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Introduction

Assessment of systolic and diastolic function of both the 
left and right ventricles is an integral part of the assessment 
and management of children with heart disease. In the 
setting of congenital heart disease, the systemic ventricle 
may be a morphologic left ventricle, morphologic right 
ventricle, or single functional ventricular chamber of right, 
left or indeterminate morphology. On the other hand, 
the subpulmonary ventricle may be a morphologic right 
ventricle or a morphologic left ventricle. Transthoracic 
echocardiography remains to be the most useful imaging 

modality for evaluating cardiac function in these patient 
populations given its non-invasive nature and wide 
availability. Conventional echocardiographic assessment of 
cardiac function is based on two-dimensional and M-mode 
assessment of wall motion abnormalities, ventricular 
dimensions, volumes and ejection fraction, and Doppler 
assessment of valvar inflow and outflow for evaluation 
of haemodynamic alterations secondary to ventricular 
systolic and diastolic dysfunction. These parameters are 
nonetheless limited by the need for geometric assumptions, 
the qualitative nature of assessment of regional myocardial 
wall motion and thickening, lack of reproducibility, and 
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their load dependence (1,2). Indeed, these conventional 
indices of cardiac function can be regarded as parameters 
of indirect changes consequential to the shortening and 
lengthening of the myocardium in the cardiac cycle. On 
the other hand, direct interrogation of the magnitude and 
rate of myocardial deformation may shed important lights 
on the understanding, diagnosis and prognosis on cardiac 
dysfunction in the paediatric cardiac population. In the past 
decade, technological advances in echocardiographic strain 
imaging have enabled direct interrogation of global and 
regional deformation of the myocardium (3-5). 

What is strain imaging?

During systole, the ventricular myocardium shortens in the 
longitudinal and circumferential dimensions and thickens 
in the radial dimension. During diastole, reciprocal changes 
with lengthening of the myocardium in the longitudinal 
and circumferential dimensions and thinning in the radial 
dimension occur. Strain imaging enables direct evaluation 
of systolic and diastolic deformation of the myocardium 
throughout the cardiac cycle, which is quantified by the 
values of strain and strain rate (6).

Strain is defined as the change in length of a segment 
of myocardium relative to its resting length and is 
expressed as a percentage. Although the three-dimensional 
organization of myocardial fibres results in strain vectors 
that occur in a three-dimensional manner, most clinical 
and research applications have relied on the assessment 
of myocardial strain in each of the principal dimensions. 
Accordingly linear strain is defined by the formula  
ε = ∆L/L0, where ε = strain, ∆L = change in length, and 
L0 = original length (Figure 1). During cardiac systole, 
the ventricular myocardium shortens in the longitudinal 

and circumferential dimensions and thickens in the radial 
dimension. By convention, negative strain represents 
shortening in the longitudinal and circumferential 
dimensions during systole and thinning in the radial 
dimension during diastole, while positive strain describes 
longitudinal and circumferential myocardial lengthening 
during diastole and radial myocardial thickening during 
systole. The velocity of myocardial deformation in the 
respective dimensions is quantified by the strain rate.

Evolution of techniques in strain imaging 

Myocardial strain can be assessed in the experimental 
setting by implantation of sonomicrometry crystals at 
different ventricular myocardial segments and recording 
the changes in myocardial length during the cardiac cycle 
as measured from the transit time of ultrasound between 
the crystals (7). Magnetic resonance imaging-based 
myocardial tagging has been used to assess myocardial 
strain in clinical patients (8), although the technique is 
limited by the relatively low temporal resolution, restricted 
availability, and expense. In the past decade, extension of 
strain imaging technology to two- and three-dimensional 
echocardiography has broadened its utilization in children 
with heart diseases. With regard to echocardiographic 
strain analysis, the technology has evolved from one-
dimensional tissue Doppler imaging (9,10) to two- and, 
more recently, to three-dimensional speckle tracking 
echocardiography (11-18).

Tissue Doppler imaging quantifies regional myocardial 
tissue velocities and the velocity gradient along the length 
of the ventricular wall, based on which regional strain and 
strain rate can be derived (9,10) (Figure 2). This technique 
nonetheless suffers from major limitations. These include 
angle dependency, noisy signals with generation of strain 
and strain rate curves of suboptimal quality, confinement 
of assessment to myocardial segments along the direction 
of the ultrasound beam, and confounding interpretation of 
results due to tethering of non-contractile scar tissue and 
cardiac translational movements (4-6).

Two-dimensional speckle tracking echocardiography 
overcomes some of the limitations of tissue Doppler 
imaging and has emerged as a largely angle-independent 
echocardiographic modality for analysis of myocardial 
strain (11,13). Speckles are natural acoustic markers 
generated from the ref lect ion,  interference,  and 
scattering of ultrasound beams in myocardial tissue. The  
two-dimensional speckle tracking algorithm searches for the 
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Figure 1 Definition strain and strain rate. The strain as measured 
using this method is the Lagrangian strain, which is based on 
a single reference length (L0) against which all subsequent 
deformation is measured. L0 is the reference length at the 
reference time point, which is usually taken at end-diastole for the 
assessment of ventricular strain.
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location of speckles in successive frames, determines their 
spatial displacement, and quantifies myocardial strain in a 
largely angle-independent manner (Figure 2). Global and 
regional myocardial strain can be assessed in three principal 
dimensions of deformation: longitudinal, circumferential, 
and radial. The strain rate is then derived from the linear 
displacement of the speckles divided by the time interval 
between successive frames. Strain assessment using two-
dimensional speckle tracking has demonstrated good 
correlation with sonomicrometry and myocardial tagging 
with magnetic resonance imaging (13,14). Additionally, this 
technique can be applied to images of adequate quality post 
hoc in a vendor-independent platform. There are, however, 
shortcomings inherent to two-dimensional nature of this 
technique. These include the failure to track out-of-plane 
motion of the speckles, inaccurate use of foreshortened 
views to assess longitudinal strain, and the need to perform 
basal and apical acquisitions separately for assessment of 
torsional mechanics. 

To address these limitations and to provide comprehensive 
evaluation of three-dimensional ventricular mechanics, novel 
three-dimensional speckle tracking technology has been 
developed (15,16). The three-dimensional speckle tracking 
algorithm tracks the volumetric box templates, based on 
generation of cubes with the centre being the motion 
estimation point for tracking in successive volumes of the 

cardiac cycle, in the echocardiographic three-dimensional 
dataset (7,16). Compared with two-dimensional speckle 
tracking, three-dimensional speckle tracking is limited to 
a lower frame rate and requires more complex processing. 
Nevertheless, this novel imaging modality has also been 
applied in the paediatric population (17,18) and confers the 
potential advantages of being able to track speckles beyond 
the two-dimensional plane, minimizing errors caused by 
heart-rate variability with separate acquisitions, and efficient 
utilization of single acquisition with simultaneous assessment 
of global and regional myocardial mechanics.

Assessment of ventricular and atrial strain 

LV strain

Studies on LV myocyte arrangements have revealed 
continuum of helical fibre geometries, with the subendocardial 
region having a right- handed helical myofibre geometry, 
which changes gradually into a left-handed helical geometry 
in the subepicardium (19-21). Hence, the myocardial 
fibres are oriented longitudinally in the subendocardium, 
circumferentially in the mid wall, and obliquely in the 
subepicardium. During systole, the left ventricular myocardial 
fibres shorten in the longitudinal and circumferential 
dimensions. The longitudinal and circumferential systolic 
strain shows a small apex-to-base gradient, with strain values 
being higher in apical and mid segments compared with the 
basal segments (5). Shortening and shearing of myocardial 
fibres in the longitudinal and circumferential directions 
result in systolic thickening of the myocardium in the radial 
dimension based on the conservation of mass. 

In studies of LV strain in children, the six-segment 
method of LV strain quantification is commonly used. 
Ventricular end-diastole based on the onset of QRS 
complex is used as the reference time point when 
quantifying ventricular strain. Longitudinal strain is 
obtained from the average of the six segments from the 
apical four-chamber view, and circumferential strain and 
radial strain from averages of the six segments from the 
mid-ventricular level at the papillary muscle (Figure 3). On 
the other hand, LV global longitudinal strain (GLS) and 
strain rate can also be calculated from a 17- or 18-segment 
model from segmental averaging of the apical four-, three-, 
and two-chamber views, while global circumferential strain 
(GCS) and global radial strain (GRS) can be calculated from 
segmental averaging of the short-axis views at the apical, 
mid-ventricular, and basal levels.
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Figure 2 Principles of derivation of strain and strain rate by speckle 
tracking echocardiography (STE) and Doppler tissue imaging 
(DTI). Speckle tracking echocardiography determines myocardial 
strain by tracking the position of speckles in successive frames of 
the cardiac cycle and calculates strain rate from the derivative of 
strain with respect to time. On the other hand, Doppler tissue 
imaging determines strain rate based on the instantaneous velocity 
gradient between two locations in the myocardium and calculates 
myocardial strain by integration of strain rate over time. 
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RV strain

Longitudinal shortening of the myocardial fibres of the RV 
free wall and ventricular septum is the major contributor 
of RV performance. By contrast to the relatively more 
homogenously distribution of strain within the left ventricle, 
the strain distribution is less homogeneous in the right 
ventricle. There is an obvious apex-to-base gradient, with 
strain values highest in the apical segments and outflow  
tract (5). Right ventricular longitudinal function can be 
assessed by quantification of RV GLS based on the entire 
traced contour of the right ventricle including the free wall 
and septum from the apical four-chamber (Figure 3) or RV 
free wall strain obtained from the average strain of the basal, 
middle, and apical segments of the RV lateral free wall. 

Atrial strain

The atrium transforms continuous venous return into 
intermittent ventricular filling and serves the function of 
a reservoir, a conduit, and a pump (22). As a reservoir, the 
atrium collects blood from either the systemic or pulmonary 
venous return and fills during ventricular systole. As a 
conduit, the atrium allows the passage of the blood to 
either the right or the left ventricle during early ventricular 
diastole. As a pump, the atrium contracts during late 
ventricular diastole. Assessment of atrial strain and strain 
rate in different phases of the cardiac cycles may permit 
the evaluation of individual components of atrial function 
(Figures 4,5).

Nomenclature for atrial strain imaging depends on the 
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Figure 3 Illustrations of two-dimensional speckle tracking for quantification of left ventricular (LV) global longitudinal (GLS) and systolic 
(SRs) and early (SRe) and late (SRa) diastolic strain rates (upper panels), LV global circumferential strain (GCS) and regional radial strain 
(middle panels) and right ventricular (RV) GLS, SRs, SRe, and SRa (lower panels).
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selection of the reference time point, which can either be the 
onset of the P (atrial contraction) or QRS (ventricular end-
diastole) wave. Using P wave onset as the reference time 
point, the negative strain corresponds to atrial contraction, 
the positive strain corresponds to conduit function, and the 
total strain corresponds to reservoir function (Figures 4,5). 
When QRS wave is used as the reference time point, the 
peak atrial strain represents the reservoir function, while the 
peak atrial contraction strain represents the pump function. 
The strain rate at atrial contraction, ventricular systole, and 
ventricular diastole reflects pump, reservoir, and conduit 
function, respectively.

Reference values of myocardial strain in children

Systematic reviews and meta-analyses have been performed 
to determine the normal range of the left and right 
ventricular strain measurements in children (23,24).

To establish the reference paediatric range of LV strain 
and strain rate as measured by two-dimensional speckle 
tracking, Levy et al. performed a systematic review and 
identified 2,325 children from 43 data sets (23). They 
stratified their meta-analysis results based on the methods 
(global strain versus six-segment method) of LV strain 
analysis. Global LV longitudinal strain (GLS) and strain 

Figure 4 Utilization of two-dimensional speckle tracking for quantification of left atrial strain and strain rates at ventricular systole (SRs) 
and early diastole (SRe) and at atrial contraction (SRac). The onset of P wave is taken as the reference time point.
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rate was calculated from a 17- or 18-segment model from 
segmental averaging of the three apical views (apical four, 
three-, and two-chamber), while GCS and GRS were 
calculated from segmental averaging of the short-axis 
views at the apical, mid-ventricular, and basal levels. The 
six-segment method was commonly used in studies of LV 
mechanics in children. Longitudinal strain was obtained 
from the weighted average of the six segments from the 
apical four-chamber view, and circumferential strain and 
radial strain from weighted averages of the six segments 
from the mid-ventricular level at the papillary muscle. 
In healthy children the mean LV GLS was 20.2% (95% 
CI, −19.5% to −20.8%), mean GCS was −22.3% (95% 

CI, −19.9% to −24.6%), and mean GRS was 45.2% (95% 
CI, 38.3% to 51.7%). Importantly, variations among 
different reference ranges do not appear to be dependent 
on differences in demographic, clinical, or equipment or 
vendor parameters in this meta-analysis. Normal ranges of 
LV three-dimensional global systolic strain in children have 
also been reported, although data remain limited in this 
regard (17).

The reference range of RV strain and strain rate 
as measured by two-dimensional speckle-tracking 
echocardiography was also reported by the same group of 
investigators who performed a systematic review and meta-
analysis of 226 children from 10 studies (24). They stratified 
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Figure 5 Utilization of two-dimensional speckle tracking for quantification of right atrial strain and strain rates at ventricular systole (SRs) 
and early (SRe) and at atrial contraction (SRac). The onset of P wave is taken as the reference time point.
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their meta-analysis results based on the methods (global 
longitudinal strain versus free wall strain) of RV strain 
analysis. Right ventricular GLS was calculated based on the 
entire traced contour of the right ventricle including the free 
wall and septum from the apical four-chamber view, while 
RV free wall strain was obtained from the weighted average 
of the basal, mid, and apical segments of the RV lateral free 
wall. The normal mean value in children for RV GLS was 
−29.03% (95% CI, −31.52% to −26.54%). Similar to those 
of LV strain, variations in RV strain among different normal 
ranges did not appear to be dependent on differences in 
demographic, clinical, or equipment parameters.

The normal reference ranges of LA and RA reservoir 
and contractile strain as assessed by two-dimensional 
speckle tracking echocardiography have also been reported 
in infants and children (25). Importantly, this study showed 
little variation of atrial strain parameters with age.

Echocardiographic strain imaging in children 
with congenital heart disease 

Strain imaging has increasingly been utilized to assess RV 
and LV performance in children, adolescents and adults 
with various types of congenital and acquired heart diseases. 
The relatively angle-independent two-dimensional speckle 
tracking echocardiography has emerged as the technology 
of choice for assessment myocardial strain in various 
congenital heart conditions as discussed below.

Tetralogy of Fallot (TOF)

In patients with TOF, dysfunction of the right and left 
ventricles is an important issue even long term after repair. 
Adverse remodeling of the right ventricle related to chronic 
pulmonary regurgitation, use of transannular patch, 
electromechanical dyssynchrony, and myocardial fibrosis 
may impair RV function. Ventricular-ventricular interaction 
may further predispose to development of LV dysfunction 
in these patients. Data on the use of myocardial strain 
imaging in assessing cardiac mechanics and its clinical and 
prognostic values are accumulating in these patients.

We have recently reviewed the use of strain imaging in 
assessing RV and LV mechanics, associations between RV 
and LV deformation, changes in ventricular deformation 
after pulmonary valve replacement, and associations 
between measures of RV and LV deformation and outcomes 
in patients with repaired TOF (26). Most of the strain 
imaging studies have shown reduction of RV global and 

regional systolic strain and strain rate in repaired TOF 
patients (27-32). Impairment of RV deformation has been 
shown to associate with reduced RV ejection fraction (33), 
ventricular dyssynchrony (34,35), and greater severity of 
pulmonary regurgitation (36,37). With regard to LV strain 
analysis in these patients, we (36) and others (27,37-39) have 
reported on significant reduction of LV systolic longitudinal, 
circumferential, and radial strain. Correlations between LV 
and RV strain parameters provide evidence of ventricular-
ventricular interaction in these patients. Studies on the 
impact of pulmonary valve replacement of RV and LV strain 
have yielded, however, inconsistent results (40-42). However, 
the prognostic value of LV and RV strain in adults with 
repaired TOF was shown in studies that found associations 
between LV global longitudinal strain (43,44) and RV free 
wall longitudinal strain (44) and adverse cardiovascular 
outcomes including sudden cardiac death, heart failure and/
or life-threatening ventricular arrhythmia.

We further performed a systematic review of 10 studies 
of atrial strain imaging, which involved 536 adolescent and 
adult patients with repaired TOF (45). Of the 10 studies, 
seven used speckle tracking echocardiography, two used 
tissue Doppler imaging and one used cardiac magnetic 
resonance feature tracking. The main findings were reduced 
regional and/or global RA and LA strain and strain rate 
consistent with reduced conduit, reservoir and contractile 
function of the two atria in patients, associations between 
RA and LA deformation indices suggestive of atrial-atrial 
interaction, and relationships between RA deformation and 
indices of right ventricular systolic and diastolic function. 
However, the lack of data on prognostic value of atrial strain 
was identified as an important knowledge gap.

Pulmonary atresia with intact ventricular septum (PAIVS) 
and pulmonary stenosis

In PAIVS and severe pulmonary stenosis, the hypertrophic 
myocardium and varying degrees of endocardial fibroelastosis 
may provide anatomic substrates for restrictive RV 
physiology. In patients after biventricular repair of PAIVS, 
we have shown using two-dimensional speckle tracking 
impairment of RV systolic and diastolic strain (46). Patients 
with a restrictive RV physiology, compared to those without, 
had lower RV global systolic strain and lower RV systolic and 
early diastolic strain rates. These findings suggest that RV 
diastolic strain assessment may be useful in the assessment 
of RV diastolic function. We further reported recently 
impairment of RA strain in patients’ long term after repair of 
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PAIVS and pulmonary stenosis and its associations with RV 
diastolic dysfunction, longer P-wave duration, greater P-wave 
dispersion (47), and increased liver stiffness (48).

Transposition of the great arteries post atrial switch 
operation 

Dysfunction of the systemic right ventricle is an important 
concern in patients after Senning or Mustard operation 
for complete transposition of the great arteries (TGA) 
(49,50). Anatomic, haemodynamic and surgical factors and 
the fibrotic myocardium may contribute to systemic RV 
dysfunction in these patients. We (51) and others (52-56)  
have demonstrated usefulness of strain imaging in 
the assessment of systemic RV function. Systemic RV 
longitudinal strain and strain rate were found to correlate 
with cardiac magnetic resonance-derived systemic RV 
ejection fraction (51). Furthermore, Ladouceur et al. 
found that only systemic RV GLS but not ejection fraction 
showed significant correlation with functional capacity as 
measured by peak oxygen uptake during exercise testing (56). 
Using cardiac magnetic resonance, Pettersen et al. unveiled 
predominant circumferential over longitudinal free wall 
shortening in the systemic right ventricle, which resembles 
that found in the normal left ventricle, but opposite to the 
findings in a normal subpulmonary right ventricle (52). The 
shift from longitudinal shortening to transverse thickening 
as assessed by radial strain assessment of the systemic right 
ventricle has also been found to correlate with exercise 
capacity in patients after atrial switch operation (55). 
Strain imaging can also help to define the magnitude 
of intra-systemic RV and inter-ventricular mechanical 
delay in these patients (57), which may exert negative 
influence on systemic RV ejection fraction and exercise 
capacity. Additionally, strain imaging studies have revealed 
unfavourable systolic (58) and diastolic (59) interaction 
between the subpulmonary left ventricle and the systemic 
right ventricle. The prognostic value of systemic RV global 
longitudinal strain was shown by studies showing its ability 
to predict adverse clinical outcomes including symptomatic 
progression to worse functional class, development of 
cardiac arrhythmias, and death in patients after atrial switch 
operation (58,60).

Congenitally corrected transposition of the great arteries

In congenitally corrected TGA, the systemic RV peak 
systolic strain and strain rate have been shown to be 

reduced (61). Pulmonary artery banding, as a management 
option for patients with failing systemic right ventricles, 
may reduce septal shift to reduce tricuspid regurgitation 
and improve systemic RV geometry (62). However, this may 
cause acute reduction in global subpulmonary LV strain and 
ejection fraction. In patients undergoing anatomic repair 
after LV retraining, reduction of systemic LV strain has 
been demonstrated (63), indicating the need for long-term 
monitoring of cardiac function in these patients. 

Coarctation of the aorta

Systemic arterial abnormalities related to structural 
alteration of aortic structure and stiffening of the central 
arteries in patients persist despite successful interventions 
for coarctation of the aorta (64,65). Increased afterload may 
adversely impact on ventricular–arterial interaction. Previous 
studies have shown reduced systolic longitudinal and radial 
strain but with preservation of circumferential strain in these 
patients (66-68). Obese patients compared with non-obese 
ones were further found to have greater impairment of left 
ventricular myocardial deformation in the longitudinal, 
radial, and circumferential dimensions (69). Recently, we 
have reported on LA dysfunction in patients after repair of 
aortic coarctation and interruption, as evidenced by reduced 
LA positive and negative strain and strain rates at all phases 
of the cardiac cycle (70). Impairment of LA strain was found 
to associate with altered LV strain and increased arterial 
stiffness, implicating the possibility of abnormal arterial–LV–
LA coupling in patients despite satisfactory repair of aortic 
coarctation and interruption. The prognostic implications of 
these findings remain, however, to be determined. 

Functional single ventricle

Systolic and diastolic ventricular dysfunction in patients with 
a functional single ventricle post Fontan-type procedures 
is well documented (71,72). Impairment of myocardial 
strain has been shown in patients with functional single 
ventricles of either the right or left ventricular morphology 
(73-76). In patients with tricuspid atresia after Fontan 
procedure, we have demonstrated reduction of global 
systemic LV longitudinal, circumferential, and radial strain 
and systolic and diastolic strain rates (77). Additionally, in 
this study, based on three-dimensional segmental volume 
assessment of the systemic left ventricle, we found evidence 
of mechanical dyssynchrony in about half of our Fontan 
patients with tricuspid atresia. In children with hypoplastic 
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left heart syndrome, Friedberg et al. similarly demonstrated 
mechanical dyssynchrony of the systemic right ventricle 
using velocity vector imaging based on the principle of 2D 
speckle tracking (78).

Changes in systemic ventricular mechanics have been 
found may occur during the stages of the univentricular 
repair, primarily reported in patients with hypoplastic left 
heart syndrome. In these patients, before cavopulmonary 
connection, the ratio of systemic RV longitudinal to 
circumferential strain was decreased and became similar to 
systemic LV-like contraction pattern. The adaptation was 
associated with decreased mechanical dyssynchrony and 
RV end-diastolic volume (79). These adaptive mechanisms, 
similar to that of the systemic right ventricle in patients 
with complete TGA after atrial switch operation (52), may 
be important for long-term function of the systemic right 
ventricle. In patients with a functional single ventricle 
undergoing total cavopulmonary connection, Park et al. 
reported that preoperative circumferential strain rate was 
independently associated with length of hospital stay and 
suggested that strain assessment may improve preoperative 
risk stratification (80). 

Left-to-right shunts

Differences in atrial strain between children undergoing 
surgery and those after transcatheter closure of atrial 
septal defect has been reported (81). The peak right 
and left atrial strain and strain rate were found to be 
significantly reduced in the surgical group as compared 
with the catheter interventional group and healthy 
children. Among patients with various types of ventricular 
septal defects, our group has reported on worse LV 
systolic deformation in patients after surgical repair of 
subarterial defects compared with those after patch closure 
of perimembranous defects (82).

Clinical translation of strain imaging

While there is obvious potential of adoption of strain 
imaging into the clinical care of paediatric cardiac patients, 
several gaps and challenges need to be addressed and 
overcome before its incorporation into routine clinical 
assessment algorithm is feasible. First, there needs to be 
standardization of the strain parameters to be used for 
serial assessment of function of the systemic left ventricle, 
systemic or subpulmonary right ventricle, and functional 
single ventricle. Based on the published data, longitudinal 

strain as assessed from the apical four-chamber view 
appears to be a promising and an easily derived parameter 
for clinical use. Second, the use of strain imaging has 
not been formally incorporated in the paediatric cardiac 
clinical guidelines and patient management algorithms. 
The incremental value of incorporating myocardial strain 
imaging into the management algorithm would require 
further exploration. As alluded to earlier, recent studies 
suggested potential usefulness of strain imaging in the 
prognostication of the outcomes of patients with repaired 
TOF (43,44) and those after atrial switch operation for 
complete TGA (58,60). Third, the approach to intervendor 
differences in the quantification of myocardial strain remains 
to be defined. The European Association of Cardiovascular 
Imaging and the American Society Echocardiography have 
convened a task force to assess variability in speckle-tracking 
echocardiographic measurements, aiming to standardize 
speckle tracking-based strain imaging as a clinical tool for 
assessment of cardiac function (83). The findings show 
that LV GLS has reproducibility superior to conventional 
echocardiographic measures, small but significant 
differences between vendors, and that GLS may be used in 
clinical practice (84). On the hand, the task force reported 
that LV segmental longitudinal strain measurements have a 
higher variability on top of the known intervendor bias and 
recommended that single segmental strain values should be 
used with caution and that regional strain pattern analysis 
may be a more robust alternative (85). Finally, strain 
parameters remain relatively load dependent (6) and need 
to be interpreted with caution when significant changes in 
preload and/or afterload occur in the longitudinal follow-up 
of different congenital heart populations. 

Conclusions and future directions

Echocardiographic strain imaging has been used as a 
research tool in the interrogation of early subclinical 
impairment of the systemic left ventricle, systemic or 
subpulmonary right ventricle and functional single 
ventricle in different congenital heart populations. The 
strain parameters have been associated with other indices 
of ventricular function, exercise parameters, and clinical 
outcomes. Importantly, emerging data suggest potential 
prognostic values of strain measures in the prediction of 
occurrence of adverse cardiovascular outcomes in these  
at-risk populations. It is timely for paediatric cardiologists 
to consider the incorporation of strain imaging into the 
clinical management algorithm.
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