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Introduction

Primary cilium (also called non-motile cilium) is mainly 
composed of a basal body, a transition zone, an axoneme, 
and a ciliary membrane (1). Primary cilia present in 
the brain where they play a part in postnatal cortical 

development and homeostasis (2). Interestingly, they 
remained mysterious and controversial until the end of 
the 1960s (3). Some researchers regarded them as useless 
cell structures, while others thought that they violated the 
general principles of cell economy (4). The structure and 
function of primary cilia were not intensively studied until 
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technical advances were made in high-resolution electron 
microscopy. Generally, there is only one unique cilium per 
cell, and the abnormality of structure and function of this 
cilium may cause Bardet-Biedl syndrome (BBS), Oral-facial-
digital syndrome type I (OFD1), Meckel Gruber syndrome 
(MKS), and other genetic diseases involving multiple organs 
(5,6). Due to overlapping cilium-related clinical phenotypes 
associated with these diseases, they are also called 
ciliopathies (6). Duncan (7) used a Transmission Electron 
Microscope (TEM) to make the first report of primary 
cilia on cells of the neural tube. He found, in chickens, a 
single cilium on the luminal surface of each neural tube 
cell. Although neural cilia are similar to other primary cilia 
in ultrastructure, how they affect the developing cerebral 
cortex remains unknown (8). 

Objectives

Based on previous reports, we aim to systematically 
highlight the critical roles of primary cilia in the 
proliferation and differentiation of neural progenitor cells, 
and the migration of newborn neurons, as well as the 
transduction of signaling. Another aim of this review is to 
provide guidance for theorizing about the pathogenesis and 
treatment of cilia-related cortical diseases. We present the 
following article in accordance with the Narrative Review 
reporting checklist (available at https://pm.amegroups.com/
article/view/10.21037/pm-21-107/rc).

Methods

We performed the literature search using online database 
PubMed from 1957 to 2021. The search terms included 
“cortical development”, “developing cortex”, “primary 

cilia”, “primary cilium”, and “ciliopathies” (Table 1).

Discussion

Ciliary systems

Microstructure of primary cilia
As is shown in Figure 1 (right panel), the structure of a 
primary cilium includes, from bottom to top, a basal body, a 
transition zone (TZ), an axoneme, and a ciliary membrane. 

The basal body forms the base of the cilium, and the 
basal foot and transition fibers are adjacent to the TZ at the 
distal end of the basal body (9). The TZ is a “zone” around 
the bottom of the axoneme that is just above the basal body. 
Y-shaped fibers connect the axonemal microtubules inward 
and the ciliary necklace membranous particles outward. TZ 
and transition fibers of the basal body act as a “ciliary gate” 
to control cytosolic components and ciliary membrane 
entry to and exit from cilia (10-12). The axoneme, attached 
to the basal body, is the skeletal structure of a cilium and 
is composed of microtubules and their accessory proteins. 
The ciliary membrane is a lipid bilayer derived from Golgi-
associated vesicles and connects with cell membrane (13).  
The primary cilia act as specialized signaling hubs 
to integrate diverse developmental and homeostatic 
information, and dynamically regulate downstream 
effectors. 

Although some early cross-section Electron Microscope 
(EM) studies have challenged the classically ‘9+0’ 
pattern of primary ciliary axonemal microtubules, its 
ultrastructure was unknown until recently (14,15). The 
application of serial electron tomography and cryo-electron 
microscopy, the combined cryo peel-off method, provided 
the unprecedented insights. Researchers found that the 
microtubule complexes of a primary cilium in a kidney’s 

Table 1 The search strategy summary

Items Specification

Date of search August 30, 2021

Databases and other sources searched PubMed

Search terms used cortical development, developing cortex, primary cilia, primary cilium, ciliopathies

Timeframe Literature published from January 1957 to August 2021

Inclusion criteria Study type: Review, Systematic Review, Case report, Books and Documents 
Language restrictions: English

Selection process One author conducted the selection. The other authors reviewed the intended 
citation and added suggestions. Agreement was reached after discussion.

https://pm.amegroups.com/article/view/10.21037/pm-21-107/rc
https://pm.amegroups.com/article/view/10.21037/pm-21-107/rc
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Figure 1 Left panel: Ciliogenesis is associated with cell cycle. In G0/G1 phase, the primary cilia initiate to form and elongate. When 
cilia receive signals for depolymerization, axoneme become shorten and then disappear in M phase. In the process of disassembly, F-actin 
accumulates in cilia for cilia decapitation. Right panel: Microstructure of primary cilium and Intraflagellar transport (IFT). IFT is a 
bidirectional transport system that performs between the ciliary tip and cell body to provide axonemal components. BBSome is a protein 
complex mutated in Bardet-Biedl syndrome (BBS), serving as the “regulator” for assembly of the “carriage” at the start of the train and 
recycle components at the end of the train. 

epithelial cells terminate at different locations and that 
ciliary diameters reduce toward the ciliary tip, which is 
consistent with the reversible bending property of a ciliary 
axoneme (16,17). 

Intraflagellar Transport (IFT)
The maintenance of a cilium must rely on the bidirectional 
transport system (also called the IFT) between the ciliary 
tip and the cell body for they cannot synthesize proteins by 
themselves (18). IFT is mainly formed from IFT protein 
complexes (IFT A and IFT B), and motor proteins (Kinesin 
II and cytoplasmic dynein II), which together constitute the 
“power train” for material transportation in the cilium (19). 
Interestingly, single-particle tracking localization microscopy 
has found that IFT proteins move at different rates in 
different regions of the cilium (20). IFT proteins move slowly 
in the distal appendages (DAPs) and TZ, and much faster in 
the proximal TZ and ciliary compartment (CC). 

Overall, there are two types of IFT: anterograde 
transport and retrograde transport. Anterograde transport 
is driven by kinesin II, in which one end interacts with 

axoneme microtubules, the other anchors on the IFT B, 
carrying “ciliary cargo” and IFT A, from the ciliary base to 
the ciliary tip (21). After arriving at the ciliary tip, the “ciliary 
cargo” is unloaded, and at the same time, the IFT protein 
complexes are reshaped, so that retrograde transport can 
start (22). Driven by cytoplasmic dynein II, one end joins to 
the axoneme microtubules, the other interacts with IFT A, 
carrying useless substances and IFT B from the ciliary tip 
back to the cell body for degradation or reuse (23,24).

Assembly and disassembly of primary cilia
The assembly and disassembly of primary cilia are regulated 
by the cell cycle, depending on IFT to furnish the transport 
and exchange of materials (Figure 1, left panel). The mother 
centriole becomes the basal body which anchors on the ciliary 
membrane through transition fibers and the basal foot in the 
G0/G1phase. When IFT participates in the transportation of 
cilia-related proteins, new primary cilia initiate in form, and 
further elongate under the control of multiple signaling.

When cells re-enter into the cell cycle upon stimulation 
with serum, the depolymerization of primary cilia is 
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activated. Pugacheva et al. (25) find that after stimulating 
serum-starved cells for 1–2 hours, HEF1 (pro-metastatic 
scaffolding protein)-Aurora A (a centrosomal kinase) is 
induced to activate and promote cells’ entry into the M 
phase. Meanwhile, it also stimulates HDAC6-dependent 
tubulin deacetylation through the cascade phosphorylation 
of HDAC6 (a tubulin deacetylase), destroying ciliary 
stability. Later, other researchers discover that CEP 
(centrosomal protein)55 can interact with Aurora A 
to regulate the stability of Aurora A and promote cilia 
disassembly (26,27). In addition, cilia disassembly also 
requires the participation of actin dynamics. The latest 
findings have shown that F-actin can accumulate in primary 
cilia to remove cilia tips for cilia decapitation, triggering 
cilia disassembly (28). Other researchers, using a cell/
cilia cycle biosensor for single-cell kinetics, discover that 
actin-mediated ciliary scissions are beneficial all along the 
ciliary cycle, and can also contribute to ciliary growth (29).  
Furthermore, the common thought that cilia initiate 
disassembly from G1 to S has been contested. The same 
researchers observe that cilia can transit from G1/S to S/G2/
M-phase in NIH/3T3 cells. The relationship between cilia 
and the cell cycle is more complex than we used to think, 
and thoroughly studies are needed.

Despite how trivial they may look, the integrity and 
stability of the primary cilia perform vital functions in 
regulating various biological processes in living systems. 
Primary cilia anomalies will generate ciliopathies, and the 
pathogenesis of these illnesses awaits further investigation.

Ciliopathies 

In recent years, ciliopathies, which affect multiple organ 

systems and tissues, have been defined as a group of diseases 
resulting from dysfunctions of cilia (30). Genetic and 
phenotypic heterogeneity and overlaps make it sometimes 
difficult to determine the classification of these diseases, 
which inhibits clinical diagnosis and treatment. Common 
diseases include BBS, JBTS (Joubert syndrome), OFD1, 
and MKS, involving the brain, kidney, and heart, etc. Here 
we will focus on BBS, OFD1, and MKS with severe brain 
phenotypes and summarize the brain morphological defects 
(see Table 2).

The central nervous system related symptoms of BBS 
include cognitive impairment, ataxia and hearing loss, 
etc. (35). Currently, the proteins encoded by 19 genes 
(BBS1-BBS19) have been uncovered to be involved in 
lipid homeostasis, IFT, establishment of cell polarity, and 
regulation of centrosome functions. The mouse model of 
BBS shows increased apoptosis, decreased neurogenesis, 
and then progression into neonatal hydrocephalus (46).  
In vitro, BBS mutations cause impaired neurite outgrowth 
and longer cilia (47). 

The common neurological symptoms of OFD1 consist 
of brain structural anomalies, mental retardation, and 
cerebellar hypoplasia etc. The OFD1 protein is of great 
importance to the formation of primary cilia (48). Findings 
of in vitro studies which show no primary cilia and abnormal 
Shh and Wnt signaling pathways of Ofd1 mutants are in 
line with lack of ciliary axoneme and defective Dorso-
Ventral patterning in vivo (49,50).

MKS is the most severe and lethal type of ciliopathy, and 
is characterized by occipital encephalocele (51). Double 
mutant of Mks1 (encoding TZ protein) and BBS4 in mouse 
models exhibit remarkable defects in the structure of cilia 
and signaling pathways than either single mutant, indicating 

Table 2 Associated brain morphological defects in human ciliopathies discussed in this review

Ciliopathy Mutated genes Morphological defects References

BBS BBS1-19 Reduced total gray matter volume; cortical enlargement in the 
occipital lobe; hippocampal dysgenesis; cerebellar atrophy

(31-35)

OFD1 Ofd1, C2CD3, INTU, KIAA0753, IFT57, 
C5orf42, TMEM107/138/216/231, WDPCP, 
TCTN3, DDX59, NEK1, TBC1D32, SCLT1

Agenesis of corpus callosum and cerebellar vermis, congenital 
cerebral cysts, porencephaly

(36-39)

MKS Mks1, TMEM67/138/216/231/237, CEP90, 
RPGRIP1L, CC2D2A, NPHP3, TCTN2, 
B9D1/2, EVC2, C5orf42, SEC8

Occipital meningoencephalocele (40-43)

JBTS Arl13b, Inpp5e, NPHP1, AHI1, CEP290, 
RPGRIP1L, TEME67, CC2D2A

Axonal tract malformation, cerebellar ataxia (44,45)
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that not only the phenotypes of distinct ciliopathies overlap, 
but multiple mutations contribute to severe outcomes (52).

Briefly, brain specific phenotypes presented by the 
primary cilia in biological process emphasis its vital 
function. Next, we try to look back to the researches on the 
primary cilia in the developing cortex to figure out how it 
works in it. 

The roles of primary cilia in cortical development

The cerebral cortex is a highly organized structure 
that contains about 86.06 billion neurons (53). Primary 
cilia occupy roughly 3.2×109 µm2 space, presenting on 
progenitors neurons and differentiated neurons (54,55). 
Cilia genes follow rhythmic circadian patterns of expression 
in the brain (56). The high dynamics of the structural 
and functional components of cilia drive metabolic, 
physiological, and behavioral processes of developing  
cortex (57). In this part, we will introduce the roles of 
primary cilia in the proliferation and differentiation of 
neurons, the migration and synaptic growth of neurons, and 
how they mediate signaling pathways. We summarize the 
genes/proteins associated with ciliogenesis discussed there 
(see Table 3).

Participation in the proliferation and differentiation of 
neural cells 
Primary cilia control symmetric and asymmetric divisions 
of NPCs through cell cycle dynamics (90). In early stages, 
NPCs divide symmetrically to expand the neural stem cell 
pool (Figure 2A). In neurogenesis, most of the radial glial 
cells (RGCs) divide asymmetrically to generate neurons in 
a different way (91,92). At this stage, the cilia of the future 
neurons regrow on the lateral cell membrane instead of on 
the apical one (Figure 2B) (93). Primary cilia, exist in the G0/
G1 phase, are gradually absorbed when cells re-enter into 
the cell cycle (S phase) (94). Surprisingly, part of the ciliary 
membrane is conserved during asymmetric divisions and 
remains attached to the mother centriole. The daughter cell 
that inherits this mother centriole has increased probability 
to remain a progenitor (95).

Aberrant CPAP (a centrosomal-P4.1-associated protein) 
that leads to primary microcephaly is the most typical 
example (65). CPAP is a negative regulator of ciliary length 
in dependent of its role in centrosome biogenesis (64,96). 
Its mutation will cause abnormal cilia disassembly, prolong 
the G1/S phase, and consequently, reduce the proliferation 
of NPCs and increase apoptosis. Slender primary cilia are 

also found in brain organoids derived from microcephaly 
patients with CPAP mutation, which is in keep with 
other, results acquired in 2-D culture system. Further 
studies have discovered that deletion of murine CPAP 
produces formation of monopolar spindles in radial glial 
progenitors (RGs) and secondary severe apoptosis (97). 
WDR62, regulates cilia disassembly when interacting with 
CEP170 and Kif2a, and cilia formation when interplaying 
with CPAP/IFT88, is the second common mutated gene 
correlated with microcephaly (63,75,98). Both knock out 
(KO) mouse models and human cerebral organoids reveal 
that WDR62 mutants create decreased proliferation 
and premature differentiation of NPCs. Interestingly, 
ciliogenesis and neurogenesis defects are more robust in 
cerebral organoids than in mutant mice (63). This is because 
unique outer radial glia cells (oRGs), promoting massive 
expansion of neural stem cells, abundantly occur in human 
cerebral cortex with rare presence in rodent cortex. Thus, 
mouse models failed to recapitulate some human disease 
biology seen in human patients. In contrast, brain organoids 
provide an advantage as they can uncover molecular 
mechanism of developing brain in incomparable detail (99). 

In other research, IFT88, a component of IFT B 
complex, inducing ciliary formation. Kif3a, a member of 
the kinesin II family required for cilia protein trafficking 
and growth. Conditional depletion of IFT88 or Kif3a at 
both early (E10.5) and late (E13.5) stages of mice resulted 
in little impact on progenitor proliferation, except in a small 
region where cilia-dependent Hh signaling is significant 
to its proliferation (100). In addition, different phenotypes 
were discovered in mice with different gene mutations. 
Ftm, located at the ciliary TZ, is necessary for the TZ 
localization of many other ciliopathy proteins (101). Inpp5e, 
a phosphoinositide 5’-phosphatase that hydrolyzes PIP2 
and PIP3, stabilizes cilia structure and length (102). In Ftm 
mutants, the initiation of cortical neurogenesis is delayed, 
which can be compensated for in later stages (71). While in 
Inpp5e mutants, the defects of neurogenesis can be rescued 
by restoring Gli3 repressor (79). The impairment of mutant 
mice (Ift88, Kif3a and Ftm) is due to a disorder of ventro-
dorsal polarization which can be easily explained by the role 
of signal transduction played by the cilia. We will discuss in 
detail later. Together, these data suggest complex roles of 
cilia in corticogenesis, which deserve further studies. 

Regulating newborn neuronal migration and growth of 
dendrites/axons
Neuronal migration is a precisely mediated process, 
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which takes neurons from their location of origin to their 
destination in the cortex. Aberrant migration of neurons can 
alter the formation of neuronal circuitry and result in severe 
functional defects, such as epilepsy and mental retardation 
(103,104).

The apico-basal polarized RGCs act as a “scaffold” 
for cell migration in the developing cortex, coordinating 

correct radial migration of neurons from the ventricular 
zone (VZ) to the cortical plate. In the experiment where 
30 cilia-related genes were knocked down, knockdown of 
BBS1, BBS7, BBS10, and TMEM216 changed the apico-
basal polarity of RGCs (105). In vivo, the regulation of 
IFT172 (a component of the IFT complex) in the germinal 
zone of the embryonic mouse brain also disrupts the radial 

Table 3 Summary of the genes/proteins associated with ciliopathies discussed in this review, with a short description of their main known 
functions and impact on cortical development

Gene/protein Localization Functions Impact on cortical development

Arl13b Cilia Cilia assembly, protein trafficking 
and Shh signaling (58)

Polarized radial glial scaffold formation, migration and 
placement of interneurons (59,60)

BBS 
1/4/5/7/9/10/11/12

Cilia BBSome assembly and cilia 
protein trafficking (61)

Thinning of the cerebral cortex (34)

CEP170 Basal body Spindle assembly and cilia 
disassembly (62,63)

Microcephaly (63)

CPAP Basal body Centriole biogenesis and cilia 
disassembly (64)

Slower neuronal migration, aberrant neuronal morphology, 
microcephaly, increased axonal length  
(65-67)

Dync2h1 Cilia/Basal body Cilia protein trafficking (68) Loss of Shh in the neural tube (68)

Fbxo41 Basal body Cilia disassembly and Shh 
signaling (69)

Regulates neuronal cilia structure and signaling capacity (69)

Ftm (Rpgrip1l) TZ TZ assembly (70) Shortened neurogenic period, increased newborn Ips (71)

Gpr161 Ciliary membrane Antagonize Hh signaling (72) Increased IPs and basal RG, thinner cortex (73)

IFT27 Cilia/Basal body Cilia protein trafficking and Shh 
signaling (74)

Loss of Shh in the neural tube (74)

IFT88 Ciliary axonemes/
Basal body

Cilia protein trafficking (75) Subpial heterotopias in the forebrain, microcephaly (75,76)

IFT172 Cilia/Basal body Cilia protein trafficking (77) Perturb NPC proliferation and neuronal migration (77)

Inpp5e Ciliary membrane Regulate ciliary stability (78) Increased neuronal formation, cortical malformations (79)

Katanin p80 Basal body Ciliogenesis and Shh signaling (80) Microcephaly with simplification of cortical gyri and sulci (80)

Kif2a Cilia/Basal body Cilia disassembly (63) Microcephaly, cortical malformations, neuronal migration 
(81,82)

Kif3a Cilia/Basal body Cilia assembly (83) Delay neuronal migration and differentiation (83)

TMEM67 TZ Cilia protein trafficking and 
signaling (84)

Hydrocephalus, neural tube defects (84,85)

TMEM216 Basal body Ciliogenesis and centrosomal 
docking (86)

Anomalies of occipital cortex (87)

Tulp3 Cilia Ciliary protein trafficking, 
antagonize Hh signaling (88)

RGs malformation (89)

WDR62 Basal body Centriole biogenesis and cilia 
disassembly (63,75)

Microcephaly, loss and premature differentiation of RGs (63,75)

TZ, transition zone; IPs, intermediate progenitors; RG, radial glia; NPC, neural precursor cell.
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migration of neurons (77). Beyond that, Arl13b, a GTPase 
enriched in cilia, is responsible for the initial formation of 
the polarized RGCs scaffold. Arl13bhnn/hnn mutants show 
short cilia and the polarity reversal of RGCs, subsequently, 
the neurons generated from NPCs migrate abnormally 

near the cortical surface, and eventually neuronal layered 
structure breakdown (59).

Unlike excitatory glutamatergic neurons (ENs), 
inhibitory GABAergic interneurons (INs) migrate long 
distances from the medial ganglionic eminence (MGE) 
to reach the cerebral cortex (106-108). Migrating 
interneurons can assemble primary cilia to maintain 
proper interneuron trajectory and balance excitatory 
and inhibitory activity of nervous system (109,110). Hnn 
mutation and the abnormality of Kif3a, IFT88 lead to 
incorrect tangential migration, such as process branching, 
travel distance shortening, and even failure to leave their 
tangential migrating streams efficiently (60,110). In the 
developing cortex, MGE cells and cells in the migrating 
pathway express N-cadherin, which can maintain cell 
polarity over long distance migration (111). Interestingly, 
MGE cells that migrate on N-cadherin substrates, rather 
than on laminin, exhibit fast synchronous centrosomal 
and nuclear movements, and reduced ciliogenesis (112). 
Therefore, N-cadherin influences both the cell polarity 
of migrating MGE cells and centrosomal movements and 
ciliogenesis.

The appropriate growth of dendrites and axons is 
necessary to synapse formation and connections, and is 
also essential for the accurate and specific functioning of 
the nervous system (113). In a mouse model, conditional 
cilia deletion of adult-born hippocampal neurons induced 
disruption in dendritic and synaptic integration, and 
enhanced Wnt/β-catenin signaling was required for 
dendritic refinement (114). Later evidence has shown 
that cilia also regulated the growth of the dendrites of 
projection neurons in developing neocortical neurons. 
Overexpression of ciliary 5-HT6 or Kif3a impairs normal 
ciliogenesis and dendrite outgrowth, which can be rescued 
by coexpression of type III adenylyl cyclase (ACIII, 
proteins enriched in neuronal cilia) with 5-HT6 (115). 
Intriguingly, in another study, primary cilia activated cilia-
localized insulin-like growth factor1 receptor (IGF-1R)  
and downstream Akt signaling to protect dendrites of 
immature neurons from alcohol and ketamine (116). 
Deletion of Arl13b and Inpp5e led to altered axon growth 
behavior, such as misoriented axonal tracts and reduced 
formation of branching protrusions (45). This was 
explained by the deletion of Arl13b, which deregulated 
ciliary-PI3K/AKT. On the contrary, Cenpj silencing, 
exhibits enhanced microtubule stabilization, more 
branches and larger growth cone area, might be a novel 
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Figure 2 The division pattern of RGCs in the developing cerebral 
cortex. (A) In early development, RGCs divide symmetrically 
to produce two daughter RGCs to promote expand neural stem 
cell pool. RGCs project cilia into the ventricular space from 
apical cell membrane. (B) As neurogenesis begins, RGCs divide 
asymmetrically to produce a daughter RGC and either a neuron or 
an IPC. IPC mostly undergoes symmetric divisions to produce two 
neurons. After neurogenic asymmetric divisions, the cilia of IPCs 
or neurons grow on the lateral cell membrane instead of the apical 
one. The balance between symmetric and asymmetric divisions 
depends on the signal primary cilia receive from environment. 
RGC, radial glial cell; IPC, intermediate progenitor cell. 
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target for axonal regeneration (67). 

Mediating signaling pathways 
Primary cilia maintain multiple cortical developmental 
processes such as neural tube patterning, and neural cell 
proliferation, as well as neural cell division for its membrane 
has dense lipid rafts to convey a wide range of signals, such 
as the signaling pathways of sonic hedgehog (Shh), Wnt, 
and the mTOR (117-119).

Shh is a member of the Hh family, and is extensively 
expressed in the central nervous system. The overall patterns 
are summarized in Figure 3 (120). The activation of Shh 
signaling pathway depends on the presence or absence of 
Shh ligands, producing Gli transcription factors (GliAs) 
or Gli repressor forms (GliRs), respectively (10). Smo’s 
ciliary level is regulated by the ubiquitination state of the 
receptor. IFT27, a component of IFT B complex, is required 
for BBSome trafficking matters for Hh signaling (121). 
BBSome controls the assembly and recycling of cilia-related 
proteins from ciliary base to tip. Blocking ubiquitination of 
Smo by disrupting IFT27 and BBSome, Smo accumulates 
in the cilia without pathway activation (122). Smo is a 
critical Shh pathway component, for which abnormality 
can cause severe developmental disorders (123). Tulp3, 

an adaptor protein, regulates the trafficking of the Arl13b 
into cilia (88). Without Shh ligands, the primary cilia-
localized orphan Gpr161, a G-protein-coupled receptor 
(GPCR) controlled by Tulp3/IFT-A, represses the activation 
of the Shh pathway. Gpr161 increases cAMP levels in 
a GαS-coupled manner, and combines protein kinase A 
(PKA, cAMP-activated kinase) with the Shh signaling 
pathway (88,124). Deletion of Gpr161 in mid-gestation of 
a mouse causes increased Shh signaling, further leading to  
hydrocephalus, ventriculomegaly, and periventricular 
nodular heterotopia (73).

Unusual primary cilia lead to a defective ventral neural 
tube, which is patterned by a gradient of Shh secreted 
from the notochord and floor plate (125). Mutations in 
genes involved in trafficking of molecules within the cilia 
give rise to different impacts on the neural tube along 
the anterior-posterior axis. Dync2h1, a subunit of dynein 
II, drives ciliary retrograde IFT (126). A mutation in 
Tulp3 results in an up-regulation of Shh signaling in the 
posterior dorsal domain, while a mutation in Dync2h1 
results in down-regulation of Shh in the anterior regions 
of the spinal cord (127). Besides an impaired neural tube, 
abnormal neuron migration or location, caused by cilia-
dependent Shh destruction, also leads to developmental 
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abnormalities such as microcephaly, and craniofacial 
malformation (59). Meanwhile, Fbxo41 and katanin 
p80 negatively regulate the length of cilia. Both cilia 
disassembly provoked by the accumulation of Fbxo41, and 
excessive ciliogenesis with the loss of katanin p80, have an 
effect on the Shh signaling transduction capability (69,80). 

The Wnt signaling pathway is another key regulatory 
pathway in cortical development (128). But the relationship 
between primary cilia and Wnt signaling transduction 
(mediate, suppress or irrelevant) is still controversial at 
present (129). Some studies have reported that defective 
primary cilia do not affect Wnt/β-catenin signaling in 
zebrafish and mice (130,131). Others demonstrated that the 
cerebella of TMEM67 mutant mice were hypoplastic and 
showed up-regulation of the β-catenin-dependent canonical 
Wnt pathway, increased proliferation, and apoptosis (84). 
In contrast, there is general agreed that the non-canonical 
Wnt [planar cell polarity (PCP)] signaling pathway can 
target thin-layer cells, which regulate cell aggregation and 
elongation, so as to close the neural tube (132).

Furthermore ,  pr imary  c i l i a  regulate  ventr ic le 
morphogenesis and corticogenesis, via modulation of 
the mTOR pathway. Mutations in MTOR contribute to 
reduced neuronal cilia in patients with focal malformation 
of cortical development (FMCD) by disturbing Wnt 
signaling (133). Cilium mutants result in disinhibition 
of mTORC1, impaired mitotic spindle orientation, 
increased RGCs, enlarged ventricles, gradually form  
hydrocephalus (134). In contrast, overactivation of the 
mTORC1 caused by the loss of STRADA, a pseudokinase 
and an upstream regulator of mTORC1, displays disrupted 
primary cil ia and megalencephaly (135,136).  The 
relationship between primary cilia and mTOR pathway is 
a complex one. It is likely that these processes are mutually 
influential.

Taken together, the sophisticated signaling pathways, 
which play critical roles in neurogenesis, are regulated by 
primary cilia, and we have touched on just the tip of the 
iceberg in this review. How these pathways intertwine with 
cilia-related genes to maintain correct neurogenesis needs 
to be explored in greater detail.

Limitations

The wide range of sub-topics covered in this review 
may lead to the discussion of each sub-topics not deep 
enough. The tables of the summaries of associated brain 
morphological defects and cilia-related genes/proteins are 

not comprehensive enough. 

Outlook and conclusions

With the development of molecular biology, bioinformatics, 
and other technologies in recent years, researchers now 
have a deeper knowledge of the ciliary systems and their 
roles in the growth and development of organisms and the 
maintenance of homeostasis. The role of primary cilia in 
cerebral cortical development has become increasingly clear 
from published studies. Firstly, primary cilia not only affect 
the proliferation and differentiation of NPCs by regulating 
the cell cycle, but also affect neuronal migration and the 
growth of dendrites/axons. Secondly, primary cilia act as 
the “signaling enhancement receiver” of cells. Numerous 
receptors, specific to different signaling pathways, are 
located on a primary cilium’s membrane, which receives and 
integrates various signals in the environment, and regulates 
the downstream effectors. Abnormalities of primary cilia 
will directly or indirectly affect the normal development of 
the cerebral cortex and cause different brain deformity and 
dysfunction. These clinically overlapping disorders, also 
known as ciliopathies, need to be revealed by future deep 
investigations. 

Although we have a new understanding about the link 
between ciliogenesis and neurogenesis, many issues still 
remain to be investigated with respect to primary cilia and 
cortex development: 

(I) The role of primary cilia in the Shh signaling 
pathway has been studied thoroughly, but whether 
the canonical Wnt signaling pathway requires 
the participation of primary cilia in cortical 
development is still unclear. What other signaling 
transduction pathways are there? How do they 
form a large signaling pathway network? 

(II) Many cilia-related genes have been discovered so 
far. How do they interact with each other to achieve 
the precise regulation of cortical development in 
a timely and well-spaced manner? What are the 
upstream and downstream relationships of these 
genes?

(IIII) Neurons communicate with each other through 
dendrites and axons. There are several papers 
addressing this topic, but more work needs to be 
done to explore deeper mechanisms. And what 
neurological diseases are involved? Can we find a 
therapeutic target?

In contrast with excitatory and inhibitory neurons, 
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researches on astrocytic and oligodendrocytic primary cilia 
lags far behind (137,138). Further studies of these questions 
are needed.

Assembly and disassembly of primary cilia are tightly 
coupled to the cell cycle. How do the structure of primary 
cilia change when neurons become mature and stay in 
G0 phase for a long time? What proteins are involved in 
regulation? 

In the future, we can use two approaches to seek answers 
to these questions (54). One is the observation of animal 
models and human brain tissues, using IUE techniques or 
advanced brain imaging techniques (139). Another essential 
and powerful approach will be the study of brain organoids, 
the 3-D culture system obtained from human embryonic 
stem cells (hESCs), or patient-derived induced pluripotent 
stem cells (iPSCs) in vitro (140). With advances in CRISPR/
Cas9 and single cell sequencing, brain organoids have 
created unprecedented possibilities for modeling human 
brain developmental diseases in vitro (141). We hope that 
continued investigations of the role of primary cilia in the 
developing cerebral cortex will lead to new understanding 
of neural cell function and communication. Moreover, 
these investigations will provide new ideas for the further 
diagnosis and treatment of ciliopathies.
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