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Introduction 

Choline is a necessary dietary component that maintains 
normal function and integrity of the body cells (1-3). It is a 
biological molecule presented in tissues as phosphatidylcholine 
(PtdCho) or sphingomyelin (SM). Choline is a major 
donor for methyl groups essential, among others, for 
DNA methylation and repair, signaling pathways, lipid 
and cholesterol transport, and metabolism. The important 
choline metabolites include acetylcholine (ACh), platelet-
activating factor, lysophosphatidylcholine (LysoPC), 
phosphocholine (Pho), glycerophosphocholine (GPCho), 
plasmalogens, and betaine (2). 

Choline has been officially approved by the US Food and 
Nutrition Board as an essential nutrient for the maintenance 
of health and the human adequate dietary intake of choline 
has been addressed (4). Choline is available in the diet 
either in a free form or in a bound form (esters) which 

represent most of the body stores of each, such as Pho, 
GPCho, SM or PtdCho (2). Dietary choline is absorbed 
by the small intestine and its uptake is mediated by specific 
choline transporters in the intestine, where eventually it is 
converted into PtdCho (also known as lecithin) (5); PtdCho 
is the main phospholipid (>50%) in the mammalian cell 
membrane (3). The various forms of choline have different 
bioavailability; the ester form of choline enters via lymph 
and bypasses the liver (6), while the free form of choline 
enters the portal circulation and is mostly uptaken by the 
liver (7). Choline plays a major role in the production of 
the essential amino acid methionine from homocysteine 
via the choline derivative betaine (8); it has an important 
metabolic role in different organs and tissues including 
brain, liver, kidneys, placenta and mammary glands. 
Choline can be synthesized endogenously by the liver via  
de novo mechanism as well. Although the de novo mechanism 
catalyzed by the liver enzyme phosphatidylethanolamine-
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N-methyltransferase (PEMT) to produce new moiety of 
choline in the form of PtdCho compensates for the lack of 
dietary choline, the endogenous biosynthesis of choline is 
considered insufficient to meet all human requirements for 
choline (9). 

The recommended adequate intake for choline is  
425 mg/day for women, 450 mg/day for pregnant women, 
550 mg/day for men and lactating women as well. 
Nevertheless, several factors like genetic makeup, age, 
gender, menopausal status, ethnic and racial backgrounds 
of an individual affect choline metabolism and subsequent 
choline requirements (4,10). Therefore, the risk of 
incidence of choline-deficiency depends upon different 
factors i.e. choline requirements in premenopausal women 
are decreased since the endogenous biosynthesis (de novo) 
of choline in the liver is estrogen-sensitive (11). In women, 
a single nucleotide polymorphism that has been identified 
in the PEMT gene is responsible for estrogen-induction of 
de novo biosynthesis of choline (11,12), thus it seems that 
choline-deficiency could occur as a genetically promoted 
disorder. 

Choline-deficiency

The role of choline is crucial and its deficiency is considered 
an unhealthy state that leads to body organ dysfunction 
both in humans and animals (13). Insufficient dietary intake 
can be observed in about two weeks (14-16). Although 
choline is ubiquitous in different food items—a fact that 
makes choline-deficiency rare—choline-deficiency can be 
seen in physiological (e.g., intensive exercise, pregnancy 
and lactation) and pathological states (e.g., alcoholism and 
malnutrition) (17,18). Dietary lecithin (phosphatidylcholine) 
is considered the common source of choline; most of 
the choline mass is stored in phospholipid-bound form. 
Plasma free-choline depletion has been associated with the 
development of hepatic disorder (19). A very susceptible 
group to choline deficiency are patients on parenteral 
nutrition (PN); these patients have limited absorption 
capabilities (20), a fact that further deteriorates liver 
structure and function (19,21). It is noteworthy that in 
addition to hepatic metabolism, some of the dietary choline 
is degraded by intestinal flora before absorption (7,22). 
Despite the fact that PN contains the choline precursor 
“Methionine”, the plasma-free choline concentration has 
been found significantly lower compared to normal levels in 
patients on PN in both adults and older children and it has 
been associated with increased liver enzymes (20,23-25). 

There are many studies that have uncovered several 
pathological conditions under the impact of choline-
deficiency such as steatohepatitits, cirrhosis, hepatic cell 
degeneration and hepatocellular carcinoma (17,26-28), 
disruption of normal glucose metabolism and induction of 
insulin resistance (18,29), impairment in cardiac function 
with structural changes (30), renal tubular and cortical 
necrosis (31,32), ocular haemorrhagic lesions and disruption 
of brain development and cognitive function (33,34). In 
addition, choline-deficiency induces metabolic derangement 
leading to organ damage through the triggering of different 
pathways, including tumor necrosis factor alpha (TNF-α), 
hyperhomocysteinemia and lipid peroxidation (20).  
Ossani et al. (32) and Repetto et al. (35) reported that 
dietary choline-deficiency induces oxidative damage in 
the liver, kidney, heart and brain with an increment in 
lipid peroxidation (in rats there is an increase in plasma 
levels of oxidative agents and a decrease in plasma levels of 
antioxidants). Repetto et al. (35) found a 33% decrease in 
the total reactive antioxidant potential (TRAP) plasma level 
due to a decrease in the intracellular glutathione (GSH) and 
a decrease in tissue lipid soluble α-tocopherol, and a 5-fold 
increase in thiobarbituric acid-reactive substances (TBARS) 
plasma level due to stimulation of lipid peroxidation. These 
changes usually precede the appearance of irreversible 
histopathological damage of the organs. In vitro studies 
revealed that hepatocytes that have grown in choline-
deficient media produced increased reactive oxygen species 
(ROS) from mitochondria in comparison to the ones grown 
in choline-rich media (36-41). In rats, dietary choline-
deficiency caused an accumulation of lipid peroxides 
which led to further DNA damage in hepatocytes (42) and 
lymphocytes (43). 

Choline-deficiency has been shown to decrease the 
activities of lysozyme and acid phosphatase, contents 
of complement 3 and immunoglobins (IgM), and to 
downregulate the mRNA levels of antimicrobial peptides, 
liver-expressed antimicrobial peptides (LEAP-2A, LEAP-
2B), defensin-3 and hepcidin in the intestinal segments 
of juvenile Jian carp; furthermore choline-deficiency 
impaires the intestinal antimicrobial defense of juvenile Jian  
carp (44). Notably, that choline acts also as an endogenous 
cholinergic agonist (45); since experiments in rats have 
shown that cholinergic agonists induce an increase in the 
secretion of lysozyme and defensin in the intestine (46), the 
impaired intestinal antimicrobial defense caused by choline-
deficiency might be partially related to the decreased 
cholinergic agonist levels (44). In addition, a study by Wu 
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et al. (44) found that choline-deficiency in fish suppressed 
intestinal antimicrobial defense by decreasing antimicrobial 
component levels and induced intestinal inflammation via 
upregulation of pro-inflammatory cytokines’ expression and 
downregulation of anti-inflammatory cytokines’ expression. 
Conversely, Wu et al. (47) have shown that diet rich in 
choline enhances serum lysozyme activity and complement 
3 content, decreases pro-inflammatory cytokines interleukin 
1 beta (IL-1β) and TNF-α mRNA levels while increases 
anti-inflammatory cytokines IL-10 mRNA levels in the 
main immune organs of juvenile Jian carp. The same 
researchers revealed that choline-deficiency upregulated 
the mRNA levels of nuclear factor kappa of activated B cell 
(NF-κB) and increased signal transducer and activator of 
transcription proteins (STAT) signaling pathways whereas 
downregulated mRNA levels of cellular protein inhibitor of 
kappa B (IκB) in the intestine of fish (44). In mammals, NF-
κB is one of the critical signaling molecules for regulating 
transcription of cytokines (48) and its overactivation 
aggravates inflammatory reactions in rats (49). In fish, the 
upregulated mRNA level of proinflammatory cytokine 
TNF-α and the downregulated mRNA level of anti-
inflammatory cytokines IL-10 and transforming growth 
factor-beta 2 (TGF-β2) could be related to the changes of 
signaling molecules NF-κB and IκB in the intestine caused 
by the choline-deficiency (44). Furthermore, choline-
deficiency upregulated the mRNA level of Toll-like 
receptor 4 and Myeloid differentiation primary response 88 
(MyD88) in the intestine of the fish (44,50). 

Choline-deficiency promotes cellular apoptosis due 
to defective DNA repair (51-53). Previous reports have 
shown that consumption of a choline-deficient diet leads 
to reversible hepatocellular modifications characterized 
by hepatosteatosis, liver and muscle damage and increased 
lymphocytes apoptosis (53-56); in addition, da Costa 
et al. (54); James et al. (57) and Shin et al. (58) reported 
hepatocyte and myocyte death when cultured in a choline-
deficient media that may justify the elevation of serum liver 
enzymes and creatine phosphokinase in human blood when 
humans are subjected to choline-deficiency. 

The above mentioned facts and findings motivated 
the scientists and researchers to continue working on the 
disruption of crucial physiological processes as well as on 
the deterioration of many pathological conditions under the 
impact of choline-deficiency. 

This review focuses on (I) the role of choline as an 
essential substance in the control and modulation of 
different immunological and inflammatory pathways in 

multiple models of sepsis (animal and human); (II) the 
consequences of choline-deficiency on the immunological 
and inflammatory response, and ultimately; (III) the 
importance of the nutritional status in septic patients.

Choline and sepsis

Sepsis is a life-threatening condition that arises when the 
body’s immune response is provoked against an infection. 
In modern medicine, sepsis remains as a critical clinical 
condition associated with high rates of morbidity and 
mortality (59). A major challenge in intensive care medicine 
is the treatment of a serious infection related to multiple 
organ dysfunction, generally termed as sepsis, severe sepsis 
or septic shock (60), which is considered as a critical and 
costly condition in the intensive care units worldwide. 
Gram-negative bacteria are the most common cause of 
septic shock. The toxic effects of gram-negative bacteria 
are due to a non-secreted, heat-stable endotoxin called 
lipopolysaccharide (LPS) (61,62).

A series of inflammatory reactions called systemic 
inflammatory response syndrome are triggered by LPS. 
TNF-α and ILs secreted by LPS-activated cells into the 
systemic circulation cause a stimulation of the hepatic 
cells to release acute phase proteins such as C-reactive 
protein (CRP) for immunological regulation (45,63); an 
immunological imbalance is associated with a deteriorated 
outcome of septic patients (64). Matrix metalloproteinases 
(MMPs) released into the circulation from damaged vascular 
endothelium might also have a role in the pathophysiology 
of sepsis (65). MMPs production is up-regulated by pro-
inflammatory cytokines (TNF-α, IL-1 and IL-17), as well 
as by acute phase proteins (serum amyloid A), with counter-
regulatory inhibition by IL-4 and IL-13 (66,67). Some 
MMPs regulate cytokine and other inflammatory molecular 
responses after the initiation of sepsis by activating 
protease-activated receptor-1 (67-69); the increased MMP/
TIMP ratio (TIMP is tissue inhibitor metalloproteinases) 
seems to be more related to a tissue response to LPS linked 
injury rather, than to their involvement in the acute phase 
reaction (67). 

Findings of Kocaturk et al. in 2016 (70) showed that 
choline treatment suppressed the increased MMPs and 
TIMPs serum concentrations in experimentally-induced 
sepsis in male and female mongrel dogs (0.2 mg/kg 
intravenous LPS-Escherichia coli); the increase was related to 
the acute phase response and organ damage, while choline 
prevented the reduced of Igs (IgM, IgG) concentration 
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induced by endotoxinaemia (70). 
Many researchers have explored the significant 

correlation between choline and immunity in human and 
animals (44,45,47,71-73). Nolan and Vilayat in 1968 (74) 
reported that the hepatic injury and mortality due to 
endotoxinaemic shock induced by intraperitoneal injection 
of LPS-Escherichia coli, was significantly increased in adult 
female Holtzman rats fed on a choline-deficient diet; on 
the contrary, Rivera et al. (75) showed that a choline-
rich diet protects the liver and improves survival rates in 
endotoxinaemic shock induced by intravenous injection of 
LPS-Escherichia coli in female Sprague-Dawley rats. With 
regards to sepsis and especially conditions that simulate 
sepsis i.e., a stressful surgery, it has been noticed that 
serum-free choline decreased during and after elective 
abdominal surgery, total abdominal hysterectomy, 
vaginal or cesarean childbirth, brain tumor resection and 
traumatic brain injury (76,77). Laboratory studies have 
shown that serum-free and phospholipid-bound choline 
concentrations decline in response to surgical and traumatic 
injuries in humans (76,78,79) and in dogs (77). Moreover, 
a stressful condition can induce a variety of metabolic and 
neuroendocrine changes (80-83) including the increase of 
cortisone, prolactin, adrenocorticotrophic hormone and 
β-endophrine (80,83-85). In 2002, Ilcol et al. (78) found 
that serum choline levels were inversely correlated with 
the levels of stress hormones. Furthermore, under the 
insult of choline-deficiency, the endogenous biosynthesis  
(de novo) of phosphatidylcholine is promoted to compensate the 
demands in choline leading to increased homocysteine (86); 
the latter is involved in the regulation of cytokines and 
inflammation (87,88). In humans increased dietary choline 
leads to decrease in the homocysteine levels (89).

Furthermore, choline treatment (I) improved the 
hematological  and serum biochemical f indings of 
endotoxin-induced sepsis [0.02 or 1 mg/kg intravenous 
LPS-Escherichia coli in a saline solution] in adult mongrel 
dogs via activation of alpha7 nicotinic acetylcholine 
receptor (α7nAChR) (90,91); (II) attenuated the endotoxin-
induced decrease in serum activity of butyrylcholinesterase 
and paraoxonase 1, and to a lesser extent the increases of 
CRP, haptoglubin and ceruloplasmin during experimentally 
induced sepsis  in adult  male and female mongrel  
dogs (92); (III) attenuated the increase of serum acute phase 
proteins (93) which are involved in the cholinergic anti-
inflammatory pathway (90,91) and (IV) attenuated and 
even in some cases suppressed the increased MMPs and 
TIMPs but did not affect MMP-2 in response to a single 

dose of LPS-induced endotoxinaemia (70). The latter 
effect could be ascribed to the contribution of choline in 
maintaining endothelial integrity, membrane phospholipids’ 
structural integrity (94), and down-regulation of TNF-α  
expression (91). TNF-α has been reported to up- or down-
regulate the expression of MMP-9, MMP-13, and MMP-
14 (95) while nicotine treatment was reported to decreases 
expression of MMP-14 (96).

Administration of choline inhibited the harmful effects 
evoked by endotoxin on the vascular bed damage and 
leakage and protected immunoglobulin responses to LPS 
in lymphocytes (70,90,97) and other immune and non-
immune cytokine producing cells (90). Furthermore, 
intracerebroventricular administration of the choline 
metabolite LysoPC reversed the hypotension and protected 
against lethality induced by endotoxin (98). Thus, it has 
also been suggested that choline-containing phospholipids, 
like lysoPC (98) and phospholipids have therapeutic 
effects (98,99) and improve survival in experimental 
models of sepsis induced by cecal ligation and puncture or 
intraperitoneal injection of Escherichia coli in mice (98) as 
well as in Yorkshire pigs (99). 

Ilcol et al. (90) showed that experimental endotoxin-
induced sepsis in dogs altered circulating choline status 
in a dose and time dependent manner; choline levels 
were in relation to serum cortisol and markers for tissue 
injury and/or organ dysfunction (90). Endotoxinaemia 
is accompanied by liver and kidney dysfunction; liver  
and/or kidneys excision in dogs slows clearance of free 
choline from circulation (100) while renal failure results in 
elevated levels of serum-free choline in human (101-104). In 
adult mongrel dogs injected with sublethal dose of endotoxin 
(1 mg/kg), serum levels of aspartate aminotransferase, 
alanine transaminase, alkaline phosphatase, gamma-
glutamyltransferase, lactate dehydrogenase, creatine kinase, 
creatine kinase-MB, urea, creatinine, and uric acid decreased 
by choline administration (90) indicating that choline 
protects, at least in part, liver, renal, skeletal, and cardiac 
muscle injuries. Choline’s ability to attenuate endotoxin-
induced elevations of biochemical markers for tissue injury 
and/or organ dysfunction was much higher at a high-dose  
(1 mg/kg) rather than a low dose (0.02 mg/kg) in endotoxin-
treated dogs; according to Ilcol et al. (105) the mechanism 
of choline protection against experimentally induced 
endotoxin, could be attributed to increased availability of 
free choline and the consequent increase of central (1,106) 
and/or peripheral cholinergic neurotransmission (105); the 
increased cholinergic neurotransmission in the peripheral 
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parasympathetic system could lead to an activation of vagal 
anti-inflammatory systems (105,107,108) and subsequent 
inhibition of endotoxin-induced toxic mediators from 
endotoxin-sensitive cells (Figure 1).

Furthermore, choline attenuates the elevation in serum 
TNF-α in response to 1 mg/kg dose of endotoxin, while a 
choline-rich diet decreases serum TNF-α by inhibiting its 
release from the Kupffer cells (75). Increased availability 
of free choline could increase membrane phospholipid 
synthesis  (1,106,115) and/or decrease membrane 

breakdown (116) and diminish the vulnerability of tissues to 
elevated toxic mediators during endotoxinaemia. In dogs, 
circulating choline status is altered during experimental 
endotoxinaemia (72). In asthmatic patients, choline 
treatment decreases TNF-α, IL-4 an IL-5 release from 
mononuclear cells (73); in addition to that, ACh, a major 
choline metabolite, inhibits the production of TNF-α and 
IL-1 from human macrophage (117) and lymphocytes (118) 
and mouse microglia (119) via α7nAChR (Figure 1). 

In non-terrestrial animals, like  juvenile Jian carp 

Figure 1 The cholinergic anti-inflammatory pathway under the insult of sepsis and the role of choline in manipulating systemic 
inflammatory response to sepsis. The cholinergic anti-inflammatory signal initiates through the afferent arm of the vagus nerve in 
response to LPS-induced activation of TLR4 (109) and pro-inflammatory cytokine release (i.e., IL-6, TNF-α, and IL-1β) by an activated  
macrophage (110). In turn, an integrated anti-inflammatory signal is conveyed through the efferent vagus (intiates cholinergic anti-
inflammatory mechanism) nerve fibers originating in the dorsal motor nucleus; the vagus nerve pass through the celiac ganglion and 
connects to the splenic nerve that conveys the anti-inflammatory signal (109). The splenic nerve endings activate β2 adrenergic receptor (β-
AR) expression in T memory lymphocytes via NE. β-AR activation initiates the transcription of choline acetyltransferase (ChAT), regulated 
by cAMP (a major second messenger following activation of β-AR) to synthesize acetylcholine (111). The choline acetyltransferase (ChAT) 
enzyme catalyses the synthesis of ACh from choline and acetyl-CoA, a process that may be limited by choline availability (112,113). The 
released ACh can activate splenic α7 nAChR-expressing macrophages (45), and this activation inhibits NF-κB translocation as well as 
activation of the transcription factor and promotes STAT3 phosphorylation by JAK2 (114) leading to decrease of pro-inflammatory cytokine 
production (TNF-α, HMGB and ILs). ChAT, choline acetyltransferase; DAMPs, damage associated molecule patterns; HMGB1, high 
mobility group box 1 protein; LPS, lipopolysaccharides; NF-κB, nuclear factor kappa; NE, norepinephrine; PAMPs; pathogen associated 
molecular patterns; STAT3/JAK2, signal transducer and activator of transcription proteins 3/Janus kinases2 signalling; TLR 4, toll-like 
receptor 4; TNF-α, tumor necrosis factor alpha; IL-1, interleukin 1; IL-6, interleukin 6; IL-10, interleukin 10; INF-γ, interferon gamma; 
α7nAChR, α7 subunit nicotinic acetylcholine receptors; β2-AR, beta 2 adrenergic receptor; vertical arrow (↑), activation or increase; blunt 
line (┬), inhibition.
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(Cyprinus carpio var. Jian), it has been shown that when 
dietary choline was increased up to a certain level, the 
inflammation induced against Aeromonas hydrophilia 
challenge (intrapertoneal injection with Aeromonas 
hydophilia as a semilethal dose of endotoxin) was attenuated 
via decrease of TNF-α, IL-1β, and TGF-β2 mRNA 
relative expression in the immune organs (47). In line with 
TNF-α expression in liver (120), TGFβ1expression in rat 
hippocampus decreased after choline supplementation (121). 
Furthemore, mammalian target of rapamycin (mTOR) 
signaling pathways have been found to be involved in 
the function of the immune system (122), i.e., in mice, 
inhibition of mTOR reduced the release of TNF-α, IL-6 
and IL-10 from activated macrophages (123). In addition, 
mTOR activates interferon regulatory factor-5 and -7 
which are considered the principal transcription factors for 
pro-inflammatory cytokine genes in activated HEK293T 
cell-line (123). In female mice macrophage, phosphatidic 
acid, the hydrolysis product of PtdCho, enhanced the 
production of TNF-α, IL-1β, IL-6, nitric oxide and 
prostaglandin E2 by regulating the activity of mTOR-
p70S6K1 (124). Wu et al. (125) found that dietary choline 
regulated the relative gene expressions of mTOR and the 
eukaryotic initiation factor 4E-binding protein-2 (4E-
BP2) in muscle, hepatopancreas and intestine of juvenile 
Jian carp; thus, choline may also affect cytokines’ release 
through modulation of mTOR pathway (47).

Wu et al. (47,125) showed that dietary choline could 
enhance fish disease resistance and improve the survival 
of fish when subjected to Aeromonas hydrophilia challenge 
suggesting that dietary choline regulates the inflammation 
and enhances non-specific and specific immunity through 
serum activities of lysozyme and lysosome acid phosphate, 
hemagglutination titer, content of the complement 3 and 
4, and leucocytes phagocytic activity of fish after challenge. 
In addition, according to Parrish et al. (45) endogenous 
choline may act on the α7nAChR and play an important 
role in regulating innate immune responses to maintain 
homeostasis. On the contrary, choline-deficiency decreased 
the survival in cobia fish (126) and hydro tilapia (127) 
and resulted in severe destruction of the mid-gut gland 
epithelial cells of juvenile shrimp (128). 

In mice, both T and B lymphocytes express multiple 
muscarinic and nicotinic acetylcholine receptors (mAChRs 
and nAChRs, respectively); ACh can bind to mAChRs and 
nAChRs on T and B cells leading to modulation of their 
function (129); in a rat cultured spleen cell, ACh enhanced 
the Con A-induced T-cell proliferation (130). ACh also 

promoted anti-inflammatory response by mediating vagus 
nerve-based cholinergic anti-inflammatory response (48). 
Despite the fact that choline acts as a selective α7nAChR 
agonist (45), it failed to inhibit the systemic level of TNF-α 
in knockout mice during endotoxinaemia (45), indicating 
that choline may partially mediate cytokines’ expression 
via α7nAChR signaling. Therefore, the immunoregulatory 
effect of choline on the immune system could ascribe its 
effect on the cholinergic system (Figure 1). 

NF-κB is a crucial protein complex for DNA transcription 
and cell survival, it regulates gene expression of the 
inflammatory cytokines in macrophages, monocytes and 
endothelial cells (48). Choline markedly decreased TNF-α 
level associated with suppressed activation of NF-κB in 
endotoxin-stimulated RAW-264.7 mouse macrophage-like 
cell (45). Moreover, NF-κB is an important transcriptional 
activator that regulates RNAs transcription (48). In fact, 
choline-deficiency impairs global DNA methylation (131) 
(Figure 2).

Furthermore, in juvenile Jian carp fish, choline-deficiency 
was associated with a decrease in red blood cells (RBC) and 
white blood cells (WBC) while RBC count increased by 
increasing the dietary choline levels to a certain level (47).  
This fact indicates that choline contributes to innate 
immunity (45) since low RBC and WBC levels decrease the 
immunity and increase the susceptibility to diseases (47,132). 

Taking into consideration that the development 
and the growth of tissues and organs depend on cell  
proliferation (133) and the latter depends on the structural 
integrity of cells (134), it seems that choline is a major 
contributor in these vital processes through its essential role 
to maintain the structural integrity of the cell biological 
membranes (135) and DNA biosynthesis and repair (136). 

Kortstee in 1970 (137) reported that several aerobic 
microorganisms can decompose choline and grow with choline 
as the sole C- and N-source in vitro; meanwhile, the gut 
microflora can metabolize choline to trimethylamine (138), 
suggesting that choline may play an important role in 
controlling intestinal microflora. On the other hand, dietary 
choline administration induced a significant increase in 
intestinal lactobacillus microflora count, while intestinal 
Escherichia coli and Aeromonas hydrophila counts were the 
lowest (47). 

Conclusions

This review draws a picture of the role of choline in the 
manipulation and modification of the different pathological 
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responses under the impact of septic insult that has been 
triggered in different models. The protective and supportive 
role of choline in a war against sepsis and inflammatory 
diseases has been predicted through assessment of different 
findings in different studies. However, the understanding of 
the molecular pathophysiology of sepsis and of the role of 
choline in it, is far from complete.
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