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Introduction

The acute metabolic response that follows an acute 
illness, trauma, and surgery is characterized by increased 
catabolism, release of increased amounts of glucose, amino 
acids (AA), and fatty acids from the body’s stores (1,2). Sir 

David P. Cuthbertson described the fundamental aspects of 
this metabolic response to injury more than half-a-century 
ago (3,4). This response varies depending of the nature 
and severity of the insult, as well as, factors related to the 
host (i.e., age, metabolic reserve capacity, and presence of 
chronic conditions) (5,6). This response includes changes 
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in energy expenditure (EE), metabolic changes mediated 
by proinflammatory cytokines such as interleukin (IL)-1β, 
IL-6, IL-12, IL-18, tumor necrosis factor alpha (TNF-α), 
and interferon gamma (IFN-γ), hormonal responses with 
changes in levels of growth hormone (GH), thyroid-
stimulating hormone (TSH), insulin growth factor binding 
proteins (IGFBP); and several metabolic reactions including 
increased gluconeogenesis, increased fatty acid and 
carbohydrate oxidation and increased loss of muscle mass 
(7-12) (Figure 1).

Methods

A comprehensive literature search was performed on March 
31, 2020, for all papers published up to this date, using 
PubMed and Embase databases. The terms searched (MeSH 

heading) included: energy metabolism, critical illness, 
child, catabolism, stress, and inflammation. Conference 
abstracts, case reports, editorials, and non-English language 
articles were not included. Review papers were searched 
comprehensively to identify relevant articles. All articles 
relevant to the objectives of this review were approved by 
both authors.

Changes in EE

Energy metabolism is the most important function of 
the body and it regulates basal metabolism, growth, and 
physical activity; it is controlled at the cellular level by 
complex reactions of the neurohormonal system and 
regulates the utilization of substrate. The total objective of 
these controlling processes is to preserve energy stability 
and the central nervous system (CNS) acts an essential 
function in achieving this balance by triggering functions at 
the hormonal, neural, and metabolic level (13,14).

To be able to understand the concept of energy balance 
is essential to examine the elements of total energy 
expenditure (TEE) (Figure 2). TEE has four elements: basal 
metabolic rate (BMR), thermogenesis, physical activity, and 
adaptive energy. BMR accounts for 60–70%, thermogenesis 
for a 10% and physical activity represents 20-30% of 
TEE; adaptive energy is the energy expended to adapt to 
environmental conditions, particularly changes in ambient 
temperature; throughout circumstances of stress or injury 
these percentages varies depending on the degree of insult, 

Figure 1 The Metabolic response to injury. Reproduced with permission from Sparks EA, Fisher JG, Khan F, et al. Chapter 62: The 
critically ill child. In: Duggan C, Watkins JB, Koletzko B, et al. editors. Nutrition in pediatrics (5th ed.), 2016:957-69. New Haven, CT and 
Cary, NC: PMPH USA, LTD. 

Figure 2 Components of energy expenditure.
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substrate intake and amount of physical activity (15-19).
Energy needs are related to age and represents up to 3 

to 4 times higher per body weight for infants compared to 
adults (20), and are also dependent on changes on metabolic 
rate and body nutrients reserve. In the presence of an insult 
the response will be proportional to the magnitude, nature, 
and duration of the injury (21). Increased levels of counter-
regulatory hormones will result in opposition to the actions 
of insulin and GH. This increased resistance to the action 
of insulin and GH will result in a catabolic response with 
breakdown of glycogen, protein, and fat to provide enough 
substrate to support the metabolic response (22,23).

The main reason of the augmented energy dissipation 
in younger children is credited to the energy expense for 
growth. At 6 months of age the growth velocity is maximal 
representing up to 6–8% of energy utilized for growth, 
this process slows down at the age of 12 months once 
the BMR is 55 kcal/kg/day, when 2% of the EE is used 
for growth (16). During periods of acute stress, however, 
somatic growth is very difficult to achieve and cannot 
occur. Second, critically ill children are usually sedated or 
treated with muscle relaxants, therefore their activity level 
is reduced significantly lowering their energy needs. Third, 
the insensible losses are significantly reduced, particularly 
for patients on mechanical ventilatory support. Therefore, 
is very important to take into consideration these changes 
while implementing a nutrition support plan. 

The traditional concept has been that acutely ill patients 
present a hypermetabolic condition known as “flow phase”, 
preceded by a phase of reduced EE aimed to preserve 
energy known as “ebb phase” (17,24-32). Many studies 
have reported measurements of EE by indirect calorimetry 
in children admitted to the pediatric intensive care unit 
(PICU) (15,17,24-46), the aggregate result of all these 
measurements yields an average metabolic index [measured 
energy expenditure (MEE)/predicted BMR] of 1.02±0.10 
(SD), indicating an average metabolic condition. Of note 
are the studies that reported decreased MEE in postsurgical 
infants and neonates using indirect calorimetry and tracer 
methodology indicating a hypometabolic state (47-49), 
therefore, the importance of adjusting the caloric intake in 
this population of infants and neonates to avoid overfeeding.

In summary, the metabolic response is characterized 
by dysregulation of the energy metabolism, therefore, is 
important to understand and identify these changes during 
the acute phase of the injury in order to implement timely 
and appropriate interventions to support metabolically 
the acutely ill patient, while avoiding underfeeding and 

overfeeding (16,25-27,50).

Inflammatory response and cytokines

The metabolic response to tissue injury is initiated by 
activation of the cytokine cascade. Cytokines are a group 
of proteins (<40 kDa) created and distributed with the 
objective of cell signaling (51), and after binding to specific 
receptors, cytokines prompt initiation, multiplication, 
or relocation of target cells (52). Cytokines comprises a 
number of groups including: interleukins, chemokines, 
interferons, TNF, and growth factors. During sepsis 
interleukins are produced and include proteins released by 
leukocytes and endothelial cells and include pro- and anti-
inflammatory types; the interleukins with pro-inflammatory 
activity [IL-1β, TNF-α, IL-18, IL-12, IL-17, INF-γ, and 
granulocyte-macrophage colony-stimulating factor (GM-
CSF)] participate in cellular activation, tissue destruction, 
and necrosis; the interleukins with anti-inflammatory 
properties [IL-10, IL-13, IL-1ra, and transforming growth 
factor beta (TGF-β)] are responsible for dampening and 
reversing the inflammatory process (52-56).

The role of cytokines including TNF-α ,  IL-1β ,  
IL-6, IL-8 as important mediators of infection and tissue 
injury, and INF-γ as metabolic mediator have been 
identified in many experimental studies. In subjects with 
sepsis who died, IL-1β levels were higher compared to 
subjects that survived, implying a link between elevated 
levels of IL-1β and outcome in patients with sepsis (57). 
Several studies have been performed to provide evidence 
for the role of endogenously produced TNF in the 
development of cachexia, muscle wasting, and decreased 
albumin synthesis (51,52,58). The most important 
supplier of IL-6 is macrophages at the tissue with elevated 
concentrations noted in several inflammatory conditions 
such as cardiovascular and autoimmune diseases, or 
neoplasia (52). Higher levels of IL-6 have been reported 
in pediatric patients with sepsis compared to subjects 
with systemic inflammation not associated with infection 
(59,60). Additionally, in children with sepsis a higher level 
of IL-6 is linked to more severity (61), making IL-6 a useful 
tool to predict outcome in sepsis. IL-8 functions include 
chemotaxis and neutrophil stimulation and several studies 
have found to be a good discriminator for survival. Wong 
et al. reported in two studies (62,63), higher levels of IL-8 
in deceased pediatric patients with septic shock compared 
to subjects that survived, also found that a level of IL-8 ≤ 
to 220 pg/mL on admission to the intensive care unit was 
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a good predictor of survival. Two reports in children with 
cancer found that a low level of IL-8 was a good predictor 
of a low risk of bacteremia (64), and that levels >300 pg/mL  
in conjunction with high C-reactive protein (CRP) in 
children >12 years of age were associated with worse 
outcome in this population (65).

CRP and procalcitonin

CRP was discovered in 1930 by Tillett and Francis (66) 
and was given this name because precipitated serum when 
pneumococcal cell wall C-polysaccharide was present. It is 
an acute-phase reactant made by hepatocytes when infection 
or tissue injury is present (67,68). The systemic response 
to tissue damage caused by an inflammatory or infectious 
trigger, results in the production of inflammatory cytokines 
such as, IL-1, IL-6, and TNF-α, these cytokines stimulate the 
synthesis of acute phase proteins in the liver, including CRP 
and procalcitonin (PCT) (69-71). Serum CRP concentrations 
multiplies every 8 hours and reach peak levels at 36–50 
hours, with a half-life of 4–7 hours (68). The utility of CRP 
as a tool to make diagnosis has shown to have limitations 
given its sensitivity and specificity to distinguish among 
benign vs. severe bacterial infection or the presence of a non-
bacterial infection process. A systematic review evaluating 
CRP to diagnose bacterial infection accurately in ambulatory 
pediatric patients with fever, reported a sensitivity of 77% 
and specificity of 79%; this low sensitivity value suggests that 
CRP cannot be used to exclude all bacterial infection (72). 
Additionally, it is useful to monitor response to treatment 
after a diagnosis of infection has been done, with serial 
persistent high CRP levels or higher levels after 48 hours 
indicate inadequate treatment (67). The more recent studies 
in the literature of the use of CRP as a diagnostic tool has 
focused on the comparison of its diagnostic accuracy with the 
use of PCT (68).

Procalcitonin is made by the thyroid to control serum 
calcium concentrations and constitutes a precursor of 
calcitonin and it is produced by the parafollicular cells (C cells) 
of the thyroid and by the neuroendocrine cells of the lung 
and the intestine, and thyroid C cells are the only ones that 
express the enzymes that produce the mature calcitonin (73).  
The thyroid gland produces PCT and this production 
occurs under normal conditions with low levels detected. 
Under an infection challenge the production of PCT by 
non-thyroidal tissue is increased significantly, suggesting 
that initial inflammatory stimulation from TNF-α, IL-
1β and IL-6 is important (68). Multiple studies have 

evaluated the diagnostic use and advantage of using PCT 
to discriminate sepsis from systemic inflammatory response 
syndrome (SIRS) (74-78), and reported that children with 
established infection had elevated values of PCT compared 
to children without infection (SIRS only) (78), serum PCT 
concentration was significantly elevated in children with 
sepsis compared to children without infection with SIRS 
after cardiopulmonary bypass, (74), and in a cohort of 
children admitted to the PICU, PCT was better than CRP 
in discriminating subjects with SIRS and sepsis with PCT 
elevated concentrations associated with higher severity 
of illness (77). The level of evidence published to date in 
children with infection and sepsis, preclude the routine use 
of PCT as a biomarker in clinical practice, as a prognostic 
tool and risk stratification, or to help with the decision of 
antibiotic treatment duration (56).

Hormonal response

The stress responses to injury, trauma or sepsis are mediated 
by a number of different hormones, protein messengers, 
and the development of a complex system of neural 
injury-induced stimuli that triggers the CNS, resulting in 
alterations at the hypothalamic-anterior pituitary axes, these 
include the adrenal gland (increased cortisol secretion), the 
somatotrophic (increased GH secretion), the thyrotrophic 
[decreased triiodothyronine (T3) and increased reverse T3 
(rT3) secretion], and the gonado-/lactotrophic (decreased 
testosterone, increased prolactin) axes (79,80). In addition, 
the CNS also acts through the peripheral sympathetic 
nervous system to increase catecholamine secretion. 

After an insult, a condition of increased resistance to 
the actions of the GH at the peripheral tissues is developed 
(9,81), this response is in part a result of the secreted 
cytokines. The increase in circulating amounts of GH (82)  
is heralded by a reduction in concentrations of GH-binding 
protein, indicating a reduction on the expression of the 
GH receptor at the level of peripheral tissues (83,84). The 
reduction in negative feedback inhibition explains the 
ample availability of GH during the initial stages of the 
stress response; this answer of the GH axis is instrumental 
in the fight for existence, where indirect insulin-like growth 
factor-1 (IGF-1) mediated somatotrophic effects of GH are 
attenuated, resulting in increased levels in the circulation 
of glucose and fatty acids (80). The decreased level of 
somatotropism, because of a lack of pulsatile GH secretion 
might add to the etiology of the wasting syndrome that 
distinguishes by a protracted course of a severe condition 
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(79,80,85).
Shortly after the onset of severe stress there is a rapid 

decline of circulating levels of T3 with a concomitant 
increase in rT3 as a result of disrupted peripheral conversion 
of T4 (86,87). The instant reduction in levels of T3 might 
be seen as an answer to preserve energy while the substrate 
intake is markedly reduced (80). The persistence of low 
T3 after normalization of TSH levels is known as the low 
euthyroid syndrome. The reduction in T3 levels throughout 
the initial period following the insult is a reflection of 
the severity of the disease process (88) and this has been 
shown in clinical studies where a low T3 is associated with 
increased mortality (79,89,90).

Cortisol levels increase during the acute phase 
of the response to injury as a result of the increased 
release of corticotropin-releasing hormone (CRH) and 
adrenocorticotropic hormone (ACTH), this is explained either 
by a direct mechanism or inhibition of the negative feedback 
by cortisol (91,92). The majority of the suppressive effects of 
cortisol on immune and inflammatory reactions appear to be 
a consequence of the modulation of production or activity 
of cytokines (i.e., IL-1, IL-2, IL-3, IL-6, interferon-γ, 
TNF-α), chemokines, eicosanoids, complement activation, 
and other inflammatory mediators (i.e., bradykinin, 
histamine, macrophage migration inhibitory factor) (93). 
The most necessary and dynamic hypercortisolism induced 
by stress in critically ill patients results in energy provision 
by shifting carbohydrate, fat, and protein metabolism, 
suppress inflammation, and boost hemodynamics by 
augmented sensitization of the vasopressor response to 
catecholamines (80,93,94). Plausible disadvantages of 
prolonged hypercortisolism include impaired wound 
healing and myopathy, complications often seen during 
lengthy course of critical illness (79,80,90,94).

 

Carbohydrate and lipid metabolism

During conditions of stress, hyperglycemia is a consequence 
of a mixture of enhanced gluconeogenesis and enhanced 
insulin resistance resulting in decreased glucose uptake 
by the cells (95) (Figure 1). These two mechanisms are 
potentially mediated by increases in counter regulatory 
hormones and proinflammatory cytokines and potentially 
these cytokines prevent insulin to be secreted by the 
pancreas via activation of α adrenergic receptors (96-98).  
Increased concentrations of counterregulatory hormones 
and proinflammatory cytokines participate in the 
regulation of glycogenolysis and gluconeogenesis with 

resultant hyperglycemia (95), and glycogen stores are 
rapidly depleted with glycogenolysis resulting in limited 
glucose production (96). The elevated concentrations of 
catecholamines during this acute response to injury results 
in elevated glucagon levels with gluconeogenesis being 
maintained despite elevated levels of insulin (99). Other 
hormonal changes including increased GH and decreased 
IGF-1 concentrations enable the destruction of muscle 
releasing alanine to enhance gluconeogenesis (100). Acute 
injury is distinguished by insulin resistance either central or 
peripheral (101), and insulin resistance at the hepatic level 
being central and mediated by glucagon, epinephrine, and 
cortisol (99). The Insulin resistance at the muscle and fat 
tissue is classified as peripheral and is explained by changes 
in the insulin-signaling pathway regulated by inflammatory 
cytokines and counter regulatory hormones (101). This 
peripheral insulin resistance might continue for a protracted 
time after recovery from an acute injury, as described in 
pediatric patients (102). Several studies have reported 
defects in beta-cell function of the pancreas with reduction 
in its ability to produce insulin in critically ill children 
(103,104).

The fat tissue represents the main supplier of fuel and 
it is deposited as triacylglycerides and the breakdown or 
lipolysis produces non-esterified free fatty acids (FFA) (105).  
Lipolysis at the extracellular and intracellular space is 
regulated by lipoprotein and hormone-sensitive lipase (HSL). 
During conditions of inflammation there is a significant 
increase in serum levels of triacylglycerides and FFA and 
decrease in high-density lipoprotein concentration (106).  
Add i t iona l l y,  increa sed  l eve l s  o f  cy tok ines  and 
catecholamines induce blockage of lipoprotein lipase and 
reduced extracellular lipolysis, simultaneously, upregulation 
of HSL results in lipolysis at the fat tissue (105). An 
increased triacylglycerides synthesis results in reduced 
clearance of triglycerides, resulting in hepatic steatosis (107), 
and storage of triacylglycerides and FFA at the muscle 
(108,109), heart (110), and kidney (111), this is the result 
of a disrupted uptake FFA and its oxidation. No reported 
definite evidence that an alteration of the FFA oxidation 
is present at the mitochondrial and peroxisomal level in 
the acutely ill patient, but in subjects with type 2 diabetes 
and metabolic syndrome, these alterations modify the 
insulin signaling and enhances insulin resistance (112,113). 
Hypertriglyceridemia is an important concern because of 
the altered endothelial function, lipotoxicity, and increased 
inflammation and often lipid infusion during acute injury 
conditions worsens hypertriglyceridemia (105).
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AA and protein and metabolism in the critically 
ill

The complex interrelation of protein metabolism and 
metabolic partitioning during critically illness across the 
human lifespan emphasizes the need to individualize protein 
support therapy towards achievement of proteostasis 
(protein metabolic homeostasis) and organ support rather 
than simply balancing nitrogen expenditure (114-116). 
To sustain tissue integrity and organ function in healthy 
conditions, body protein is continuously degraded and 
resynthesized in all tissues and cells, a process known 
as protein turnover. Tissue proteins in different organs 
are constituted by AA, which normally can be either 
incorporated into tissue protein or undergo oxidation for 
energy production when energy intake is inadequate to 
satisfy the metabolic demands. Normally, tissue protein 
breakdown releases AA to the peripheral circulation, and 
those circulating AA may be reutilized for accretion of 
tissue protein or may perform intracellular or physiologic 
functions. Adult individuals are less efficient than children 
and neonates to convert dietary protein into net accretion 
and maintenance of body protein, but youngsters also 
require additional protein per unit of mass to include 
fractional needs required to sustain growth in their 
maintenance protein and AA requirements (115).

Skeletal muscle mass accounts for a major component 
of the lean body mass (LBM) as the largest protein reserve 
in the body. During illness, muscle and LBM correlates 
with severity of illness, systemic inflammation, impairment 
of the respiratory function and clinical outcomes in both 
pediatric and adult patients (117-119). Other components 
of the body protein reserve include circulating proteins, 
such as visceral proteins, acute phase reactants, hemoglobin, 
leucocytes, and immunoglobulins. In normal conditions, the 
balance between protein and AA intake, protein turnover, 
and nitrogen loss is aimed to maintain LBM, sustain protein 
compartments and homeostasis, and, in the case of children 
and neonates, also for lean mass growth (120). In critically 
ill states, pre-albumin and retinol-binding protein are more 
accurate to evaluate the response of the de novo plasma 
protein pool to dietary protein intake because of their 
shorter half-life, when compared to circulating proteins 
with a longer half-life, such as albumin (121,122).

For infants and pediatric patients, rapid growth 
occurs because of efficient protein accretion of skeletal 
muscle mass, mediated in large part by very high protein 
synthesis rates in skeletal muscle and extreme sensitivity to 

anabolic stimulation triggered by post prandial elevation 
of circulating insulin and AA. Such robust post prandial 
response to insulin and AA stimulation in the young does 
not affect muscle protein degradation and it declines as the 
young individual becomes an adult (123-126). Therefore, 
normal infants and children have a more efficient use of 
dietary protein and AA released from endogenous proteins 
breakdown to conserve and grow LBM. 

Critical illness induces loss and catabolism of body 
protein by the presence of starvation, immobility, stress, 
and inflammation. With current advances in intensive care 
and life sustaining support with extracorporeal therapies, 
dialysis, mechanical ventilation, medications (such as 
steroids, sedatives, and immunosuppressors) and the 
presence of organ dysfunction can cause prolongation of the 
inflammatory and catabolic state and add to the promotion 
of nitrogen loss. Such prolongation of the catabolic state 
creates a chronic cumulative nitrogen deficit (127).

Nitrogen shuttle and metabolic partitioning 

During critical illness, in contrast to normal states, injury 
and inflammation induce protein breakdown release AA and 
nitrogen to the systemic circulation to provide substrate for 
whole body protein metabolism (128-130) (Figure 3A,B). 
Such metabolic response is not reversed by provision of 
exogenous protein as is innately driven and regulated by 
stress hormones, neural mediators, and cytokines. Systemic 
inflammation enhances protein synthesis in the liver and 
immune cells displaying as increased whole body protein 
synthesis rates. Circulating plasma AA released from 
body protein are preferentially used for gluconeogenesis, 
oxidation to produce energy, as substrate for immune cells 
and enterocyte metabolism, and to supply nitrogen to the 
liver for synthesis of acute phase reactants. Therefore, 
circulating plasma AA concentrations are extracted from the 
systemic circulation and thus achieve lower levels in patients 
with critical illness when compared to healthy subjects 
(128,130). Intestinal epithelial breakdown and a decrease in 
visceral protein synthesis (i.e., albumin, and pre-albumin) 
ensues when protein or AA are not provided in the enteral 
lumen for its absorption and release to the splanchnic bed 
(131,132). In healthy conditions, portal rather than arterial 
AA is preferentially used for hepatic protein synthesis 
of visceral protein after enteral feeding (132). Protein 
metabolic partitioning occurs based on specific organ needs, 
as different organ systems may require and uptake specific 
AA or when a particular AA may serve as a precursor or as 
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a physiologic signal during critical illness (115). Thirty to 
fifty percent of essential AA in the diet may be catabolized 
by the small intestine in first-pass metabolism for enteral 
utilization by the enterocyte and splanchnic extraction 
(133,134).

As opposed to the increase in whole body protein 
synthesis during systemic inflammatory states, in skeletal 
muscle protein synthesis decreases and protein degradation 
increases, to decrease uptake and utilization of AA by 
muscle tissue and to release and shuttle AA and nitrogen 
to the immune cells and visceral tissues (135,136). This 
preference on protein degradation over protein synthesis in 
skeletal muscle leads to muscle atrophy and loss of LBM, 
and it is also associated with growth failure in children 
(137,138). In this regard, critically ill children have a 
higher protein turnover than adults, due to relatively 
amplified baseline higher whole-body protein synthesis and 
breakdown, limiting loss of LBM by their protective robust 
baseline anabolic rates (135,139). Critically ill adults can 
achieve maximal rate of protein loss in the first 10 days, and 
loose more than 14% of total body protein over 3 weeks 
(140,141).

From studying fast or slow proteins in animal models and 

humans, it appears that is the rapid increase and variation 
in the plasma AA concentrations what leads to protein 
synthesis in muscle, not the absolute AA concentrations. 
In neonatal animal studies, intermittent boluses of protein 
have improved feeding efficiency, by inducing a greater 
stimulatory effect on skeletal muscle protein synthesis than 
continuous enteral feedings (126,142,143).

Intracellular protein turnover in critical illness 

In skeletal muscle and in most organs, cellular protein mass 
or function are maintained by regulation of the protein 
synthesis and degradation balance (Figure 4). Protein 
synthesis in all organs occurs by triggering of a signaling 
pathway that stimulates translation of mRNA into protein 
and it can be regulated differently in different organs 
during critical illness. In this regard, systemic inflammation 
increases hepatic protein synthesis by activating the 
translational machinery while simultaneously impairing 
the efficiency of translation of mRNA into protein in 
muscle (144,145). Protein degradation in skeletal muscle is 
regulated by molecular signals involved in translation (146).  
Protein kinase B (PKB, also known as Akt) an insulin 
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Figure 3 Compartmental model of whole-body protein kinetics. Diagram of the compartmental model representing whole body protein 
kinetics in normal conditions (A), and during fasting in the presence of critical illness and inflammation (B). Arrows towards the Plasma 
free amino acid (AA) pool compartment represent pathways towards catabolism and release of AA to the systemic circulation, while arrows 
towards the organ compartments indicate AA intake and tissue attrition. Circulating AA in the free AA pool may undergo oxidation for 
energy production and nitrogen waste products. Muscle protein turnover is high at baseline and their anabolic drive towards synthesis is very 
sensitive to anabolic stimulation in young animals. This response dampens as the organism matures, and muscle protein breakdown may not 
be worsened by a catabolic insult with maturity.
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signaling protein, appears to link translation and protein 
degradation signal activation. Translation comprises 
activation of the mammalian target of rapamycin (mTOR) 
through PKB and intracellular AA. Intracellular AA also 
activates translation initiation via stimulation of mRNA 
binding to the 43S ribosomal complex; and through eIF2B, 
which stimulates the binding of the initiator methionyl-
tRNA (met-tRNAi) to form the 43S pre-initiation complex; 
and dephosphorylation of the eukaryotic elongation factor 
2 (eEF2) for peptide chain elongation (144,147). Systemic 
circulating AA require active transmembrane transport to 
become intracellular. PKB activation also inhibits Caspase-3 
activity and restrains activation of the Fox0 group of 
proteins. Proteases such as caspase-3 facilitate intact muscle 
fiber decomposition to release monomeric contractile 
proteins, such as actin and myosin, for further disintegration 

into AA by the ubiquitin-proteasome system (148).  
PKB and mTOR inhibition increase E3 ubiquitin ligase 
expression of muscle atrophy F-box (MAFbx, atrogin1) 
and muscle RING finger 1 (MuRF1), which have been 
associated with activation of the ubiquitin-proteosomal 
system (149,150). High protein synthesis rates in young 
animals are due to an enhanced translational process that 
declines as the animal matures (125,151). In contrast, 
animal studies suggest that the more intense activation 
of degradation signaling at baseline in skeletal muscle of 
young animals cannot be enhanced by inflammation, and 
that catabolic signal activation in skeletal manifests its 
severity as maturation advances (150). Autophagy appears 
to be an innate process that is activated by inflammation 
and antagonized by the presence of intracellular AA, which 
can antagonize autophagy signal activation (152). Moreover, 

Autophagy

Met-tRNA Caspases

AMPK

Translation

Ubiquitin Ligases

SYNTHESIS DEGRADATION

Contractility
Stretch

Circulating amino Acids Insulin Stress, Cortisol/TNF-α/IL6

Figure 4 Molecular regulation of protein synthesis and degradation in skeletal muscle. Representation of the signal activation sequence that 
leads to protein balance in tissues, cells and organs. In muscle, protein synthesis occurs when amino acids, insulin and contractility promote 
mRNA translation into protein. The regulation of protein degradation involves myofibrillar degradation by the ubiquitin-proteasome 
system and autophagy. AMPK, an intracellular energy sensor, modulates the balance between the activation of signaling pathways for protein 
synthesis and degradation in the presence of inflammation and stress. AA degraded from muscle are either released into the circulating AA 
pool, or are reutilized by skeletal muscle through translation.
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protein synthesis and degradation in skeletal muscle can 
be regulated by the presence or absence of fiber stretch, 
and immobility leads to enhanced catabolic processes and 
decreased protein synthesis (153).

Alteration in energy metabolism during systemic 
inflammatory states leads to decreased translation and 
enhanced degradation signal activation in skeletal muscle. 
Inflammation may cause mitochondrial dysfunction and 
energy failure causing enhanced catabolic signals and 
decreased protein synthesis. 5’-AMP-activated protein 
kinase (AMPK), an intracellular energy sensor, is activated 
in the presence of energy starvation, inhibits mTOR 
and protein synthesis signal activation and activates the 
ubiquitin-proteosomal system (149,150,154). In neonatal 
animals, insulin has shown to antagonize AMPK activation 
and thus, appears to stimulate protein synthesis and 
decrease muscle protein degradation signal activation in 
skeletal muscle during inflammation, suggesting that insulin 
resistance plays a role in skeletal muscle catabolism during 
critical illness (136,154).

Protein catabolism and anabolic resistance 

Critical illness is a rapidly changing physiologic state, in 
which protein requirements, utilization and balance is 
evolving in accordance to the progression of the acute 
physiologic alterations. Critical illness may induce 
a catabolic response and a loss of LBM that may be 
unresponsive to exogenous nutrient support, in contrast to 
simple starvation (137). During critical illness, the effects of 
the autonomic stress response, insulin resistance, cortisol, 
cytokines, and the dysfunction of anabolic hormones 
may decrease the expected response to adequate protein 
provision. Both injury and inflammation lessen the response 
to anabolic hormones and nutrients that enhance protein 
deposition in skeletal muscle and maintenance of the LBM 
(141,144).

To preserve LBM, circulating insulin and its response 
are crucial for skeletal muscle protein deposition, as 
they stimulate protein synthesis, inhibit muscle protein 
degradation, and improves energy homeostasis in skeletal 
muscle (142,154). In this regard, insulin continues to 
stimulate skeletal muscle protein synthesis and inhibits 
muscle protein degradation during critical illness but 
does not attenuate whole body proteolysis when provided 
at higher than physiological concentrations (155-158), 
possibly due to the antagonism of circulating cytokines 
(105,159). As we explained previously, assessment of the 

response of protein metabolism to insulin at the whole-
body level may not reflect the favorable effects of insulin 
in skeletal muscle during critical illness, since insulin does 
not affect the elevated protein synthesis rates in liver during 
systemic inflammation (160). Thus, due to such metabolic 
partitioning during critical illness, the advantageous effects 
of insulin on whole body protein metabolism are permissive 
for protein synthesis and suppressive for protein breakdown 
only if adequate AA are provided (105,136,157). In addition, 
insulin has been reported to have intrinsic anti-inflammatory 
properties and positive effects on reestablishing glucose and 
energy homeostasis and stimulation of protein anabolism in 
skeletal muscle (157,161-163).

In pediatric critical illness other important mediators 
of the stress response such as corticosteroids cause insulin 
resistance, hyperglycemia, net release of glutamine 
from muscle, and decrease in translation initiation and 
enhancement of protein degradation in muscle (130,164). 
While the epinephrine and norepinephrine are usually 
associated with catabolic processes on energy metabolic 
rate, they may have an anabolic effect on skeletal muscle 
protein metabolism (165). Critical illness is associated with 
transitory reduced levels of IGF-1, acquired GH resistance, 
and a decreased anabolic response to GH (141).

Branched-chain AA (leucine, isoleucine, valine), 
threonine, and lysine supply close to the 75% of the body’s 
nitrogen requirement (166). Even though certain AA may 
directly exert physiologic or cellular effects, AA imbalances 
may also be negative for metabolic homeostasis, and during 
critical illness they may become conditionally essential. 
That is because all 20 protein AA and their metabolites are 
required for normal cell physiology and function, and their 
single deficiency or oversupply may blunt their intrinsic 
beneficial effects (167). AA are intrinsically anabolic and 
can stimulate a marked rise in muscle protein synthesis 
independent of insulin stimulation. AA requirements are 
also influenced by age because of increased requirements in 
the presence of active growth in the young individual (157).  
In critical illness, Alanine, Glutamine, Glycine, and Aspartic 
acid can act as gluconeogenic substrates, shuttling nitrogen 
from peripheral skeletal muscle to the circulating AA 
pool. Glutamine is a major constituent in muscle protein, 
shuttling about one-third of all AA nitrogen and serves as 
fuel for enterocytes and cellular immune response (168). 
Arginine, and its precursor citrulline, are precursors of 
nitric oxide, creatine, agmatine and other polyamines, and 
modulates protein anabolism (133,167,169). Parenteral 
BCAA have been used to improved outcomes in critical 
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illness without success (128). Leucine, and its metabolite 
beta-hydroxy-beta-methylbutyrate, have a direct anabolic 
effect in skeletal muscle, and have been used to stimulate 
nitrogen maintenance (152,170,171).

The hypercatabolic state of injury or sepsis has 
been characterized a marked negative nitrogen balance 
(25,27,50,136,172). Nitrogen excretion is linked to the 
metabolic expenditure because it is affected by severity 
of illness. Whole body nitrogen utilization is affected by 
energetic deficits, and protein can also be oxidized for 
energy in catabolic states (25,27). During intensive care 
support during critical illness, nitrogen can be lost in 
urine, stool, skin, and in extracorporeal elements such as 
dialysate, extracorporeal circuits and thoracic or abdominal 
drainage (173-176). Therefore, even when provided with 
the appropriate estimated requirements, the critically ill 
may lose more protein than that able to assimilate (173). 
Although aiming for a positive protein balance has been 
used as a surrogate measure of LBM preservation, it does 
not assess protein or AA utilization, quality of intake or 
protein reserves or metabolic partitioning. Moreover, 
sufficient amounts of energy are needed to efficiently utilize 
the supplemented protein. When protein and energy are 
supplied during critical illness, whole body protein synthesis 
rates are increased without affecting protein breakdown. 
Therefore, improvement in protein balance at the expense 
of higher protein synthesis may occur despite resultant 
ongoing losses of body protein and attaining protein 
balance may not prevent loss of LBM or skeletal muscle 
mass (27,173,177).

Even when faced with a critical illness, infants and 
children contrast from adults in their requirement for a 
continuous supply of substrate and energy to maintain 
growth and their protein needs. Acceptable quantities of 
energy are needed to efficiently use the supplemented 
protein, since whole body nitrogen utilization is affected 
by energetic deficits, and protein is catabolized to loss 
and oxidized for energy in catabolic conditions (25). It is 
recommended to adjust the normal caloric partitioning (50–
60% of calories from carbohydrates, 25–35% from protein, 
and 10–25% from fat) to adjust to the increased protein 
needs to prevent AA to be used for energy production 
during critical illness. The calculation of calorie-to-nitrogen 
ratio, whether total or non-protein calories, supports the 
concept of providing adequate caloric intake when high 
protein is provided (178). Traditionally, and based on 
expert opinion, the recommended calorie-to-nitrogen ratio 
requirement has been suggested around 130–150 kcal/gram  

of nitrogen (1 gram of protein =6.25 grams of nitrogen) 
during critical illness in adults. In contrast, an energy to 
nitrogen (E/N) expenditure ratio of 382:1 kcal/gram of 
nitrogen has been described in healthy active young men 
and was proposed to help design the adequate caloric 
partitioning for enteral nutrition or parenteral nutrition 
support (173). In that report, the E/N ratio decreases 
continuously with increasing protein loss and is not a 
constant value (173). This evidence indicates the need for 
studies that specifically match intake to expenditures in 
critically ill individuals across the lifespan to encompass for 
the large variations in EE, protein loss, and E/N ratios in 
diverse patient populations.

Proteostasis in the critically ill child implies understanding 
protein metabolism and adaptation to stress (115).  
Studies on protein metabolism discovered that humans 
adapt to prolonged low protein intake and maintain of 
health and LBM (179) by means of metabolic adaptation 
and plasticity, metabolomics and epigenetics (167,180). 
During conditions of protein starvation, cells respond to the 
stress of AA deprivation through sensing the AA deficiency, 
leading to modulation of global protein synthesis to save EE 
through translation reprogramming to maintain metabolic 
homeostasis (180). Adequate understanding of energy and 
macronutrient sustenance to the metabolic adaptation to 
prolonged survival in intensive care when supporting critical 
illness will allow improved survival and recovery, and in 
children, restoration of growth potential.
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