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Introduction

The human ‘swallowing apparatus’ consists of the pharynx, 
 the upper oesophageal sphincter (UOS), the oesophagus, 
and the lower oesophageal sphincter (LOS). Major functions 
of the oesophagus are to co-ordinate the movement of 
food from the mouth to the stomach, and to control the 
retrograde movement of digestive material and digestive 

secretions—which can become pathological if excessive (1). 
While ingested food transits through the oesophagus in a 
relatively short period of time compared to distal parts of 
the gastrointestinal tract (GIT), oesophageal dysfunction 
appears to result in negative consequence on both health 
and quality of life. Disorders of the oesophagus include 
heartburn, dysphagia, eosinophilic oesophagitis, achalasia, 
oesophageal spasm, gastroesophageal reflux disease (2). 
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Several methodologies for in vitro simulation of the 
digestive tract are available to researchers, however, few 
of these consider the role of the oesophagus. This is part 
of a wider limitation of model gut systems in accurately 
modelling the digestive mucosa from both an anatomical 
and functional perspective. 

Current model gut systems have been reviewed 
extensively elsewhere with reviews variously describing  
in vitro models by:
	 Type; static models (3), dynamic models (4), cell 

based models (5-7), ex vivo models (8);
	 Functional i ty ;  models  of  microbiome (9) , 

physiological relevance (10,11);
	 Or appl icat ion;  food digest ion (12) ,  drug  

delivery (13), screening and toxicity (14), assessment 
of pre- and pro-biotics (15), protein stability (16), 
nutraceutics (17).

These  sy s tems  have  many  bene f i t s  inc lud ing 
controllability, repeatability, ethics, timing and cost (7), but 
known limitations include modelling of hormonal control, 
simulation of physical forces [“the topography, motility 
and flow” (7)], immune function of the digestive tract, and 
accurate modelling of the absorptive mucosa. 

Accurate modelling of the mucosa is an aspect of 
gastrointestinal physiology absent from the vast majority 
of these models and has only been the focus of limited 
discussion in the literature. Here, in a review of current 
literature, we aim to address this notable omission, 
discussing models of the oesophageal mucosa and the 
digestive and absorptive mucosa of the upper GIT including 
mucus function, and integration of mucus modelling in to 
in vitro digestion and absorption systems. 

We present the following article in accordance with the 
Narrative Review reporting checklist (available at https://aoe.
amegroups.com/article/view/10.21037/aoe-20-90/rc).

Static and dynamic digestion models

In vitro digestion models aim to simulate the processes 
of digestion and absorption carried out by the organs 
of the GIT (Table 1). Static digestion models have been 
reviewed extensively by Alegria et al. (3), and in an effort 
to harmonise the various static methodologies, the COST 
INFOGEST partnership developed a consensus method 
for static digestion modelling with a view to facilitating 
comparison of data and repeatability (18). 

Static models simulate luminal aspects of digestion in a 
stepwise manner, modelling the chemical and enzymatic 

environment of successive organs of the digestive tract 
(summarised in Tables 2-4) without taking into account some 
of the more complex physiological processes of the digestive 
tract that dynamic models aim to replicate including; 
secretion, gradual pH changes, physical forces of mixing, 
shearing and motility, gastric emptying, mucus permeation, 
absorption, and hormonal control. 

The functionalities of certain dynamic gastrointestinal 
models are summarised here, in brief. The Dynamic Gastric 
Model (DGM) (48), Human Gastric Simulator (HGS) (49) 
and the Human Gastric Digestion Simulator (HGDS) (50) 
are computer-controlled mono-compartmental systems 
(MoCS) that aim to recreate gastric secretions, churning 
and emptying. 

The DGM consists of a flexible main body surrounded 
by a water jacket, a piston and barrel recreate peristaltic 
forces by fluctuating the water pressure in the jacket to 
simulate contractions in the fundus and antrum (48). The 
HGS, is a latex vessel subject to simulated gastric forces 
from mechanical, belt-driven rollers (49). Data from the 
DGM and HGS (51-53), is reported to correlate well with 
in vivo data and the systems have been used for modelling 
transit and emptying times, gastric enzymatic digestion, 
particle breakdown, rupture times of delivery systems, phase 
separation, gel formation and nutrient/drug release (48). 

The TNO Gastro-Intestinal Model (TIM-1), The 
DIDGI MGS, and the Engineered Stomach and small 
INtestinal MGS (ESIN) are multi-compartmental models 
of the upper GIT. The TNO Gastro-Intestinal Model  
(TIM-1) consists of four compartments simulating: the 
stomach, duodenum, jejunum and ileum (54-57). The DIDGI 
MGS (58) simulates the upper GIT with a 2-compartment 
system, representing the stomach and small-intestine—both 
stirred glass vessels surrounded by a heated water jacket. The 
pH changes, secretion rates and emptying times are computer 
controlled, based on data collected from in vivo experiments. 
The ESIN (59) is comprised of 6 compartments, including: a 
meal reservoir (R1) which allows continuous passage of food 
material into the stomach compartment, a salivary ampoule 
(R2) which mixes the food components with salivary enzymes 
and buffers, the stomach (R3), the duodenum (R4), the 
jejunum (R5) and the ileum (R6).

While some of these systems have the capacity to model 
the oral phase and/or salivary secretions, none of them 
model oesophageal function. This reflects the limited role 
the oesophagus is considered to have in digestion, acting 
as a transport corridor between the mouth and stomach. 
However, modelling oesophageal function and interaction 
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Table 1 Organs of the digestive tract, their respective sub-compartments, and functions

Organ Function

Mouth (oral phase) Breaks down foods into small particles via mastication

Lubrication of food for bolus formation and swallowing via saliva

Digestive enzymes in saliva (amylase and lingual lipase) begin digestion

Oesophagus Transport of ingested material from the mouth to the stomach

Sphincters in the lower and upper oesophagus prevent reflux of stomach contents into the mouth and airways, 
while still allowing regurgitation and vomiting when required

Stomach  
(gastric phase)

Storage of food

Chemical digestion via hydrochloric acid and pepsin

Mechanical digestion via churning

Pathogen defence via strong acid, and pepsin

Duodenum (SI phase) Neutralises stomach acids with bicarbonate secretions

Mixes chyme with bile from the liver for lipid digestion

Mixes chyme with pancreatic enzymes for carbohydrate, protein, and lipid digestion

Jejunum (SI phase) Bulk absorption of simple carbohydrates, peptides, amino acids, and fatty acids

Ileum (SI phase) Absorbs nutrients not taken up by the jejunum, e.g., vitamin B12

Also important for uptake and redistribution of bile salts and remaining water-soluble vitamins

Large intestine  
(colonic phase)

Reabsorbing water and vitamins not absorbed by small intestine

Housing the large intestinal microbiome

Absorbing SCFAs produced by the large intestinal microbiome

Storage of faeces

Table 2 Digestive secretions of the gastrointestinal tract

Region Name Secretion pH optima Function

Mouth Lingual lipase Von Ebner glands (19) 4.5–5.5 (19) Digestion of triglyceride aggregates via ester bond hydrolysis,  
digestion continues until material reaches the stomach (19)

Salivary amylase Parotid gland (20) 5.6–6.9 (21) Digestion of insoluble starches into progressively smaller soluble  
starches, with smallest being maltose, via hydrolysis of 1,4 glycosidic 
bonds (20)

Stomach Pepsin As pepsinogen from 
chief cells (22)

2 (22,23) Pepsinogen autolysed into pepsin. Pepsin digests proteins via  
hydrolysis of peptide bonds. Pepsis cleaves at the C-terminal of  
hydrophobic, preferentially aromatic, i.e., phenylalanine, tyrosine and 
tryptophan, residues (22,23)

Gastric lipase Chief cells (24) 4.5–5.5 (25) Similar to lingual lipase, triglycerides are digested via hydrolysis of 
ester bonds linking fatty acids to glycerol (25)

Hydrochloric acid Parietal cells (22) – Gastric HCl converts pepsinogen into pepsin rendering it an active  
protease, the acid also acts corrosively on proteins causing them to  
denature, exposing the peptide bonds to pepsin (12)

Table 2 (continued)
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Table 3 Brush border enzymes present in small intestinal enterocytes

Class Name Function

Carbohydrate Sucrase-isomaltase Sucrase isomaltase functions as carbohydrase dimer of sucrase and isomaltase. The sucrase 
subunit hydrolyses the glycosidic bond in sucrose to release glucose and fructose. The isomaltase 
subunit hydrolyses 1,6 glycosidic bonds in limit dextrins (38)

Lactase Hydrolyses the β-1,4 glycosidic bonds in lactose, found in milk and dairy products, into glucose 
and galactose (38)

Maltase-glucoamylase Composed of two subunits, maltase and glucoamylase, which with differing substrate specificity  
hydrolyse α-1,4 glycosidic bonds at the non-reducing side of oligosaccharides in the gut lumen,  
releasing terminal glucose (38)

Trehalase Hydrolyses the 1,1 glycosidic bonds found in trehalose, releasing glucose (38)

Proteins Peptidases There is a vast array of peptidases found in the brush border of the small intestine, and these 
enzymes display varying degrees of substrate specificity, i.e., target amino acids and length of 
peptide, these specificities have been previously discussed (39)

Lipids Phospholipase Phospholipase A2 has been noted to be present in the brush border of the small intestine, where it 
will hydrolyse bonds which link fatty acids to phospholipids (40)

Table 2 (continued)

Region Name Secretion pH optima Function

Small 
intestine

Trypsin Acinar cells as  
trypsinogen (26)

7.0–8.0 (26) Trypsinogen, the trypsin zymogen, is activated by enterokinase and/
or trypsin via cleavage in the duodenum. Active trypsin then cleaves 
peptide bonds on the carboxy side of lysine and arginine (26)

Chymotrypsin Acinar cells as  
chymotrypsinogen 
(27)

7.0–8.0 (27) Chymotrypsinogen, the chymotrypsin zymogen, is activated via  
cleavage by trypsin and autolysis. The active enzyme hydrolyses  
peptide bonds at the n-terminal side of aromatic amino acid  
residues (27)

Carboxypeptidase 
A

Acinar cells as  
procarboxypeptidase 
(28)

~7 (29) Secreted as procarboxypeptidase and activated via trypsin cleavage, 
carboxypeptidase is an exopeptidase that cleaves peptide bonds of  
peptides with amino acids with free COOH groups giving a single 
amino acid as product. Carboxypeptidase A does not cleave peptide 
bonds when the relevant amino acid is proline, lysine, arginine or  
histidine (28)

Elastases Acinar cells (30) 8.2–9.2 (31) Elastases are serine proteases which cleave peptide bonds on the  
c-terminal side of hydrophobic amino acids (30)

Pancreatic lipase Acinar cells (32) 8 (32) Pancreatic lipase, following binding of its cofactor—colipase,  
hydrolyses ester bonds of triglycerides at the oil-water interface after 
the emulsification of lipids by bile. The resulting product is 2 free fatty 
acids and a monoacylglycerol (32)

Phospholipases Acinar cells (33) 6–8 (34) Phospholipase enzymes act by hydrolysing the ester bonds of  
phospholipids, releasing a fatty acid (33)

Pancreatic  
amylase

Acinar cells (35) 7 (36) Like salivary amylase, pancreatic amylase hydrolyses 1,4 glycosidic 
bonds in oligosaccharides, resulting in maltose, maltotriose and limit  
dextrins (37)
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with the oral secretions and refluxed material from the 
upper digestive tract could bring important understanding 
of oesophageal pathologies.

Physiology of the oesophagus

The oesophagus is a 25–30 cm long, hollow, muscular 
tube, which connects the oral cavity and pharynx to the 
stomach (60). The oesophagus is split into two sections, 
the upper cervical section which makes up the first 2–6 cm  
of the oesophagus, and lower thoracic section (61). The 
UOS forms the junction between the pharynx and the 
cervical oesophageal region, and the LOS forms the 
junction between the thoracic oesophageal region and the  
stomach (60). The oesophagus transports ingested material, 
often in the form of a food bolus, from the oral cavity 
to the stomach via peristaltic waves which propagate 
down the oesophagus, shifting the bolus towards the  
stomach (62). A secondary function is to prevent reflux 
of gastric contents back into the oral cavity and to allow 
regurgitation and vomiting—a function mediated by the 
oesophageal sphincters (62).

Tissue structure

The oesophageal tissue is comprised of 4 layers: the 

mucosa, the submucosa, the muscularis externa and the  
adventitia (63). The mucosa is the uppermost layer on the 
luminal side of the oesophagus. It is composed of a surface 
epithelium (Figure 1A), a lamina propria and muscularis 
mucosae (Figure 1B). The oesophageal surface epithelium 
is a non-keratinised, stratified, squamous epithelia of 
around 30 cell layers (63-65). These cells are present 
throughout the oesophagus until a small area surrounding 
the LOS where gastrointestinal-like columnar cells may be  
observed (63). In Barrett’s Oesophagus, squamous 
epithelial cells around the LOS are replaced with 
columnar epithelial cells due to metaplasia (69). Found in 
the lower mucosal layers, below the basement membrane, 
is the lamina propria—a loose connective tissue rich with 
immune cells (63)—and the muscularis mucosae, a thin 
layer of longitudinal muscle cells (70). The mucosa is 
the primary defence against underlying tissue damage 
from acid refluxate (i.e., hydrochloric acid and pepsin), 
generating both pre-epithelial and epithelial defensive 
actions, most of which are provided by the specialised 
epithelium (65).

The submucosa (Figure 1B) is comprised of connective 
tissue, lymphocytes, plasma cells, the submucosal plexus and 
submucosal glands (63) which secrete bicarbonate ions and 
mucin (71). Bicarbonate ions function to neutralise acids 
during reflux of gastric contents into the oesophagus (71). 

Table 4 Important gastrointestinal regulatory hormones

Name Secretion Function

Cholecystokinin 
(CCK)

Duodenal  
enteroendocrine 
cells (41)

While Known for a role in satiety, CCK also stimulates the secretion of pancreatic enzymes and  
hormones and stimulates motility of the gastrointestinal tract. CCK secretion is stimulated by the 
presence of partially digested proteins and gastric acid in the duodenum (42)

Gastrin G cells (43) Gastrin, secreted from G cells in the stomach and duodenum, stimulates secretion of gastric acid, as 
well as pepsinogen and intrinsic factor from parietal cells, and secretin (42) from S cells (44)

Secretin S cells (44) Secretin, secreted by S cells in the duodenum, inhibits the release of gastrin and gastric acid,  
lowers pressure of the lower oesophageal sphincter, and stimulates pancreatic release of  
bicarbonates, digestive enzymes and insulin (44)

Vasoactive  
intestinal  
polypeptide (VIP)

Neurons and 
immune cells 
(45)

Secretion of water and electrolytes into the duodenum following the secretion of pancreatic juices 
and bile. Also inhibits gastric acid secretion and relaxes smooth muscles of the gut (42)

Gastric  
inhibitory  
peptide (GIP)

SI K cells (46) Secreted primarily in the duodenum and upper jejunum GIP inhibits gastric secretions and stimulates 
secretion of somatostatin which intensifies the downregulation of gastric secretions (47) However, the 
most important role of GIP is the potent stimulation of insulin release (42)

Other peptides Vary There are other hormones and peptides that have an influence on gastrointestinal regulation, albeit to 
a lesser extent than those above. These include somatostatin which downregulates gastrointestinal 
processes, ghrelin which stimulates gastric secretions during hunger, motilin which stimulates  
gastrointestinal motility and many others (42)
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Secreted mucin, MUC5B specifically in this case (72,73), 
typically forms surface mucus (74-76). In the oesophagus 
however, it has been noted that the levels of MUC5B 
secretion by submucosal glands are not sufficient to provide 
a fully functioning surface mucus layer (hence the absence 
of a mucus layer in the oesophagus) (77), thus the mucin 
secretions most likely function to help lubricate the bolus as 
it passes through the oesophagus. 

The muscularis propria is important for the generation 
of peristaltic waves which propagate boluses down the 
oesophagus. It consists of up to 33% striated muscle in the 
cervical region and transitions to smooth muscle in the 
lower thoracic region. There is a transition region as the 
striated muscle begins to change to smooth muscle, this is 

identified by a mixture of striated and smooth muscle cells 
and a lack of significant contractions (62,63). Interestingly, 
striated muscle of the upper cervical region is not controlled 
voluntarily despite being innervated with somatic motor 
neurons, instead being controlled by several reflex inputs 
which bring about peristaltic contractions. On the contrary, 
smooth muscle present in the thoracic region of the 
oesophagus creates peristaltic waves via stimulation of the 
myenteric plexus (61).

Finally, and unlike the remainder of the GIT, the 
oesophagus does not contain a serosa layer, instead having 
an adventitia, a base layer of fixed connective tissues, 
binding the oesophagus to the surrounding tissue and 
holding it in place (63).

Stratum Corneum

Stratum Spinosum
(Prickle Cell layer)

Stratum Germinativum
(Basal Cell layer)

Basement Membrane

Squamous Epithelium

Submucosa

Muscularis Mucosae

Lamina Propria

Stratum Corneum

Stratum Spinosum

Stratum Germinativum

Submucosal Gland

A

B

Figure 1 Diagrammatic representation of oesophageal tissue structure. (A) A diagram of the squamous epithelial layer of the oesophageal 
mucosa. The upper cell layer, the stratum corneum, is 7–8 cell layers of cornified epithelial cells which functions as a protective barrier 
against acid and abrasion (64). Below this is the stratum spinosum, an intermediate cells layer where squamous cells mature before 
undergoing cornification close to the luminal surface to form the stratum corneum (65,66). Attached to the basement membrane is the 
stratum germinativum, or the basal layer, containing the cells which undergo mitosis to replenish the upper oesophageal layers (67). (B) A 
histological section of the oesophageal mucosa and submucosa, adapted from Tracht et al. [2020] (68). In the upper squamous epithelial layer 
the stratum corneum, stratum spinosum and stratum germinativum can be seen. Below lies the lamina propria, the muscularis mucosae and 
the submucosa. The submucosa here can be seen housing a submucosal gland, which secretes mucin and bicarbonates.
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The oesophageal sphincters

The UOS sphincter is the musculo-cartilaginous high-
pressure zone at the end of the pharynx and start of 
the cervical region of the oesophagus. This anatomical 
sphincter serves as the first barrier to the oesophagus. It 
prevents both the reflux of gastric contents into the oral 
cavity, of which hydrolytic enzymes and acid would cause 
damage to tissues, and the flow of inhaled air from entering 
the digestive tract, while also allowing vomiting and 
regurgitation in the necessary scenarios. Like the rest of the 
cervical portion of the oesophagus, the muscles surrounding 
the UOS are striated, skeletal muscles. Moreover, it is 
similarly controlled involuntarily, despite being under the 
influence of somatic nerves, being controlled rather on the 
basis of a variety of reflex inputs to the innervated motor 
neurons (70,78).

The LOS sphincter is not easily identified as the 
characteristic thickening of muscle tissue common 
to anatomical sphincters is not seen with the LOS as 
functionality occurs through maintenance of muscle tone, 
modulated by several excitatory and inhibitory vagal 
pathways in the muscles modulating sphincter function 
(70,79-83). The functionality is controlled by two muscles; 
the smooth muscle of the lower thoracic oesophagus, and 
striated muscles fibres found in the crural diaphragm (82,84). 
The smooth muscle is organised in C-shapes, rather than 
rings, which interact with gastric sling fibres. When in a 
contracted state, the smooth muscles clasp together and 
pull in the gastric sling fibres, creating a closure, and during 
relaxation, in the instance of passing food for example, the 
clasp is released to create an opening (85). The striated 
diaphragmatic sphincter muscles work in tandem with the 
smooth muscle providing functional support (81,85).

Oesophageal defence and associated disease

The surface mucus gel coating the epithelium and secreted 
bicarbonates form a pre-epithelial defence in the majority 
of the GIT (86,87). For example, mucin glycoproteins 
in gel format provide an exclusion barrier in the small 
intestine by forming pores around 200 nm in size, providing 
protection against larger toxic particles, enzymes and  
microorganisms (88). Moreover, mucus in the stomach 
and small intestine protects the epithelia from enzymatic 
degradation (86), while facilitating the production of an 
unstirred water layer, rich in secreted bicarbonate ions 
to neutralise the harsh acid present in the stomach and 

duodenum (87). Mucus layers in the GIT, particularly 
those formed in the intestine by MUC2, are also known to 
produce an exceptionally rigid, firm mucus layer close to the 
epithelia which is often sterile even in the colon—a region 
where bacterial counts are ×1010–×1012 per gram faecal 
matter—implicating its function as a mucosal protectant 
from microorganisms.

Though the oesophagus is associated with secreted 
mucus, with oesophageal submucosal glands strongly 
expressing and secreting mucin MUC5B (73), oesophageal 
epithelia scrapings have shown that the secretion is not 
significant enough to form a functioning surface mucus 
layer (0.47 µg/cm-2 oesophageal scrapings vs. 500 µg/cm-2 

of stomach scrapings) (77). In the healthy oesophagus, 
bicarbonate secretions and salivary bicarbonates, are 
enough to limit epithelial damage to the oesophagus by 
acids (77). However, when acid levels are higher than 
normal during a reflux event the oesophagus is vulnerable 
to damage without a protective bicarbonate rich mucus 
layer (87). 

Like the epithelium of the oral cavity, stratified 
squamous epithelium protects the delicate tissues below 
from abrasion, but the stratified squamous epithelia of 
the oesophagus have other specialised mechanisms that 
allow it to cope with acid reflux. The apical membrane 
has been shown to prevent H+ permeation into cells 
despite the presence of non-selective cation channels—
it is thought that low pH causes a reduced influx of  
cations (39). Moreover, the apical junction complex, a 
complex which fuses adjacent cells in the stratum corneum 
and spinosum, regulates paracellular diffusion of H+ 
ions. There are 3 structures in total which make up the 
complex: closest to the apical side of the membrane are 
the tight junctions, this protein structure spans over the 
membranes of two cells and interlinks their cytoskeletons, 
bringing the membranes tight to one another. This 
complex is the main paracellular transport modulator of the 
complex. Found below the tight junctions are the adherens 
junction and found further below, close to the basolateral 
membrane, are desmosomes. Both protein structures 
provide structural support for the tight junction, while also 
having other regulatory roles within the cell. It is worth 
noting however that MUC1, a transmembrane mucin 
expressed in the surface epithelia of the oesophagus (73), 
may provide some protective functions, as studies have 
shown that MUC1 contains Lewis antigens—a feature 
of the epithelial glycocalyx where H. pylori is known to 
occur. In this circumstance, the MUC1 Lewis antigens 
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act as a decoy by binding the H. pylori—this is followed by 
a complete release of MUC1 from the membrane, with 
MUC1 establishing its protective role by carrying the 
infective material far from the epithelia (89,90).

Despite these defence mechanisms, they are often easily 
overcome by unusually high levels of gastric reflux of acid 
and enzymes. High levels of reflux are often associated with 
disease, and depending on the severity of the cause, they 
can cause varying degrees of damage to the oesophageal 
mucosa, from minor issues, like tissue damage from acids, 
to serious issues like Barratt’s oesophagus and oesophageal 
adenocarcinoma (OADC).

In vitro oesophagus models

In vivo and ex vivo animal models, typically rodents like 
mice and rats, have been used to investigate oesophageal 
physiology (91,92). However, substantial differences 
between human and mouse oesophagus are a limitation. 
For example, the rodent oesophageal epithelia consists 
of around 4–6 layers, whereas that of a human consists 
of much thicker 25–30 layers and contains papillae like 
structures (91,92). Moreover, the mucosal layers of rodents 
are keratinised, as opposed to the non-keratinised cells 
present in humans, and do not contain mucus secreting 
glands (93). Oesophageal human cell models are widely 
used today (94) and continue to advance in complexity—
with poor in vivo correlation of results from 2D monolayer 
methods leading to a focus on developing 3D models that 
accurately recapitulate the architecture and functionality of 

oesophageal tissue (95). 

Organotypic 3D Raft Culture (OTC)

Transwell based Organotypic 3D Raft Culture (OTC) 
models utilise a transwell system in which submerged 
fibroblast cells, grafted onto a collagen matrix on the 
surface of the apical transwell membrane, act as a 
platform or “raft” for keratinocytes to differentiate into a 
functioning epithelial layer (Figure 2) (96,97). This model 
has been applied to a variety of tissues and have been used 
widely to investigate tissue development, disease and also 
for toxicity assays (97). OTC has been successfully used to 
model oesophageal epithelial generation and proliferation 
(98,99), oesophageal squamous cell carcinoma (ESCC) 
(100-102), eosinophilic oesophagitis (94) and Barratt’s 
oesophagus associated OADC (103-105). 

For example, in the work of Kalabis et al. [2012] (96), 
oesophageal fibroblasts were embedded in bovine collagen 
type I on an insert on top of a collagen matrix coated 
membrane and cultured for 7 days, forming a collagen/
fibroblast raft on the insert membrane. Oesophageal 
keratinocytes were then seeded on the surface of the 
matrix and allowed to develop over the course of 4 days. 
Keratinocytes present at the air/liquid interface promote 
stratif ication and differentiation in the epithelial 
layer, generating epithelial layers representative of the 
oesophageal mucosa, recreating the stratum corneum, 
stratum spinosum and stratum germinativum, though the 
underlying tissue structures—which remain important to 

Figure 2 An oesophageal organotypic 3D culture system. The system depicts the end point of the experiment when the keratinocyte 
epithelial layer, sitting atop a collagen/fibroblast raft, has matured and is ready for analysis (96).

Keratinocyte oesophageal
epithelial layers

Type l Collagen/Fibroblast raft

Permeable transwell insert

Growth medium
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oesophageal function—are not recreated using this system. 

3D multicellular spheroid culture and sphere 
formation assays

Multicellular spheroid culture, the first of the submerged 
3D models used in oesophageal research, allows dissociated 
epithelial cells to reaggregate under submerged conditions. 
This reaggregation gives rise to self-organised spheres 
which resemble in vivo oesophageal tissue organisation (106). 
There are a variety of multicellular spheroid culture models 
(spinner flask suspension culture, liquid overlay culture, 
hanging drop culture and microfluidic culture), all with 
their own advantages and disadvantages, these are detailed 
in the review by Mehta et al. [2012] (107). 

Multicellular spheroid culture have been shown 
to be effective models in drug permeation (107), cell  
functionality (108), tumour angiogenesis (109), and 
tumour-immune cell cross talk (110). In the oesophagus 
specifically, these models have been used to study ESCC-
cell interactions (111), sphere formation in OSC-1 and  
2 cell lines (98,112) and comparisons of spheroid formation 
between cell types (113). The associated limitations are 
the maintenance of uniform spheres, variability in cell 
type numbers with each sphere, and a lack of standardised 
methods for drug screening (114). 

Sphere formation assays, another type of spheroid model, 
follow a similar principle to multicellular spheroid culture, 
but rather than allowing dissociated cells to aggregate 
and self-organise, multipotent stem cells from tissues are 
prevented from aggregating, allowing them to propagate 
and differentiate into single cell derived spheroids (115). 
This method has allowed research into the proliferation, 
self-renewal and multipotency of EADC (116,117) and 
ESCC (118-120) stem cells, which are known for their 
influence in their respective cancers. 

3D organoids

3D organoids build on the ideas of the previous 3D 
culture models, aiming to accurately replicate in vivo organ 
architecture, processes, and parameters on a miniature 
scale. This is typically done using a single or small number 
of induced pluripotent or embryonic stem cells, embedded 
in an extracellular matrix hydrogel to support growth (often 
Matrigel) (121,122). These multipotent cells are allowed to 
differentiate, propagate and self-organise into a miniature 
organ-like scaffold containing a vast array of functional 

cell layer and types (122,123). The vast array of cell 
lineages and types give an accurate representation of organ 
parameters and architecture, unlike that of spheroid culture 
and OTC. Moreover, 3D organoids are much easier to 
maintain due to their ability to self-renew. In 3D organoid 
culture, a patient’s own stem cells can be used, which may 
have significant implications in the future of personalised 
medicine (122). Research using oesophageal organoids 
includes development, differentiation/proliferation and 
therapeutic approaches to EADC (124,125) and ESCC 
(126-128), oesophageal signalling pathways in GORD 
(94,129) and eosinophilic oesophagitis (94).

Absorption modelling—epithelial absorption and mucus 
function

Similarly, there are limitations to modelling of the intestinal 
digestive mucosa. Nutrient and drug absorption from the 
digestive tract involves mucus permeation, brush border 
enzyme activity and transport across the epithelia via passive 
diffusion, carrier mediated diffusion, active transport, 
and pinocytosis (Table 5) (135). Brush border enzymes 
and specific transport mechanisms are summarised in  
Tables 2-4. The use of in vitro cell models to simulate 
intestinal absorption is common, but systems such as the 
Caco-2 monolayer model do not include a mucus layer (136), 
other approaches are discussed later. 

Mucus layers coat the epithelia and protect from 
microbial and enzymatic damage, while also allowing 
absorption of nutrients. The presence of a mucus layer 
does however, limit the absorption of certain nanoparticles 
and drugs in vivo (88). With mucus being a limiting factor 
for absorption in vivo, it is essential that the mucus layer is 
accounted for in absorption models. 

Mucus is a negatively charged hydrogel, and is typically 
~95% water with the glycoprotein mucin (Table 6) being 
the gel forming component (88,139,140). Mucins are 
categorised into either 2 subgroups, membrane tethered 
and secreted (139,141-143). Mucins are high molecular 
weight glycoproteins varying in size, domain organisation 
and function—despite this, there are common structural 
features. The protein backbone of the mucin glycoproteins 
consists of serine, threonine and proline (STP) repeats. 
These STP repeats are the fingerprint of mucin molecules. 
Each mucin type has a unique STP repeat sequence known 
as a variable number tandem repeat (VNTR) region 
(88,139,142,144). These are important regions which 
function as the site of carbohydrate chain attachment, 
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Table 5 Small intestinal epithelial absorption and efflux mechanisms

Class Mechanism Function

Carbohydrate SGLT1 Na+ dependent uptake of glucose and galactose from the small intestine. Uptake is mediated by a Na+ 
concentration gradient maintained by an Na+/K+ ATPase pump which creates a high concentration of Na+ 
ions in the small intestinal lumen, this allows glucose and galactose symport across the membrane. This is 
an example of secondary active transport (130)

GLUT5 Facilitated diffusion of fructose from a high concentration on the small intestine to a low concentration in 
the enterocytes (130)

GLUT2 Basolateral facilitated diffusion of glucose, galactose, and fructose into serum (131)

Peptides PEPT1 H+ dependent symport of di and tripeptides into enterocytes from the small intestinal lumen, peptides are 
then hydrolysed to amino acids in the cells by internal peptidases (130)

Amino acids ASC Na+ dependent antiport uptake of alanine, serine, cystine, threonine, glutamine and asparagine (132)

B0 Na+ dependent symport uptake of neutral L-amino acids (130,132)

B0,+ Na+ and Cl- dependent symport of neutral and cationic amino acids as well as β-ala (130,132)

b0,+ Independent uptake of cysteine, neutral amino acids and cationic amino acids (130)

β Apical and basolateral Na+ and Cl-dependent transport (132) of taurine and β-alanine (130,132)

Gly Na+ and Cl-dependent basolateral symport of glycine into serum from enterocytes (132)

IMINO Na+ and Cl-dependent symport uptake of proline, hydroxyproline (132) and pipercholic acid (130)

L Basolateral transport of neutral amino acids (except proline) from enterocytes into serum (132)

N Na+ (symport) and H+ (antiport) (132) dependent uptake of glutamine, asparagine and histidine (130) bro

PAT H+ dependent symport uptake of proline, glycine and alanine (130,132)

T Facilitated diffusion uptake of aromatic amino acids phenylalanine, tyrosine and tryptophan (132)

X-AG Na+, H+ (symport) and K+(antiport) dependent uptake of (anionic) aspartate and glutamate (132)

Y+L Na+ dependent cotransport uptake with neutral amino acids (132)

Lipids CD36 Facilitates fatty acid uptake from the small intestinal lumen (133)

NPC1L1 Cholesterol uptake transporter (130)

ABCG5, 
ABCG8

Efflux of cholesterol from enterocytes into small intestinal lumen (130)

Vitamins SVCT1, 
SVCT2

Na+ dependent vitamin C uptake via Na+ cotransport (130)

SMVT Na+ dependent uptake of biotin by enterocytes (130)

Cubam Not a transporter as such, but a receptor composed of amnionless and cubulin, responsible for binding the 
intrinsic factor/vitamin b12 complex, allowing endosome uptake (134)

FOLT, PCFT/
HCP1, 
FOLR1

Small intestinal folate uptake occurs through these three transporter proteins (130)

RFVT1, 
RFVTR

Small intestinal uptake of riboflavin is thought to occur using these two transporters (130)

THTR1, 
THTR2

Small intestinal thiamine uptake occurs using these two transporters (130)

Other  
vitamins

Fat soluble vitamins, A, D, K and E typically follow the same route as lipids, which are organised into 
micelles and absorbed (130)
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primarily by O-glycosylation, which make up ~70% 
of the mucin molecular weight (145). The presence of 
carbohydrate chains on secreted mucins gives them the 
ability to form gels (146). O-glycosylation occurs when 
N-acetyl galactosamine (GalNAc) residues are covalently 
linked to serine or threonine by glucotransferases via 
an OH group (147). A progressive elongation of the 
carbohydrate chain, by Golgi glucosyltransferases, up to 
20 residues in length occurs using four other carbohydrate 
residues: N-acetyl glucosamine, fucose, galactose and sialic 
acid (88,139,144). Proline’s role in the VNTR region is 
thought to be assistance in the linkage of GalNac residues 
to serine and threonine (147). Statistical analysis has noted 
a much higher number of proline residues surrounding 
glycosylated serine and threonine residues when compared 
to their non-glycosylated counterparts (148). with affinities 
depending on proline’s proximity to the O-glycosylation 
site, with proline at +3 and –1 strongly favouring 
O-glycosylation as opposed to proline at other sites (149).

Carbohydrate side chains are heavily sulphated upon 
elongation—it is their presence, alongside sialic acid, which 
allow mucus to have a negative charge at physiological pH 
levels (88).

Secreted mucins (Figure 3; Table 7), provide a mucus 
layer for several mucosal surfaces. Of these, MUC2, 
was one of the first secreted mucins to be characterised 
in detail (88,139,151-158). MUC2 (Figure 3) is the 
predominant secreted mucin of the SI (88,152,159,160) 
and the colon (152,157,158). At the N-terminal, vWF-
like domains D1, D2, D’ and D3 are found, while at the 
C-terminal a vWF-like D4 domain is found, followed 
by a B, C and CK domain. The central region of MUC2 

is split into two VNTR regions, a short region closer to 
the N-terminal which is flanked by 2 globular cysteine 
domains (CYS) domains at either side, and a longer region 
which spans most of the backbone. These regions are 
separated by the single globular CYS domain found at the 
C-terminal side of the first VNTR region (88,151,157). 
The initial short VNTR region is conserved and shows 
little variability in the number of STP repeats which are 
generally 23 amino acids long (151). The longer VNTR 
region however is highly variable with 40–185 STP 
repeats (151,161) which contributes to its large size of up 
to 7 mDa (155). 

The mechanism of secretion of MUC2 has been well 
characterised and is described in detail by Pearson et al. 
[2016] (88), Ambort et al. [2011; 2012] (153,154) and 
Johansson et al. [2011] (157). In the endoplasmic reticulum 
at pH 7.2, the MUC2 monomers are linked in trios at the 
D3 domain via disulphide bridges, creating MUC2 trimers. 
These trimers are transported to the Golgi Apparatus 
where the bulk of O-glycosylation takes place. In the Golgi 
Apparatus, the pH drops to 5.2—this causes protonation 
of histidine residues which in turn allows non covalent 
interactions between the vWF-like domains D1, D2 and 
D3, creating 5 or 6 sided ring-like structures which operate 
with D3 as the corners. An increase in Ca2+ levels in the 
Golgi Apparatus allows cross linking of negative charges, 
allowing the mucins to be tightly packed into secretory 
granules. A final dimerisation at the CK domain ensures 
that the mucin polymers are ready for secretion. Upon 
secretion, Na+ ions displace Ca2+ ions, uncoupling the 
cross links—this allows mucus to rapidly hydrate and swell 
1,000–3,000-fold. 

Table 6 Other secretions critical for gastrointestinal function

Name Function

Mucin Mucins are heavily glycosylated glycoproteins which are the major component of secreted mucus, a heterogeneous hydrogel 
which protects the epithelial layers of the gastrointestinal tract from chemical, mechanical, and pathogenic damage, while also 
providing an essential nutrient source for intestinal flora. Mucins also come in membrane tethered forms which have roles in 
epithelial protection, the immune response and cell signalling (88)

Intrinsic 
Factor

Secreted by gastric parietal cells, intrinsic factor is a glycoprotein which is essential for the absorption of cobalamin (vitamin 
B12). Intrinsic factor is present in the small intestine when cobalamin is release from its protein complex and becomes available 
for binding. The cobalamin/intrinsic factor complex binds to receptors on the epithelial cells of the terminal ileum, prompting  
absorption (137)

Bile Bile, conjugated in the liver (as bile acids) and stored in the gall bladder, are an essential component of lipid absorption. Lipids 
are not water soluble; this makes the surface area for enzymatic action low. Bile works by emulsifying lipids, creating an oil: 
water interface at which pancreatic lipase and its cofactor, colipase, allows effective digestions of lipids into their simple forms, 
where they can be absorbed (138)
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Figure 3 Diagrammatic representation of 5 secreted gel forming mucins (MUC2, MUC5AC, MUC5B, MUC6 and MUC19) and secreted 
soluble mucin MUC7. D represents vWF-like D domains (red). They are numbered D1-D4, with the first 3, as well as D’ which represents 
half a D domain, are found at the N-termini of gel forming mucins. D4 is often found at the C-termini of gel forming mucins. Also found at 
the C-termini of gel forming mucins is the CK domain (black) which represents a cysteine knot, as well as B (orange) and C (green) domains 
similar to those in vWF—this exempts MUC6 which does not contain B, C or D4 domains. In the central region, all mucins contain 
some form(s) of heavily O-glycosylated VNTR region (blue) and may also contain non-repetitive mucin sequences (grey) and globular cys 
domains (purple). MUC19 is differs in structure from many of the other secreted gel forming mucins as it lacks a D’, D4 and B domain, 
while also having an unusually long amino terminus. MUC7, the secreted soluble mucin, is much different from the other mucins and 
contains only a histidine domain (orange), a VNTR region flanked on either side by non-repetitive sequences, and a leucine zipper at the 
C-terminus (150,151).

MUC2 polymers are arranged into 5- or 6-sided ring 
like structures which act as pores. Research suggests these 
pores vary in size due to the sliding of the mucus layers but 
are understood to have a size limit of roughly 200 nm in 
diameter (88). The CYS domains are thought to determine 
their pore size through non-covalent bonds between half-
cysteine residues and adjacent, positively charged amino 
acids (154). These pores allow particles smaller than  
200 nm to traverse the mucus layer and size exclude 
larger particles. With no mucus layer, particles larger than  
200 nm will easily access the epithelia. Moreover, 
the strong negative charges will cause mucus/particle 
interactions. Small neutral particles will likely cross the 
mucus layer with little hindrance. Negatively charged 
particles will likely be repelled by the mucus layers 
negatively charged residues, and positively charged 
particles will bind negatively charged residues and become 
trapped. 

Approaches to mucus modelling

Groo et al. [2014] identified that although many methods 
for mucus diffusion studies are available there is not a 
standard consensus protocol (162). Several in vitro and  
ex vivo approaches have been adopted to mucus modelling, 
some of which are integrated with cell-culture systems, and 
some which are non-integrated and model the mucus layer 
independently. 

Li et al. [2013] described the lack of mucus modelling as 
a limitation of Caco-2 monoculture systems, and although 
they do express membrane bound MUC1, they do not 
produce secreted intestinal mucins (136). As an advance on 
CACO-2 monoculture, co-culture of Caco-2 and mucus 
producing HT29 cells have been developed. HT29-MTX 
cells only secrete gastric type MUC5AC, whereas HT29-
FU cells adapted with fluorouracil secrete intestinal type 
mucin MUC2 (163). While a key advantage of co-culture 
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systems is that the mucin is directly secreted above, and 
in intimate contact with the epithelia, the secreted mucin 
layer is not complete, and with a reported thickness of  
~4 µm, which does not recapitulate an in vivo human mucus 
layer (which is two orders of magnitude thicker) (164). 
To allow for full integration of epithelial culture systems 
with digestive models, it is essential that the mucus layer 
retains relevant permeation characteristics, and can protect 
the underlying epithelia from components of digestive 
secretions. To our knowledge there is no published data 
on Caco-2-HT29-compatibility with digestive secretions, 
however it would be surprising if the thin mucin covering 
produced in co-culture would be sufficient to achieve 
either of these requirements. Despite limitations, the  
co-culture model is reported to generate more predictable 

experimental results compared to monoculture, and  
co-culture systems have been advanced further to integrate 
intestinal M-Like cells in a triple culture system (165).

Mucus/mucin source is one of the key considerations, 
and Lock et al. discuss the importance of factors including 
species, age, state of health, anatomical site of collection 
and inter-donor (animal or human) variability (163). Inter-
donor variation can be somewhat overcome by pooling 
mucus from multiple donors prior to testing, and that 
samples can be stored frozen without significant changes to 
mucus rheology.

We have previously argued that while many studies have 
used mucins to simulate mucus function, it is important that 
these mucins replicate the native state (88). Sigma purified 
mucin is one of the most widely available commercial 

Table 7 Mucin genes, their types, chromosomal location, and the tissues that express them [adapted from Pearson et al. 2016 (88) and McGuckin 
et al. 2011 (143)]

Mucin gene Secreted/membrane Tissue expression Chromosomal location

MUC 1 Membrane All epithelia, breast, pancreas, small intestine, bladder 1q21

MUC 2 Secreted (gel-forming) Colon, small intestine, airways 11p15.5

MUC 3B Membrane Colon, small intestine, bladder 7q22

MUC 3A Membrane Colon, small intestine, bladder heart, liver, thymus, pancreas 7q22

MUC 4 Membrane Airways, colon, small intestine, stomach, cervix, eye 3q29

MUC 5AC Secreted (gel-forming) Airways, stomach, cervix, middle ear, eye 11p15.5

MUC 5B Secreted (gel-forming) Airways, submaxillary gland, cervix, gallbladder, middle ear 11p15.5

MUC 6 Secreted (gel-forming) Stomach, gall bladder, cervix 11p15.5

MUC 7 Secreted (soluble) Salivary glands, airways, eye 4q13-21

MUC 8 Membrane Airways 12q24.3

MUC 9 Membrane Oviduct 1p13

MUC 12 Membrane Colon 7q22

MUC 13 Membrane GI tract, colon, airways 3q13.3

MUC 15 Membrane Colon, airways, small intestine, spleen, prostate, breast, eye 11p14.3

MUC 16 Membrane Ovarian epithelial cells, nasal mucosa, eye 19p13.3

MUC 17 Membrane Duodenum, stomach, colon 7q22

MUC 18 Membrane Lung, breast 11q23

MUC 19 Secreted (gel-forming) Salivary glands, trachea submucosal glands 12q12

MUC 20 Membrane Kidney placenta, colon, lung, eye, prostate, liver, eye 3q29

MUC 21 Membrane Lung, colon, thymus 6p21.32

MUC 22 Membrane Lung 6p21.31



Annals of Esophagus, 2022Page 14 of 21

© Annals of Esophagus. All rights reserved. Ann Esophagus 2022;5:4 | http://dx.doi.org/10.21037/aoe-20-90

sources of mucin, but due to proteolytic degradation during 
purification is not structurally comparable to native mucin, 
cannot form a gel, and affects permeation characteristics 
(88,163). 

Attempts have been made to develop ‘biosimilar’ 
mucus using polyacrylic acid (carbopol), BSA and linoleic 
acid in combination with Sigma porcine mucin to make 
the viscoelastic properties and microstructure more 
comparable to native mucus. While lipid and protein 
components are normal components of the mucus gel, 
polyacrylic acid is not, and significant research has been 
conducted to show mucin-carbopol interactions can bring 
about dramatic changes to viscosity (166). Because of 
its mucus modifying properties and inhibition of pepsin 
hydrolysis of mucus, carbopol has been investigated as a 
muco-protective agent (88). 

In order to better replicate mucus thickness, our group 
in collaboration, developed a transmembrane permeation 
system using native porcine small intestinal mucus in a 
transwell set up with a resulting mucus layer of a thickness 
of 929±115 µm (167). While this is thicker than data 
reported for human small intestinal mucus thickness, 
the thickness is within the same order of magnitude, and 
allowed for a higher throughput, reproducible method from 
which time-course data could be collected, and permeation 
data can be normalised to in vivo mucus thickness. This has 
advantages over previous destructive methods which involve 
permeating compounds through a mucus filled device, and 
then taking sections in order to track compound permeation 
at a single timepoint.

Other approaches to mucus permeation include side-
on three-compartment diffusion chambers, diffusion cells 
and Ussing chambers (162). A limitation of these systems 
can be mucus thickness, for example Bhat et al. used a 
3,000 µm thick chamber which is considerably higher 
than in vivo, whereas Norris and Sinko used a mucus 
thickness of 380 µm. Furthermore Bhat et al. showed that 
the membrane material can cause significant variability in 
permeability data (168,169). This is a further advantage 
of using integrated systems that bring the mucus layer 
into direct contact with digestive secretions, and model 
epithelia.

While ex vivo studies of tissue samples can be limited 
by availability of material and are subject to donor 
variation, they naturally have advantages in terms of 
modelling the tissue architecture, and mucus thickness and  
composition (163). Intestinal loops and Ussing chambers 
are common methods for ex vivo tissue modelling.

Discussions and future directions

All 3D models described in this paper have proven to be 
useful in oesophageal research, with the 3D organoid 
presenting the most promising model, with a huge potential 
in personalised medicine. However, there is room for 
improvement, and this should be considered when further 
developing these models. While all models described may 
not contain all cells representative of a specific organ, and 
cell representation is somewhat variable between each 
culture, there is another major limiting factor - the lack of 
other, functional layers found deeper within the oesophageal 
tissue structure. This paper has already discussed the 
importance of the smooth muscle in the functions of the 
oesophagus, but there are important functions for immune 
cells, stromal cell types, neuronal control and a vascular 
system for nutrient transport and waste removal (92,114) 
which are not considered. Moreover, these deeper tissue 
layers can be subject to disease, such as ESCC or EADC 
tumour invasion (92). It is important to develop more 
complex oesophageal models in the future, which consider 
the latter points and contribute to a better mimicking of 
human oesophageal function, both in healthy and diseased 
oesophagi. There have been some successful developments 
in this area, with an example coming from Workman  
et al. [2017], who developed a human pluripotent-stem-
cell-derived intestinal model to include a functional 
enteric nervous system by combining neural crest cells, 
which initiate mesenchymal differentiation into neuronal 
structures, and human intestinal organoids (129). Despite 
this model focusing on modelling the intestine, it shows 
promise for the utilisation of similar methods in the 
development of more complex oesophageal models. 

An important area of future research will be to evaluate 
current and emerging models for use in modelling the 
action of reflux and the role this plays in disease pathology. 

Through this paper we have identified limitations 
of modelling of the oesophageal and intestinal mucosa. 
Current research in our lab is based around development 
of fully integrated models that recapitulate the protective 
function and permeation characteristics of mucus to allow 
modelling of whole digestive secretions in cell culture 
systems that integrate a cell-compatible mucus barrier. 
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