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Introduction

WMI is mainly caused by demyelination of central 
neuronal cells, which can lead to motor, visual and cognitive 
disorders. Oligodendrocytes are the only cell type to form 
myelination. Late oligodendrocyte progenitors at GW24-32  
in humans are susceptible to hypoxia-ischemia (HI) or 
inflammation, therefore resulting in demyelination in 
periventricular, subcortical and callosal white matters (1). 
There are some guidelines for WMI treatments, basically 

supporting or symptomatic treatments. Erythropoietin and 
hypothermia are also used for treating WMI (2). These 
treatments can promote neurons regeneration, reduce 
neuronal loss and axonal injury, but none of them can repair 
myelin loss. There are growing evidences from clinical 
and pre-clinical studies that stem/progenitor cells have 
multiple roles in treating neurological diseases including 
WMI. Stem cells are undifferentiated cells that include two 
broad categories: embryonic stem cells (ESCs)/induced 
pluripotent stem cells (iPSCs) and adult stem cells. ESCs are 
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isolated from the inner cells mass of blastocysts, which have 
the capacity of self-renewal and multilineage differentiation. 
iPSCs are a type of pluripotent stem cells that can be 
obtained by reprogrammed somatic cells and have similar 
properties to ESCs (3). Adult stem cells can be obtained 
from many tissues, such as brain, adipose and bone marrow. 
Depending on their tissue sources, they can be classified as 
NSCs, MSCs, hematopoietic stem cells, etc., and they all 
have been widely used in clinical and pre-clinical researches. 
As early as 1981, NSCs isolated from animal brain tissue 
were transplanted for treating neurological diseases, 
after that, human fetal brain tissue was used (4). In 1997, 
researchers transplanted glia cells which were obtained 
from the spinal cord of a normal dog into a neonatal or 
adult canine with myelin mutant. They found that the graft 
could survive for a long term and form myelin sheath in 
the transplantation site (5). After that, many types of cells 
such as NSCs, MSCs, and oligodendrocyte progenitor cells 
(OPCs) isolated from primary tissue or derived from ESCs/
iPSCs were used for transplantation to treat encephalopathy 
of prematurity (6). In recent years, with the development of 
stem cell technology, stem cell transplantation has become 
a potential therapeutic approach for many neurological 
defects including WMI. Different types of stem cells proved 
to be therapeutic in WMI. However, the clinical application 
of stem cell-based therapy for WMI still faces many 
challenges, such as immune rejection and limited effect (7). 
This paper reviewed the progresses and the challenges of 
stem cell therapy for WMI.

WMI pathology

WMI in preterm infants is mainly caused by perinatal 
HI, and could lead to a long-term neurologic disability 
or even death. With the development of perinatology, 
the survival  rate  of  premature infants  increases , 
accompanied by the increasing incidence of WMI. In 
the rat model of HI, it was found that the mechanism of 
white matter damage in premature infants caused by HI 
was related to the maturation dependent vulnerability of 
oligodendrocytes. White matter maturation in rats/mice 
are at postnatal day (PND) 3–5, which corresponds to 
24–30 gestational week (GW24-30) in humans. During 
this period, oligodendrocytes are at the late progenitor 
(O4+/O1−) stage and are highly susceptible to HI (8). Late 
oligodendrocyte progenitors are the main apoptosis cells in 
the oligodendrocyte lineage when HI occurs. Early OPCs 
(NG2+/O4−) and mature oligodendrocytes (MBP+) are 

more tolerant to HI. Besides, some late oligodendrocyte 
progenitors which survived from HI damage, will go 
through an accelerated differentiation process and become 
activated oligodendrocytes. However these activated 
oligodendrocytes have lost the ability of myelination, 
resulting in demyelinating lesions in the white matter (9).  
Next, immaturity of the cerebral blood supply in the 
deep periventricular regions such as basal ganglia of the 
brain, making it vulnerable to cerebral ischemia. When 
hemodynamics change, the underdeveloped cerebral 
vascular system cannot steady blood flow, thus aggravating 
the vulnerability of white matter to HI. In addition, free 
radical formation and excitotoxicity of glutamate also 
contribute to WMI (9).

NSCs transplant

NSCs are pluripotent stem cells with the potential of 
self-renewal and multi-differentiation. It can be obtained 
from the fetal/adult brain tissue, ESCs/iPSCs, or direct 
reprogrammed by astrocytes (10)/fibroblasts (11). NSCs 
are the most commonly used cell type for WMI treatment 
because of its potential to differentiate into neurons and 
glial cells in vivo and in vitro. In some primitive studies, 
mouse primary NSCs were isolated for cell transplantation 
to treat WMI. Rumajogee et al. (12) transplanted adult 
NSCs isolated from transgenic adult mice expressing 
yellow fluorescent protein (YFP) into the corpus callosum 
(CC) of HI mice at PND21. Treated mice in this study 
demonstrated repair of lesioned structures by histology 
and magnetic resonance imaging (MRI), and remyelination 
of the CC by endogenous oligodendrocytes. Behaviors 
such as cylinder and Cat-Walk tests were qualitatively 
improved in transplanted mice. Researchers found 
that NSCs derived from human ESCs obtained similar 
therapeutic effects (13). Besides, Daadi et al. (14) found 
that the axon of transplanted cells can grow into the lesion 
site. This suggests that the transplanted NSCs have the 
potential of integrating into the host’s neural circuits, 
but it requires more electrophysiology evidence. They 
also observed that neurogenesis, glial regeneration, and 
neurotrophic support related gene expression upregulated 
by microarray analysis. These studies have found that 
NSCs can improve the outcome of WMI caused by HI 
both in structure and function. As for myelination repair, 
the mechanism of NSCs transplantation for remyelination 
is mainly to promote endogenous myelination, rather than 
to directly differentiate into oligodendrocytes to replace 
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the lost myelin sheath, because these transplanted NSCs 
are hardly differentiate into oligodendrocytes in a default  
environment (12). Recently, due to the development of 
gene editing technology, genetically modified NSCs have 
been used to improve the therapeutic effect of NSCs. Tian 
et al. (15) strengthened therapeutic effects of NSCs by 
overexpressing leukemia inhibitory factor (LIF), which has 
neuroprotective effect on NSCs. They found that LIF-
NSCs could reduce neuron apoptosis in vitro. In vivo, LIF-
NSC reduced the infarction area, increased nerve and glia 
cell regeneration. In the future, gene editing technology 
and stem cell therapy will be combined to optimize the 
therapeutic effect of NSCs.

Mesenchymal stem cells (MSCs) transplant

MSCs are pluripotent stem cells that obtained from tissue 
such as umbilical cord blood (UCB), bone marrow, adipose 
tissue or placenta. Under certain culture conditions, they 
can differentiate into many cell types include neurons and 
glia cells. Studies have confirmed that in the sheep model 
of WMI, white matter damage caused by HI was reduced 
after transplantation of UCB-derived MSCs via resisting 
inflammatory and modulating immune response (16). 
van Velthoven et al. (17) established the animal model of 
WMI in PND9 rats, and then transplanted bone marrow 
derived MSCs into the lateral ventricle of WMI rats. They 
found that the loss of neurons and oligodendrocytes were 
significantly reduced, and the motor function of the rats 
in the transplantation group was improved significantly. 
In addition, after bone marrow derived MSCs being 
transplanted for 2 weeks, the proliferated neurons (BrdU

+
/

NeuN
+
), oligodendrocytes (BrdU

+
/Olig2

+
) and astrocyte 

(BrdU
+
/S100b

+
) in the HI + MSC-treated animals were 

increased, while the proliferated microglial cells (BrdU
+
/

Iba1
+
) were decreased compared with HI animals. These 

studies demonstrated that MSCs in the WMI animal models 
promoted the regeneration of neural and glial cells, inhibited 
the inflammatory response. Clinical application of MSCs-
based therapy has been developed due to its accessibility and 
low immunogenicity (18,19). A recent clinical study reported 
that, in their phase I study, intraventricular transplantation 
of allogeneic human UCB-derived MSCs into severe 
intraventricular haemorrhage (IVH) preterm infants was safe 
and feasible. Nine premature infants received cell transplants 
at 11.6±0.9 postnatal days, three received low-dose injections 
(5×106 cells/kg) and six received high-dose injections  
(1×107 cells/kg), no serious side effects and dose-

limiting toxicities were observed. Cerebrospinal fluid 
(CSF) biomarkers like vascular endothelial growth factor 
(VEGF), and brain-derived neurotropic factor (BDNF) 
exhibited increase in some infants after MSCs intervention 
compared with baseline values (18). These data support 
the neuroprotective activity of transplanted MSCs in the 
treatment of WMI.

Oligodendrocyte precursor cells (OPCs) 
transplant

OPCs are widespread in central nervous system, most of 
them differentiate into oligodendrocytes and a few into 
astrocytes. Oligodendrocytes loss or dysfunction will cause 
demyelination, which is the main pathological feature of 
WMI. Myelin regeneration is mediated by OPCs, thus 
they are considered as seed cells for treating demyelinating 
diseases including WMI. OPCs can be obtained from 
fetal brain tissue or derived from ESCs/iPSCs, NSCs, 
or transdifferentiated from somatic cells like fibroblast  
(20-22). In early stem cell studies, mouse primary OPCs 
were isolated and transplanted into WMI mouse/rat brain. 
Experimental data suggested that rat primary OPCs can 
survive and migrate in the host brain and promote the 
secretion of neurotrophic factor (23). Proliferated NSCs 
(BrdU

+
/Nestin

+
) increased in treated animals and these 

animals showed relived behavior deficits compared to 
sham operated controls (24). These studies suggest that 
the transplantation of OPCs have neuroprotective effects 
and can promote endogenous nerve regeneration. More 
important, it served as a source for myelin repair has been 
repeatedly reported. Porambo et al. (25) reported that 
intra-callosal injection of glia progenitor cells derived from 
embryonic spinal cord 17 days after HI in PND5 mice 
was associated with increased MBP density in cell treated 
WMI mice despite limited cell survival. Human ESCs 
derived OPCs were not applied in that time because of 
oligodendrocytes differentiation from human ESCs were 
not possible in the past. Transplantation of human primary 
NSCs derived OPCs seems like more feasible (26). Wu  
et al. (26) transplanted OPCs which were isolated from 
human aborted embryo into the forebrain of HI rats. They 
found that the myelinated axons were increased significantly 
in lesion site 90 days after transplantation. These results 
also showed long term survival of transplanted human 
OPCs in WMI rats. As the technical difficulties of human 
ESCs differentiation have been overcome, preclinical 
studies on human oligodendrocytes transplantation have 
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also been carried out. Kim and his colleagues showed that 
neurobehavioral performance were improved when human 
NSCs derived OPCs being transplanted for 3 days in HI 
animal models. Transplanted cells migrated to the injury 
site, differentiated into mature oligodendrocytes, expressing 
MBP and wrapped the neuronal cells to form new myelin 
sheaths (27).

Discussion

WMI is primarily caused by perinatal hypoxia and ischemia. 
Full-term infants and premature infants have different 
patterns of injuries when exposed to HI owing to late 
oligodendrocyte progenitors’ selectively vulnerable. Preterm 
infants are characterized by periventricular leukomalacia 
while the gray matter is predominantly injured in full-term 
infants (9). At present, the therapeutic methods of WMI in 
premature infants are mainly symptomatic support and mild 
hypothermia, while the effect of these treatments is limited 
in some severe cases. Cell transplantation is a promising 
treatment for these cases. The therapeutic mechanisms of 
cell transplant include replacing the lost cells, secreting 
neurotrophic factors, modulating inflammatory process, 
promoting endogenous neurogenesis ,  st imulating 
angiogenesis, and so on. However, the determined 
mechanisms are not fully revealed. Understanding the 
mechanism of stem cell therapy will be much more 
conducive to the future utilization. MSCs transplantation 
for WMI has been demonstrated to be safe in clinical  
trials (18). Gene editing in combination with stem cell 
therapy is also under pre-clinical researches (15). Although 
OPCs can specifically supplement the lost oligodendrocytes, 
its clinical application has not yet been developed due to the 
difficulty of obtaining OPCs. With the development of cell 
differentiation technology, OPC differentiated from ESCs/
iPSCs will be wildly used in the treatment of WMI.

Conclusions

Preclinical studies have confirmed the safety and feasibility 
of different cell types for transplantation. NSCs and MSCs 
transplantation therapy has entered clinical trial processes, 
whereas OPCs transplant has not been used in clinical 
studies yet owing to its differentiation difficulties (18). In 
addition, more experimental data is needed so that we can 
choose the optimal cell type, transplant dose and transplant 
site to enhance the treatment effects and avoid immune 
rejection.
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