T 
rinsing fluid, 
plasma, 
buffy coat

MSP Tissue: 97% Swabs: 83%/100% (28) The sensitivity was higher in 
NP swab and M&T rinsing fluid 
samples, compared to plasma 
and buffy coat samples 

Swabs: 80% M&T: 90%/98%

M&T: 87% Plasma: 10%/95%

Plasma: 10% Buffy coat: 41%/93%

Buffy coat: 40%

CDKN2A, DLEC1, 
DAPK1, UCHL1

Serum MSP – 85%/65.9%, AUC =0.82 (29) The combination of these 
4 markers is the best in 
considering both sensitivity and 
specificity

RERG, ZNF671 ccfDNA qAMP – 93.8%/80%, AUC =0.90 (33) Its diagnostic accuracy is better 
than that of single marker in 
tissue DNA

AIM1, APC, CALCA, 
DCC, DLEC, DLC1, 
ESR, FHIT, KIF1A, 
UCHL1, TIG1

Tissue qMSP 100% (50/50) 100%/57%, AUC =0.78 (39)

CDH1, DAPK1, p15, 
p16, RASSF1A

Plasma qMSP 71% (29/41) 71%/91% (30) Diagnostic accuracy is improved 
when combined with serological 
EBV antibodies

RASSF1A, RARβ2, 
DAPK, p16, p15, p14, 
MGMT, GSTP1

Tissue MSP – 100%/100% (22)

DAPK, RASSF1A, p16 Brushing MSP – 78.6%/100% (24) The sensitivity is increased to 
100% when combined with 
quantitative EBV-DNA analysis

RASSF1A, DAPK, 
EBNA1, LMP1

Tissue, 
swabs

MMSP – 98%/100% (48) Results of NPC swabs were 
similar to those of corresponding 
biopsies

CHFR, RIZ1, WIF1, 
p16, RASSF1A

Brushing or 
tissue

MSP – 98%/96% (49) In Indonesian populations; 
NPC paraffin and brushing 
DNA samples showed 81.8% 
concordance in methylation by 
MSP. The panel is proposed as 
a complementary test for early 
NPC detection with EBV-DNA-
based assay

NPC, nasopharyngeal carcinoma; MMSP, multiplex methylation-specific polymerase chain reaction; MS-HRM, methylation-sensitive high 
resolution melting; AUC, area under the curve; EBV, Epstein-Barr virus; MSP, methylation-specific polymerase chain reaction; M&T, mouth 
and throat; ccfDNA, circulating cell-free DNA; qAMP, quantitative analysis of DNA methylation using real-time polymerase chain reaction; 
qMSP, quantitative methylation-sensitive polymerase chain reaction. 
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