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Introduction

Neonatal jaundice is a syndrome arising from many 
different causes, but it can be easily understood by an 
analogy to a sink (Figure 1) (1). The turned-on spigot 
represents the process of bilirubin production and the 
drain represents the process of bilirubin elimination. The 
volume of the sink represents the capacity of the circulation 
to store bilirubin, which is determined primarily by the 
amount of albumin, the main binding protein for bilirubin, 
in the blood. Thus, if the rate of bilirubin production 

exceeds the rate of bilirubin elimination, then the level of 
total serum/plasma bilirubin (TB) in the circulation begins 
to rise (1,2). Moreover, when the ability of albumin to 
bind bilirubin is exceeded, the sink begins to “overflow”—
representing bilirubin moving from the circulation into 
tissues. This latter phenomenon becomes manifest in the 
skin and conjunctiva as “jaundice,” but also occurs in other 
tissues less easily seen with the naked eye, for example, the 
brain. The accumulation of bilirubin in discrete regions of 
the brain (i.e., globus pallidus) can lead to the syndrome 
of bilirubin-induced neurologic dysfunction (BIND) (3-5)  
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and to acute or irreversible—known as “acute bilirubin 
encephalopathy (ABE)”—or chronic or permanent 
[traditionally called “kernicterus” or now “chronic bilirubin 
encephalopathy (CBE)”] clinical manifestations (6). 

Simply put, jaundice cannot occur without first, the 
production of the pigment and second, the excessive 
production of the pigment relative to its elimination, as 
is the case in most neonates in the transitional period 
after birth (1,7). This circumstance is fundamental to 
the occurrence of all kinds of jaundice, physiologic or 
pathophysiologic. Most pathophysiologic jaundice requiring 
treatment is caused by increased bilirubin production rates 
(reflected as hyperbilirubinemia) above what is considered 
normal in all term newborns (approximately 2 to 3 times 
higher compared to an adult) (8), which is caused by a 
relatively large red cell mass and a shorter red blood cell 
(RBC) lifespan as a function of age-in-hours (9). In preterm 
infants, the RBC mass is slightly less than term infants, 
but the RBC lifespan is shorter resulting in corresponding 
higher bilirubin production rates on a body weight basis 
(1,10). Thus, the traditional epidemiologic risk factors for 
neonatal jaundice are easily understood, such as hemolysis, 
bruising, closed-space bleeding, and polycythemia, as they 
all contribute to an increase in heme catabolism and thus 
increased production of bilirubin (1,2,7). Of course, in 
all newborns, the conjugation of bilirubin is transiently 
impaired (and again even more immature in preterm 
infants), and together with any genetic polymorphisms 
that contribute to impairment of uridine 5'-diphosho-
glucuronosyltransferase (UGT1A1) activity (11,12), result 
in further impairment of bilirubin elimination and can 
further exacerbate the risk for neonatal jaundice in the 

context of increased bilirubin production rates.
The spigot in the analogy is the heme oxygenase 

(HO)-catalyzed step in the two-step process of heme 
catabolism (13). This reaction, which occurs in the 
endoplasmic reticulum, requires NADPH donated from 
the cytochrome P450 system and molecular oxygen and 
results in the equimolar production of carbon monoxide 
(CO), iron (Fe2+),  and biliverdin, which is rapidly 
reduced in the cytosol to bilirubin. Because the reaction 
is ubiquitous and occurs in all nucleated cells, it would 
be impossible to know the total body production rate of 
bilirubin, except that CO is bound to hemoglobin, forming 
carboxyhemoglobin (COHb), is transported to the lungs 
and is continually excreted in breath (14,15). With certain 
assumptions about steady state, the CO excretion rate 
in breath, the end-tidal CO (ETCO) concentration, and 
the COHb concentration, when corrected for inhaled 
CO (ETCOc and COHbc, respectively) can each be 
used as indices of total body bilirubin production rates 
(2,16), making it possible to identify infants who are high 
producers of the pigment (2), and are therefore also at 
higher risk of neurologic injury (see below). To this end, 
various technologies and devices have been developed 
(2,16). 

The association between increased bilirubin production 
and the risk for bilirubin neurotoxicity exists because babies 
with increased production of the pigment, for example due 
to hemolysis, are more likely to have greater amounts of 
bilirubin outside the circulation and in tissues as they exceed 
their bilirubin binding capacity (BBC) more rapidly (17-19). 
This phenomenon is often reflected in a rapid rate of rise in 
the circulating TB levels, and has been empirically taken by 
clinicians as a sign of increased bilirubin production (20,21). 
Moreover, two apparently identical TB levels can represent 
two very different situations of risk for neurologic injury, 
independent of the actual TB level (1). Consider the well, 
breastfeeding infant who reaches a TB level of 20 mg/dL  
at the end of the first week of life, and the hemolyzing 
infant who reaches the same level at 24 h of life (1). Because 
of individual variations in conjugating capacity among 
infants, not all high producers become hyperbilirubinemic 
to the point of requiring intervention, but most will at least 
become visibly jaundiced. However, high producers of 
the pigment, if they require treatment with phototherapy 
or exchange transfusion, are more likely to have rebound 
hyperbilirubinemia after treatment (22).

T h e  m o s t  c o m m o n  t r e a t m e n t  f o r  n e o n a t a l 
hyperbilirubinemia is phototherapy, which was first 

Figure 1 Syndrome of neonatal jaundice. Reproduced from 
Stevenson DK, Dennery PA, Hintz SR. Understanding newborn 
jaundice, J Perinatol 2001;21 Suppl 1:S21-4; discussion S35-9 with 
permission from Springer Nature.
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suggested as a therapy in 1958 by Cremer (23). Of course, 
there are alternative therapeutic approaches, such as 
exchange transfusion, and other less common treatments. 
However, phototherapy is very effective with currently 
available devices, making other options less necessary today 
in most cases. It works because the bilirubin molecule 
interacts with certain wavelengths of light (peak absorbance 
at 478 nm) and undergoes photo-oxidation (a minor effect) 
and structural and configurational isomerization, the latter 
very rapidly (24,25). These products can be eliminated 
without conjugation, thus bypassing the temporary 
impairment in elimination because of immaturity or a 
genetic polymorphism affecting UGT1A1 activity (11,12). 
So what is the rationale for why inhibition of bilirubin 
production might be an alternative to phototherapy, at least 
in some cases?

In 2008, a paper described a randomized clinical trial 
of aggressive versus conservative phototherapy for infants 
with extremely low birthweight (ELBW) (26). There had 
not been a large trial of this sort since the large National 
Institutes of Health collaborative trial (27) reported on the 
efficacy of phototherapy to prevent exchange transfusion 
in predominately larger, more mature infants. However, 
in that trial, there was the suggestion that phototherapy 
might not be safe in the smallest babies, although the trial 
was not designed for making this determination. In the 
2008 trial (26), the primary outcome was that aggressive 
phototherapy did not significantly reduce the rate of 
death or neurodevelopment impairment. Nonetheless, 
there were two planned secondary analyses: one showed 
that the rate of neurodevelopmental impairment alone 
was significantly reduced with aggressive phototherapy, 
confirming the importance of limiting the rise of TB levels 
in these infants; and the other showed that this reduction 
was offset by an increase in mortality among infants 
weighing 501 to 750 grams at birth, suggesting that there 
might be an adverse effect of using light. The paper raised 
the possibility that what Bill Silverman had described as 
“ambitious overgeneralization” had occurred in the case  
p h o t o t h e r a p y  ( 2 8 ) .  We ,  a s  a  p r o f e s s i o n ,  h a d 
“overgeneralized” the use of phototherapy extending its 
application to ever smaller and more translucent patients for 
longer and longer timeframes without studying its safety. 
We should have asked the question sooner, “Is it possible that 
visible light has adverse effects in small premature infants?” The 
paper reinforced the need for reconsidering how best to 
apply phototherapy safely in these infants, resurrecting the 
notion of cycled phototherapy to reduce the dose of light as 

well as restrict the wavelengths of light to those known to be 
most effective with respect to interacting with the bilirubin 
molecule, namely narrow-wavelength blue light (29).  
But the paper also suggested a rationale for wanting to 
avoid phototherapy altogether in these very immature, 
antioxidant-deficient, small translucent patients (30,31), 
and consider a pharmacologic approach to control rising 
TB levels, such as inhibition of bilirubin production (32). 
Although controlling the spigot (Figure 1) would seem to 
be a conceptually simple and rational approach, it presents 
some challenges which are the subject of the subsequent 
discussion below.

Although the HO-mediated catabolic pathway for 
heme has been generally considered to be a source of 
potential toxins, including bilirubin, CO, and Fe2+, 
causing neurologic disturbances (33), mitochondrial 
dysfunction (34), and reactive oxygen species (ROS) 
production (35), respectively, it has many other roles in 
biology (33). For example, the biliverdin-bilirubin shunt 
has antioxidant, anti-inflammatory, and anti-apoptotic 
effects, and is important is maintaining the redox state of 
the cell (36). CO is an important signaling molecule in its 
own right, causing vessel relaxation through calcium and 
potassium dependent channels, as well through soluble 
guanylyl cyclase (sGC) and cyclic GMP, and mediating 
additional anti-platelet, anti-apoptotic (endothelial cells), 
anti-proliferative (vascular smooth muscle cells), and 
neurotransmission effects (37). CO also acts through 
p38MAPK to cause inhibition of pro-inflammatory 
cy tok ine s ,  such  a s  t i s sue  nec ro s i s  f a c to r- a lpha  
(TNF-α) (38), and through vascular endothelial growth 
factor (VEGF) to stimulate angiogenesis (39). Finally, 
even Fe2+ with its binding to ferritin and the iron ATPase 
pump can have antioxidant, anti-inflammatory and anti-
apoptotic effects (40). So wholesale inhibition of HO 
could have a myriad of potential adverse side effects while 
trying to modulate bilirubin production for the purpose of 
controlling TB levels during the transitional period after 
birth (41).

There are also a number of endogenous sources of  
CO (15). Heme degradation accounts for about 86% 
coming from senescing RBCs (~70%), ineffective 
erythropoiesis (~9%), and other hemoproteins (~21%) (42).  
The remaining 14% comes from lipid peroxidation 
(variable) and photo-oxidation (variable) (42). The latter 
sources can be quite large under pathologic conditions, 
such as lung injury or infection (43). Estimates of total 
bilirubin production by measuring CO excretion in 
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breath, ETCOc, or COHbc levels have been performed 
in rodents and primates, including human infants (2,16). 
The validity of the method has been proven in a rat model 
of hemolysis in which a precise amount of heme can be 
recovered as CO in the breath of the animals. However, 
in most circumstances, certainly in clinical settings, the 
estimates are only approximations of the actual production 
rate of bilirubin because the exact contribution from non-
heme sources cannot be known for certain without labeling 
techniques, which are not feasible in the clinical setting or 
without labeling of the carbon atom in the animal models 
(44,45). Nonetheless, estimates of total bilirubin production 
have been made for most clinical conditions in the human 
newborn. A variety of ETCOc devices have been used for 
estimating bilirubin production in babies (16).

With tools to estimate total bilirubin production, 
the ability to test drugs that could inhibit the process 
could be easily screened. The most important category 
of drugs for this purpose has been the heme analogs or 
metalloporphyrins (Mps), which are competitive inhibitors 
of HO (46-50). The criteria for selecting one of these 
compounds, most of which are synthetic, include the 
following desirable characteristics: contains a biocompatible 
central metal, potent HO inhibition, negligible degradation, 
negligible inhibition of other enzymes, negligible 
photoreactivity, optimal duration of action, and negligible 
HO upregulation (49). The HO-1-luciferase (-luc) transgenic 
mouse was created in order to monitor the effect of such 
inhibitors on HO-1 gene expression in living mice treated 
with the compounds by monitoring the emission of 
photons (bioluminescence) as HO-1 was expressed (51). 
This technique is useful for studying in vivo expression 
patterns and served originally as a model system for this 
technology because the HO reaction is tightly regulated 
due to the toxicity of CO, Fe2+, and bilirubin; tissue-specific 
expression; developmental regulation; its potential as a 
target for therapy; and the fact the ex vivo assays are slow 
and provide only a “snapshot” of the biological process (52).  
Thus, rapid screening for homozygosity is possible with 
bioluminescence imaging (BLI), and selected Mps could be 
easily screened for the effects on HO-1 gene expression (53). 
Although tin mesoporphyrin (SnMP) had many desirable 
characteristics, especially potency, and was introduced 
into clinical trials (54-57), it is photoreactive, had a 
protracted duration of action, and was not rapidly excreted 
or metabolized (58). Its approval for human use has been 
delayed for this reason (57,58). Zinc protoporphyrin (ZnPP), 
although less potent, is still effective, short-acting, and can 

be metabolized with release of an essential trace metal (49).  
Moreover, it is naturally occurring in humans (59). 
Studies in Rhesus monkeys (60) and newborn rats (61) 
with increased bilirubin production caused by hemolysis 
demonstrated its efficacy. Because it is difficult to keep in 
solution, a special formulation had to be prepared for its 
administration which could be delivered orally, giving it 
one more desirable characteristic (62,63). Compared to 
various possible formulations, a lipid preparation of ZnPP 
had adequate in vitro inhibitory potency and no chemical 
toxicity or phototoxicity (63).

Collectively, these studies have set the stage for 
further animal and ultimately human studies in order 
to ensure safety and efficacy. Notably, the ZnPP lipid 
formulation looks promising as an inhibitor of in vivo 
bilirubin production in a heme-loaded newborn mouse 
model (62). Combined with the identification of high 
bilirubin producers, such an approach would revolutionize 
the management of neonatal jaundice and provide a 
viable alternative to phototherapy where its risks might 
outweigh its benefits in the ELBW babies. Moreover, a 
new therapeutic paradigm might be possible. It would 
begin with identification and isolation of fetal cell-free (cf)
RNA or cfDNA in the circulation of the mother (64,65), 
the creation of a genetic profile of jaundice risk looking 
for polymorphisms associated with decrease UGT1A1 
activity (12), or HO-1 polymorphisms (66) followed 
by confirmation of any existing pathophysiology with 
noninvasive monitoring after birth, and targeting individual 
babies for chemoprevention, thus avoiding phototherapy 
altogether or at least minimizing its use. In this way, all the 
toxic effects of the HO/CO pathway might be mitigated 
while all the beneficial effects are retained.

Knowing whether a baby is a high producer of bilirubin 
is important for the clinician and should be available as a 
clinical measure, as it can be used to identify babies who 
would be likely to benefit from inhibition of bilirubin 
production. This approach would be disruptive to existing 
markets for phototherapy and change dramatically 
the management strategies for ELBW infants with 
hyperbilirubinemia.
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