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Background and Objective: Globally, an estimated 11% of births, approximately 15 million babies are 
born preterm per year. Preterm infants have unique nutritional needs. However, gastrointestinal immaturity 
and congenital anomalies often preclude enteral feeding, necessitating intravenously administered total 
parenteral nutrition (TPN). Metabolic immaturity affects amino acid metabolism and requirements, decreases 
tolerance to excess intakes and ability to synthesize dispensable amino acids. Parenterally fed neonates therefore 
are at risk of toxicity and deficiency of amino acids which negatively affect clinical outcomes. The objectives 
of this narrative review were to summarize current knowledge on amino acid requirements and describe the 
importance of appropriate composition of amino acids in parenteral nutrition formulas for neonates.
Methods: Studies published on MEDLINE between 1950 and 2020 were included if they were conducted 
to determine amino acid requirements, evaluate parenteral amino acid solution, splanchnic amino acid 
metabolism in neonates or neonatal outcomes related to amino acid intake and protein quality.
Key Content and Findings: The gut is an important site of amino acid metabolism and when it is bypassed, 
the requirements for many amino acids are lower for TPN than for enteral feeding. Yet, the amino acid profiles 
in current commercial TPN formulas are based on extrapolations from plasma amino acid concentrations, human 
cord blood or human breast milk composition. The requirement for four amino acids in the TPN fed human 
neonate have been estimated and are up to 90% lower or higher than what is present in current commercial 
solutions. These data provide confirmation that current amino acid solutions for the neonate are inappropriate.
Conclusions: We conclude that Much work is left to be done to determine the requirements for the 
remaining indispensable and conditionally indispensable amino acids in the parenterally fed neonate. Only 
then, can an optimal pattern of amino acids be combined for formulating an appropriate parenteral amino 
acid solution for this vulnerable patient population.
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Introduction

The global preterm birth rate is 11%, accounting for about 
15 million live births (1) annually. Preterm neonates are 
metabolically immature, born during a period of rapid 
in utero growth and brain development, when nutrient 
requirements are high and nutritional imbalances can 
adversely affect outcome (2-5). Gut immaturity, congenital 
and acquired gastrointestinal disorders, which all occur 
frequently in preterm infants, can preclude enteral 
feeding necessitating the use of parenteral nutrition. 
Different centers have differing protocols regarding when 
to commence and how to advance parenteral nutrition; 
particularly relating to amino acid delivery (6-10). Some 
maintain that parenteral nutrition should be initiated 
within the first 24 h after birth with high amino acid 
intake (3.0–3.5 g.kg−1.d−1) while many argue for a slower, 
less aggressive introduction and progression (11). More 
recent data suggest that withholding parenteral nutrition 
for one week in term neonates was clinically superior to 
initiation within 24 h (12). However, regardless of the 
mode of introduction and advancement, many preterm 
infants require parenteral nutrition for days to months 
of life. The importance of amino acids for stimulation 
and maintenance of growth and bodily functions is well 
understood. Beyond their roles in protein synthesis and 
growth, amino acids perform functional and regulatory 
roles, and their intakes, physiological concentrations, as 
well as concentrations of their metabolites are associated 
with clinical outcomes in preterm infants (2,13-21). This 
demonstrates that knowledge of amino acid requirements is 
necessary in order to provide the ideal amino acid solution 
for parenterally fed neonates. However, current knowledge 
of amino acid requirements in total parenteral nutrition 
(TPN) fed neonates is inadequate and amino acid solutions 
used in TPN feeding are based on best judgements rather 
than scientifically derived estimates of requirements in this 
vulnerable population. 

The objective of this review is to summarize current 
knowledge on amino acid requirements and describe 
the importance of appropriate composition of amino 
acids in parenteral nutrition formulas for neonates. 
The physiological basis for revising current amino acid 
solutions used in parenteral feeding of neonates is also 
provided. We present the following article in accordance 
with the Narrative Review reporting checklist (available at 
https://pm.amegroups.com/article/view/10.21037/pm-21-
27/rc).

Methods

The authors conducted a literature review  with a research 
database search using the following keywords:

“amino acid requirements and neonates”;
“amino acid requirements and parenterally fed neonates”;
“essential amino acid requirements and neonates”. 
In addition, personal conversation with the authors of 

the current manuscript was made to identify publications. 
Finally, we also review the references list of retrieved 
publications. A number of publications between 1950 to 
Aug 2020 were identified and subsequently evaluated to 
determine if they referred to amino acid requirement in 
human neonates and neonatal piglets, effect of parenteral 
nutrition on growth and body composition, splanchnic 
metabolism of amino acids, neonatal outcomes related to 
amino acid intake and impact of protein quality on neonatal 
growth. Papers cited at the back of the manuscript were 
those agreed upon by all authors to be included in this 
narrative review.

Discussion

Classification of amino acids and importance of amino acid 
composition

Classically the α-amino acids, that are the constituents 
of protein, were divided into essential (indispensable) 
and non-essential (dispensable) (Table 1). Indispensable 
amino acids are those which cannot be synthesized in the 
body and must be obtained exogenously from the diet. 
Dispensable amino acids on the other hand are those which 
can be synthesized endogenously. In infants, the classical 

Table 1 Amino acid classification

Indispensable Dispensable Conditionally indispensable

Isoleucine Alanine Cysteine

Leucine Aspartate Tyrosine

Valine Glutamate Glycine

Phenylalanine Serine Arginine

Tryptophan Proline

Methionine Asparagine

Lysine Glutamine

Threonine

Histidine

https://pm.amegroups.com/article/view/10.21037/pm-21-27/rc
https://pm.amegroups.com/article/view/10.21037/pm-21-27/rc
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indispensable amino acids are: the branched chain amino 
acids (isoleucine, leucine and valine); histidine; lysine; 
phenylalanine; methionine, threonine; and tryptophan (22). 
We now recognize that quantitatively important functions 
of amino acids, which do not involve protein synthesis, must 
also be considered. These would include the role of cysteine 
and glycine as components of the major antioxidant, 
glutathione (23-28), as well as the role of arginine in nitric 
oxide (NO) synthesis and creatine synthesis (14,29). Hence, 
as knowledge has accumulated it has been recognized that 
most of the “dispensable” amino acids are conditionally 
indispensable (30) (Table 1). That is to say that in illness and 
in immaturity (both of which apply to premature infants) 
endogenous synthesis of these amino acids is inadequate. 
Thus of the 20 constituent amino acids, which make up 
body proteins, perhaps only alanine, aspartate, serine and 
glutamate are truly dispensable (22). 

Protein quality is a term which refers to a mixture of 
amino acids in proportions which optimize growth, net 
protein synthesis (i.e., synthesis minus breakdown) and 
nitrogen accretion, without supplying any amino acid(s) 
in an excess, potentially toxic amount. Neonatologists 
(clinicians) often discuss protein quantity when determining 
nutritional intake. However, very little attention is paid to 
protein quality. 

Current amino acid solutions used in TPN feeding of 
neonates

Preterm neonates are at increased risk of poor growth, as 
well as life-threatening conditions including respiratory 
distress syndrome, chronic lung disease, persistent 
pulmonary hypertension, necrotizing enterocolitis (NEC), 
and neurodevelopmental delay (31-35). While medical 
advances have increased survival of babies born prematurely, 
premature infants have poorer outcomes (which extends 
beyond infancy and childhood) than term infants (36). 
Optimal nutrition during the early post-natal period is 
a well-recognized strategy to decrease risk of adverse 
outcomes in this vulnerable population (16,37-40). 

When less than optimal amino acid mixtures are fed 
parenterally to growing premature infants (41), growth and 
nitrogen accretion are sub-optimal (42,43). In addition, a 
variety of aberrations are seen in plasma amino acid profiles 
(2,20,44,45). However, when the quality of the amino 
acid mixture is improved, enhanced growth and protein 
accretion are achieved, largely by a reduction in endogenous 
protein degradation (46,47). 

Current amino acid solutions used in parenteral feeding 
are patterned after three different approaches. The first 
approach, patterned the amino acid mixture based on the 
amino acid composition of egg protein (48), for use in 
adults. This approach was extrapolated to neonates but 
instead patterned the amino acids after human milk amino 
acid composition, the ideal protein source for enterally fed 
infants. This approach presupposes that the splanchnic bed 
(gut and liver) absorbs and metabolizes all enterally fed 
amino acids in the same way and that all enterally consumed 
amino acids enter the circulation—an assumption that 
isotope studies have disproved (42,49-55). The second 
approach was to use the amino acid composition of cord 
blood. This commercial solution is currently widely used in 
Neonatal Intensive Care Units (NICU) in North America 
and Europe (47,56). The third approach was to computer 
model the plasma amino acid response to parenteral amino 
acid administration (56). A commercial paediatric amino 
acid solution was developed based on this approach and 
is commonly used in NICUs in the USA. This approach 
cannot account for rates of entry and exit of amino acids 
from the plasma pool but presupposes that optimal plasma 
amino acid concentrations are known. Table 2 presents the 
composition of the two most common commercial amino 
acid solutions for neonates.

Demonstrating the importance of protein quality, leucine 
turnover in preterm infants was assessed in response to two 
of the three amino acid solutions; the one patterned after 
cord blood (Primene®) and the other modeled after plasma 
amino acids (Trophamine®) (47). Despite a higher intake 
of leucine in the Trophamine group, leucine breakdown 
on day 7 was higher in the infants receiving Trophamine 
than those receiving Primene, indicating that protein 
quality was affecting leucine metabolism. Whilst this 
suggests that Primene may have a better protein quality/
amino acid profile compared to Trophamine, this does 
not provide evidence that the amino acid composition is 
optimal. Another important difference between Primene® 
and Trophamine® is the tyrosine source. While Primene® 
contains L-tyrosine, the tyrosine source in Trophamine® 
is N-acetyl-L-tyrosine which has a poor bioavailability 
in neonates (56). Indeed, as an initial step towards 
assessing parenteral amino acid requirements, others 
have evaluated available commercial amino acid solutions 
supplied to critically ill children (57). They found that 
the concentrations of amino acids in current amino acid 
solution used for parenteral feeding were either inadequate 
or excessive and concluded that “amino acid composition 
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of parenteral formulas is variable and lacks scientific support. 
Parenteral amino acid intakes should be based on measured 
requirements to maintain nutrition and functional balance and 
on a knowledge of toxicity” (57). In a more recent review on 
amino acid intake in parenterally fed newborn infants, the 
authors concluded that” adequately powered trials in very 
preterm infants are required to determine the optimal 
intake of amino acid” (58). Although they were referring to 
very preterm newborn infants, their observation underlines 
the lack of adequate information on amino requirements for 
all parenterally fed neonates. 

Methods for determining amino acid requirements

Traditionally, amino acid requirements were studied using 

nitrogen balance in response to feeding graded intakes of 
the test amino acids (59). This approach has limitations 
which have been extensively reviewed (60). One such 
limitation is the long period required to adapt subjects 
to each amino acid intake (60). As far as neonates are 
concerned such studies would require exposing the infant 
to a deficient intake of the test amino acids for 7 to 10 days, 
which is unethical. Furthermore, nitrogen balance is not 
sensitive enough to detect differences in protein quality (61). 
Hence, alternate methods based on amino acid oxidation 
(62,63) have been developed. Recent reviews of this topic 
may be found in (64,65). Indicator oxidation/balance is now 
recognized as the optimal methods for determining amino 
acid requirements (66,67). Most applicable to neonates 
is the minimally invasive indicator amino acid oxidation 
method, since the infant is exposed to a deficient, or excess 
intake for only a period of 24 h and only breath and urine 
are collected (20,68-70).

The development of the indicator amino acid oxidation 
method provided a major breakthrough for the study of 
amino acid requirements (62,71). However, it was the 
development and validation of the neonatal piglet model 
(72-74) which allowed for a comprehensive assessment of 
the effect of parenteral nutrition on amino acid requirements 
and metabolism in neonates. Similarities in anatomy, 
physiology and metabolism has deemed the neonatal piglet 
the best model for the human neonate (75,76). 

Amino acid requirements of parenterally fed neonates

Using the neonatal piglet model, the group led by 
Ball  and Pencharz worked for almost 30 years to 
systematically determine parenteral requirements for 
dietary indispensable and conditionally indispensable 
amino acids and compared the estimates with enteral 
requirements (51-54,77-80). They began with an estimate 
of the phenylalanine requirement (79) using direct amino 
acid oxidation method and from then used phenylalanine 
as the indicator amino acid to estimate the requirement for 
lysine (78), tyrosine (77), threonine (52), methionine in the 
absence and presence of dietary cysteine (51,81), branched 
chain amino acids (leucine, isoleucine and valine) (53)  
and tryptophan (54). The most novel and significant 
findings are that the parenteral threonine, methionine 
and total branched chain amino acid requirements are 
40%, 69%, and 56% respectively of enteral requirements, 
while tryptophan requirements are not altered by the 
route of feeding (51-54) (Table 3). These groundbreaking 

Table 2 Amino acid composition of the most common used 
neonatal amino acid solutions (% amino acid by weight)

AA Primene® (Baxter) Trophamine® (McGaw)

Ile 6.7 8.2

Leu 9.9 14.0

Val 7.6 7.8

Lys 10.9 8.2

Met 2.4 3.4

Cys 1.9 0.1

Phe 4.2 4.8

Tyr 0.91 2.32

Thr 3.7 4.2

Trp 2.0 2.0

His 3.8 4.8

Arg 8.4 12.2

Gly 4.0 3.6

Ala 7.9 5.4

Asp 6.0 3.2

Glu 9.9 5.0

Pro 3.0 6.8

Ser 4.0 3.8

Tau 0.6 0.2

Orn 2.2 0

Total (mg) 105.4 101.8

¹, supplied as L-tyrosine and 2, N-acetyl-tyrosine.
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Table 3 Amino acid requirements of the parenterally fed neonatal piglets and human neonate compared with enteral requirement

Model Amino acid
Parenteral 

requirement
Enteral 

requirement

Present in 
commercial TPN 

solutions 
References

Neonatal piglet Phenylalanine (in the presence of excess tyrosine) 0.45 g/kg/d ND (79)

Tyrosine 0.31 g/kg/d ND (77)

Lysine 0.79 g/kg/d ND (78)

Methionine (in the absence of cysteine) 0.29 g/kg/d 0.42 g/kg/d (51)

Methionine (in the presence of cysteine) 0.18 g/kg/d 0.25 g/kg/d (81)

Branch chain amino acids 1.53 g/kg/d 2.64 g/kg/d (53)

Threonine 0.19 g/kg/d 0.42 g/kg/d (52)

Tryptophan 0.145 g/kg/d 0.127 g/kg/d (54)

Human neonates Tyrosine 74 mg/kg/d ND <23 mg/kg/d (82)

Methionine (in the absence of cysteine) 49 mg/kg/d ND 72–102 mg/kg/d (20)

Lysine 105 mg/kg/d 130 mg/kg/d 221–337 mg/kg/d (69,83)

Threonine 33 mg/kg/d 68 mg/kg/d 111–126 mg/kg/d (68,84)

ND, not done; TPN, total parenteral nutrition.

results demonstrate that the gut is an important site 
of amino acid metabolism (42,49,85) and when it is 
bypassed the requirements for most amino acids during 
parenteral feeding are significantly lower. These findings 
were independently confirmed by others using different 
methodologies (73,74). Using the piglet model, Stoll 
et al. demonstrated that approximately 30% of dietary 
amino acid intake is utilized on first-pass metabolism. 
Interestingly approximately 60% of the amino acid taken 
up on first pass is catabolized by the intestine (73,74). The 
authors propose that this could be a significant source of 
energy for the small intestinal mucosa (73,74). Indeed 
whether used as a source of energy or for incorporation 
into mucin as in the case of threonine (86), small intestinal 
metabolism contributes to a significant portion of several 
amino acid requirements as demonstrated by the number 
of studies showing lower amino acid requirements of TPN 
fed compared to enterally fed neonates (51,53,81,86). 

These differences in amino acid metabolism between routes 
of feeding need consideration when designing an amino acid 
solution for neonates. Additionally the neonate cannot be 
considered a small adult as immaturity of enzyme pathways 
and underdeveloped organs may be susceptible to the effects 
of early nutrition (3-5,87-89). Some have shown that excess 
protein and amino acid intakes have been linked to permanent 
damage to the brain (2,90), while more recent systematic 

review has provided inconclusive results (58). In low-birth-
weight infants (42), splanchnic extraction of leucine was 
observed to be twice as high as in adults (91-93) demonstrating 
significant differences in amino acid metabolism between the 
neonate and adult human. The piglet derived estimates also 
supported the conclusions made by others that current amino 
acid solutions patterned after cord blood, plasma amino acids 
or human milk are inadequate (47,57). 

Building on knowledge and experience gained from 
the piglet studies, the minimally invasive indicator amino 
acid oxidation method (94) was applied in parenterally fed 
human neonates to determine the requirements for total 
sulphur amino acid (20) (as methionine only), threonine (68) 
lysine (69) and tyrosine (82). Since piglets grow at 5 times 
the rate of the human neonate, it was hypothesized that the 
requirement in the human neonate will be 1/5th the estimate 
obtained from the neonatal piglet model. While it was 
possible to accurately predict the requirement for methionine 
and threonine, it was not so for tyrosine and lysine. Thus, 
is it important that the requirement for each amino acid be 
derived separately in human neonates. More importantly 
however, the derived human neonate estimates were up to 
90% lower for methionine, threonine and lysine but 70% 
higher for tyrosine than in current commercial amino acid 
solutions (Table 4). 

In addition, using the indicator amino acid oxidation 
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method, van Goudoever’s group has estimated the 
requirement for several indispensable amino acids in 
enterally fed infants (83,84,95-98). When compared to the 
parenterally derived estimates (68,69), their estimates of 
threonine (84) and lysine (83) requirements in enterally fed 
neonates were 100% and 25% higher. This provides support 
for the data obtained in the piglet model that when the gut 
is bypassed, amino acid requirements for most amino acids 
are lower. Furthermore, this provides additional evidence to 
support the conclusion that current commercial amino acid 
solutions for parenterally fed neonates are inadequate (99). 

Importance of optimal parenteral amino acid therapy for 
premature infants

Preterm neonates are vulnerable and complex patients and 
the long-term consequences of providing too little or too 
much amino acids are not known. Growth is a dynamic 
process, which from the view of protein metabolism is, 
a positive balance between whole body protein synthesis 
and breakdown (100). Accretion of body proteins during 
growth is dependent on optimal intakes of all indispensable 
amino acids as well as an adequate supply of dispensable 
amino acids (or nitrogen for their synthesis), plus non-
protein energy (101). If the pattern of amino acids is not 
ideal, the rate of protein synthesis, and in turn growth, will 
be determined by the first limiting amino acid. The excess 
amounts of all other amino acids must be oxidized which 
could overload immature degradative pathways and increase 
the risk of toxicity (99). Provision of the correct balance of 
amino acids is also important because of the roles of specific 
amino acids in health outcomes, beyond protein synthesis 
and growth. Data from the piglet model suggest that the 
ideal amino acid composition (protein quality) of amino 
acid solutions used for parenteral fed preterm neonates will 
be different from enterally fed proteins (51-53). 

Traditionally, the main focus of nutrition management 

in preterm infants has been to duplicate in utero growth 
rates (102) with a “more is better” approach, and little 
understanding of the metabolic needs of individual nutrients, 
particularly protein and amino acids. However, there is 
evidence that premature babies are vulnerable to the neuro-
cognitive programming effects of early nutrition (87). For 
example, the brain of preterm neonates is sensitive to the 
balance of amino acids in human milk vs. preterm formula 
(5,89) and older data demonstrate the vulnerability of the 
brain to excess protein and amino acid intakes affecting 
school performance (2,90). There is increasing evidence 
that the amino acid arginine plays a key role in the 
health of the premature neonate, in addition to its role in 
protein synthesis, and ammonia clearance, through the 
urea cycle (13). In the preterm neonate it exerts additional 
effects as a precursor of NO, which affects lung (14,15) and 
gut health (16,18). Further, the balance between the dietary 
sulphur amino acids methionine and cysteine affect plasma 
homocysteine concentration in preterm neonates (19,20) in 
whom hyperhomocysteinemia is a risk factor for ischemic and 
hemorrhagic stroke (21). This emerging body of evidence on 
the effects of early nutrition and the balance of nutrients on 
long-term outcomes provides a new lens with which current 
amino acid solutions for parenterally fed neonates should be 
evaluated. 

The metabolic and physiological basis for a revised amino 
acid solution for the parenteral fed neonate

In addition to differences in amino acid requirements 
between enterally and parenterally fed neonates, data 
from neonatal piglets demonstrate that the amino acid 
composition (protein quality) of amino acid solutions 
used for TPN fed preterm neonates should be largely 
different from enterally fed proteins (51-53). Therefore, 
the requirements for all indispensable and conditionally 
indispensable amino acids should be determined as 

Table 4 Amino acid intake of neonates on parenteral nutrition receiving protein intake of 3.0 g/kg/d compared to estimated requirements using 
the indicator amino acid oxidation (IAAO) method

Amino acid
Intake from Primene® 

(Baxter) (mg/kg/d)
Intake from Trophamine® 

(McGaw) (mg/kg/d)
Amino acid requirement derived  

using the IAAO method (mg/kg/d)
References

Lysine 327 246 104.9 (69)

Methionine 72.0 102 49.0 (20)

Threonine 111 126 33.0 (68)

Tyrosine 27.0 69.0 74.0 (82)
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precisely as possible in order to establish an appropriate 
proportion of amino acids in the amino acid mixtures, used 
for parenterally fed preterm neonates. In particular, the 
following amino acids need special consideration.

Arginine
Using the neonatal piglet model, it was demonstrated 
that arginine is an indispensable amino acid in preterm 
parenterally fed neonates (55,103). Neonatal piglets receiving 
arginine-free TPN develop severe hyperammonemia within 
hours (55). Many authors have reported on hyperammonemia 
in preterm TPN fed infants (44,104) which can be corrected 
by arginine supplementation (104). Our group demonstrated 
in piglets (55,105,106) as well as human neonates (107) that 
de novo arginine synthesis in neonates is dependent on small 
intestinal metabolism. Arginine is the only known biological 
precursor of NO and inadequate arginine has been associated 
with neonatal necrotizing enterocolits and persistent 
pulmonary hypertension (14,17,108,109). While arginine 
supplementation reduced all stage necrotizing enterocolits 
in a randomized control trial (17), the data was not as clear 
regarding persistent pulmonary hypertension. More recent 
data demonstrate that TPN fed preterm infants continue to 
have low plasma arginine despite adequate essential amino 
acid and protein intakes (110,111) and that the low plasma 
arginine was associated with poor glucose control and plasma 
arginine intake (112). Badurdeen et al. (113) proposed that 
arginine deficiency is the key factor which increases the 
susceptibility of neonates to infections. More recent data by 
Zheng et al. (114), showed that arginine supplementation to 
the diet of enterally fed low-birth-weight neonatal piglets 
improved intestinal barrier function and antioxidant capacity 
as well as weight gain. Arginine content of commercial TPN 
solution is the most variable of all essential amino acids 
ranging from 4.7% to 12.3% (99). Premakumar et al. (112) 
recently suggested that arginine concentration of amino acid 
solutions for preterm neonates should be 17–20%. In order 
to prevent deficiency or toxicity, the dietary requirement for 
arginine should be defined in the parenterally fed neonate. 

Methionine and cysteine
Methionine and cysteine are the sulphur containing amino 
acids. Cysteine is generally considered dispensable because 
under normal conditions, it can be formed from methionine. 
Current TPN solutions contain little to no cysteine because 
cysteine is unstable in solution, oxidized to the insoluble 
form, cystine (115). Therefore, commercial TPN solutions 
contain relatively high methionine concentrations to 

meet the total sulphur amino acid requirement. Despite 
this practice, many published studies report low plasma 
cysteine in preterm neonates receiving cysteine-free, high 
methionine TPN (116-119). Therefore, for many years 
cysteine was believed to be an essential amino acids in the 
preterm neonate (120). However, Zlotkin et al. were the 
first to demonstrate that preterm TPN fed neonates did 
not need pre- formed cysteine to maintain adequate growth 
and nitrogen balance (115). Although this was confirmed 
in neonatal piglet and human studies (20,51,121,122), 
when the total sulphur amino acids intake was provided as 
methionine only, hyperhomocysteinemia and high plasma 
methionine developed in both piglets and human neonates 
(19,20). This demonstrates that although neonates could 
synthesize adequate cysteine from methionine for growth, 
sulphur amino acids would be better provided as a balance 
between methionine and cysteine to avoid overload of the 
immature catabolic pathway (123). Methionine is considered 
one of the most toxic amino acids (124,125) and high 
plasma methionine has been identified as a contributing 
factor in the pathogenesis of TPN-associated cholestasis in 
neonates (126). 

In addition to their role in protein synthesis, the sulphur 
amino acids have been of particular interest because cysteine 
is a key component of glutathione (127). Glutathione 
(GSH) is the most prevalent intracellular thiol (24), and 
the [GSH]:[GSSG] ratio is used as an indicator of cellular 
redox state. GSH is also the most important endogenous 
antioxidant (128). In TPN fed neonates, it was shown that 
when sufficient methionine is given to meet the needs 
for protein synthesis, additional cysteine did not increase 
GSH concentration or rates of synthesis (129). This along 
with data from van Goudoever’s group (130) provide 
confirmation that cysteine is not a conditionally essential 
amino acid in neonates. 

Although adequate cysteine for growth and GSH 
synthesis can be provided as methionine only, high plasma 
methionine and hyperhomocysteinemia observed when 
the total sulphur amino acids is provided as methionine 
only suggest that provisions of the sulphur amino acids as 
a balance between methionine and cysteine are important 
considerations when designing an amino acid solution 
for the TPN fed neonate. This is now possible due to the 
availability of a soluble form of cysteine; N-acetyl cysteine 
which is highly bioavailable precursor of cysteine (129,131) 
to meet the needs for nitrogen accretion and growth in the 
neonate. Currently, no commercial amino acid solution 
contains this cysteine precursor. 



Pediatric Medicine, 2022Page 8 of 14

© Pediatric Medicine. All rights reserved. Pediatr Med 2022;5:29 | http://dx.doi.org/10.21037/pm-21-27

Phenylalanine and tyrosine
Phenylalanine and tyrosine are the aromatic amino acids. 
Phenylalanine is indispensable and is the precursor for 
tyrosine which in healthy individuals is dispensable. 
Tyrosine has low solubility; therefore, excess phenylalanine 
is added to TPN to meet the needs of the total aromatic 
acids. However, hyperphenylalaninemia and low plasma 
tyrosine have been observed in infants receiving high 
phenylalanine- low tyrosine containing TPN (132-134). 
This suggests that phenylalanine hydroxylation to tyrosine 
is limited making tyrosine a conditionally indispensable 
amino acid in TPN fed neonates. The requirement for 
tyrosine in TPN fed preterm neonates was estimated 
using commercial TPN solutions with graded amounts 
of the soluble form of tyrosine (glycyl-tyrosine) (82). 
The neonates had high urinary phenylalanine as well as 
metabolites of phenylalanine catabolism indicating an 
overload of the catabolic pathway involved in phenylalanine 
degradation (135). The derived tyrosine requirement was 
over 70% higher than available in current TPN solutions 
(Table 3). Data from the neonatal piglet model previously 
demonstrated that in TPN fed neonatal piglets, there is 
a limit to which excess phenylalanine can be oxidized and 
that free phenylalanine accumulates beyond this limit (79).  
This is very concerning since the long-term effects of 
high phenylalanine in TPN fed preterm neonates is not 
known. We do know however, that high phenylalanine in 
patients with phenylketonuria is associated with significant 
neurocognitive damage (136-138). It is now possible to 
provide tyrosine as glycyl-tyrosine, a soluble and highly 
bioavailable precursor of tyrosine (77,82), and discontinue 
the practice of providing excessive phenylalanine to meet 
the needs for tyrosine in parenteral neonatal amino acid 
solutions.

Leucine, isoleucine, valine
From the neonatal piglet model it was observed that 
parenteral requirement for the BCAA; leucine, isoleucine 
and valine were only 56% of the enteral requirement (53). 
In addition, the plasma amino acid pattern observed in the 
TPN and enterally fed piglets suggest that the optimum 
ratio of BCAA differ between routes of feeding (53). The 
pattern of BCAA in TPN solutions for preterm neonates 
is similar to human milk but the absolute amount of each 
BCAA is higher in TPN (99) than in human milk. This 
suggest, current BCAA composition and ratios of current 
TPN solutions are inappropriate for TPN fed neonates.

Tryptophan
Beyond its role in protein synthesis tryptophan is important 
for synthesis of the neurotransmitter serotonin and the 
hormone melatonin (139). Interestingly in neonatal piglet 
studies the TPN and enteral requirements for tryptophan 
were not different (54). Based on extrapolations from 
that data (54), the tryptophan content of current TPN 
solutions is likely double the requirement of the preterm 
TPN fed neonate. However, long-term effects of excessive 
tryptophan intake in TPN fed preterm neonates is 
unknown. Therefore, it is important to accurately define its 
requirement. 

Histidine
Histidine is an essential amino acid in preterm infants (22). 
Beyond its role in protein synthesis it is involved in allergic 
reactions, and modulation of the immune response in skin. 
It is also involved in regulation of gut function (140). No 
data exist on histidine requirement in the TPN fed piglet or 
human neonate. Hence it is not possible to assess whether 
current commercial amino acids have an excess or deficiency 
of this amino acid. 

Glutamine
Conclusive evidence on the essentiality of glutamine in 
neonates is lacking. Conflicting data exist on its efficacy 
in critically ill patients. While some data suggest that 
glutamine supplementation reduced mortality in critically 
ill adults (141), more recent data suggest no effect of 
glutamine supplementation (142). Glutamine is the 
most abundant amino acid in the muscle and plasma of 
humans (143). It is not included in commercial amino 
acid solutions because it is unstable in solution. Beyond 
its role in protein synthesis glutamine is involved in many 
metabolic reactions including the synthesis of glutathione 
(via glutamate). It is believed that during stress glutamine 
production may be insufficient to meet increased demands 
especially in low-birth-weight neonates who have limited 
reserve (143). Although glutamine supplementation 
did not result in apparent biochemical risk in TPN 
fed low-birth-weight infants (144), decreased tyrosine 
and phenylalanine concentrations were observed in the 
glutamine supplemented group. Furthermore, glutamine 
supplementation in parenterally fed neonatal piglets 
resulted in expansion of the plasma volume; a component 
of the extracellular fluid and indicated that glutamine is not 
conditionally indispensable in neonates (145). 
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Summary & conclusions

Despite the increased need for TPN in premature infants 
and the recognition that amino acid intake affects clinical 
outcomes, the scientifically derived requirement estimates 
for all indispensable and conditionally indispensable amino 
acids in TPN fed preterm infants have not been derived. 
Amino acid composition of current commercial solutions 
are estimates and neonatologists agree that “amino acid 
composition of parenteral formulas is variable and lacks 
scientific support”. Preterm neonates are extremely complex 
and vulnerable patients and uncertainty exists concerning 
the long-term effects of excess or inadequate amino acid 
intakes. Randomized clinical trials demonstrate that long-
term cognitive performance of preterm infants is adversely 
affected by suboptimal early nutrition (3). 

Using a neonatal piglet model, it was demonstrated 
that the gut variably utilizes dietary amino acids (ranging 
from nil for tryptophan to 60% for threonine). It is now 
confirmed that both tyrosine and arginine are conditionally 
essential and that the sulphur amino acids are best provided 
in TPN as a balance between the two to prevent high 
plasma methionine and homocysteine in the preterm 
neonate. These observations have been made in human 
neonates, in whom the requirements for tyrosine, lysine, 
maximum methionine and threonine have been estimated. 
The quantitative significance of amino acids beyond their 
roles in protein synthesis and the impact of prematurity are 
important consideration when designing an optimal amino 
acid solution for the parenterally fed neonate. In addition, 
neonates are not small adults as differences in amino acid 
metabolism exist between neonates and adults. More 
research needs to be done so that an amino acid solution 
with a scientifically derived pattern of amino acid could be 
designed for neonates requiring parenteral nutrition. 

Limitations of the review

A key limitation of this review is that all data on amino 
acid requirements in the parenterally fed neonates is based 
on data obtained from carbon oxidation studies using the 
indicator amino acid oxidation method. This is because 
data using other methods of which nitrogen balance is the 
classical method is not available. The adequacy of these 
data remains to be tested in long-term trials pending 
the formulation of an amino acid solution designed after 
all indispensable amino acid requirements have been 
estimated. 
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