The risk factors of meconium aspiration syndrome in newborns: a meta-analysis and systematic review

Siwei Luo¹[^], Junyan Han¹, Huanhuan Yin², Liling Qian³

¹Division of Neonatology, Children's Hospital of Fudan University, Shanghai, China; ²Department of Rehabilitation, Children's Hospital of Fudan University, Shanghai, China; ³Division of Respiratory Medicine, Children's Hospital of Fudan University, Shanghai, China *Contributions:* (I) Conception and design: S Luo; (II) Administrative support: L Qian; (III) Provision of study materials or patients: S Luo; (IV) Collection and assembly of data: H Yin, J Han; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Liling Qian. Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102, China. Email: llqian@126.com.

Background: Risk factors related to meconium aspiration syndrome (MAS), that were understated or unanalyzed by previous comprehensive studies, have emerged. The aim of the study is to determine the maternal, peripartum and fetal-neonatal risk factors with a meta-analysis method, to provide a more extended vision on high-risk scenarios related to MAS development and an insight for further research.

Methods: Articles were obtained by searching the PubMed, Ovid MEDLINE, Embase.com, Scopus, Web of science, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials databases, yielding 2,090 records from 1978 to 2022. Inclusion criteria of eligible studies were reported on the risk factors for the outcome of MAS within any population; using non-MAS group as control; and providing the sample size and raw data. Risk of bias of the included studies were assessed by Newcastle-Ottawa quality assessment scale. Meta-analysis on pooled odds ratios (ORs) on the extracted risk factors from the literature were calculated by Mantel-Haenszel or Inverse Variance method.

Results: A total of 55 references, including case-control studies (n=17) and observational cohort studies (n=38), were included. The majority of cohort studies, but not case-control studies, were at low risk of bias. Fifteen risk factors were included, of which 6 were related to maternal status, 3 to peripartum status and 5 to fetal-neonatal status. All factors but gender of infant were significant impactor. The factor with the largest valid effect size was Apgar <7 at 5 min [8 studies, OR 14.89, 95% confidence interval (CI): 9.52–23.28, P<0.001]. Induction of labor was a protective factor (6 studies, OR 0.56, 95% CI: 0.47–0.68, P<0.001). Maternal body mass index (BMI) \geq 30 kg/m² (5 studies, OR 2.27, 95% CI: 1.53–3.35, P<0.001) was a risk factor. Smoking was an unneglectable risk factor that was understated with only one adjusted OR available (1 study, OR 1.47, 95% CI: 1.32–1.64).

Conclusions: The reported factors can be considered as impactors for MAS development by clinicians. Maternal smoking and obesity were understated and should be emphasized and controlled in further clinical practice. The limited quality of relevant case-control studies necessitates further high-quality researches (CRD 42022338176).

Keywords: Risk factors; meconium aspiration syndrome (MAS); smoking; maternal obesity

Received: 16 January 2023; Accepted: 25 February 2023; Published online: 28 February 2023. doi: 10.21037/pm-23-5 **View this article at:** https://dx.doi.org/10.21037/pm-23-5

^ ORCID: 0000-0003-3673-579X.

Introduction

Meconium aspiration syndrome (MAS) is one of the respiratory morbidities that mainly occurs in term and post-term neonate. Additionally, though rare, MAS may also occur in preterm neonates (1). By mechanically obstructing the airways, chemically damaging the epithelium of airway and alveolar, as well as de-activating surfactant and impairing alveoli compliance, MAS can lead to severe adverse outcomes including respiratory distress syndrome, persistent pulmonary hypertension, the use of extracorporeal membrane oxygenation (ECMO) (2), neurological impairment (3), cardiovascular instability and even death (2).

Previous studies have identified several important risk factors for MAS, such as born through meconium-stained amniotic fluid (MSAF) (2,4-8), non-reassuring fetal heart rate tracing (2,4,9-15), cesarean delivery, poor Apgar score (2,11,14-16), advancing gestational age (1,17,18), etc. However, the aforementioned risk factors were from comprehensive studies on the risk factors for MAS done decades before (2). It was demonstrated by studies that the incidence of MAS varied over decades. Yoder *et al.*

Highlight box

Key findings

• Maternal obesity, maternal inflammatory response, maternal smoking are risk factors related to meconium respiratory syndrome (MAS), which are not emphasized enough by previous studies. Thick meconium and low Apgar score are the factors with the largest effect size among peripartum and fetal-neonatal related factors, respectively. Induction of labor is a protective factor.

What is known and what is new?

- Meconium-stained amniotic fluid, non-reassuring fetal heart rate tracing, cesarean delivery, poor Apgar score, advancing gestational age were known to be risk factors for MAS
- Risk factors such as maternal obesity, maternal inflammatory response, maternal smoking, are understated by previous studies.
- Induction of labor, which just gained attention in last decade, can be a protective factor for MAS.

What is the implication, and what should change now?

- Maternal smoking and obesity should be controlled in clinical practice.
- The overall limited quality of relevant case-control studies necessitates further high-quality researches.
- The limited number of combinable studies focusing on maternal risk factors indicates more attention on the association of maternal characteristics to MAS should be paid in future studies.

reported a reduction of MAS from 1990 to 1998 (15), attributing partially to the medical advancement. Similarly, a population-based study has also reported a declined rate of MAS aligning with the appearance of increase in protective obstetric practice (18). In recent years, there are scattered studies reporting several risk factors related to MAS that were understated previously, such as maternal smoking (4) and maternal obesity (19), and new obstetric strategies that emerged in last decade and were not analyzed in previous clinical settings, such as induction of labor (20). The emerging attention on these factors was a result of changing medial practice and social environment. These factors were not analyzed through meta-analysis. The question raises whether previously overlooked factors have gained significance associating to MAS and the recognized risk factors remained significant with the adding on of new studies done in the era of swift shift of medical practice. The answer to this question may be essential to directing clinical attention.

In this study, we aim to comprehensively review the studies to date and to summarized and meta-analyze, when applicable, the maternal and neonatal risk factors for MAS, to provide a more extended vision on high-risk scenarios related to MAS development for the clinicians and an insight for further research. We present the following article in accordance with the PRISMA reporting checklist (available at https://pm.amegroups.com/article/ view/10.21037/pm-23-5/rc).

Methods

This review was performed according to a predefined protocol, which was developed according to recommended for systematic reviews (21,22) and registered in the International Prospective Register of Systematic Reviews (CRD 42022338176).

Sources and search strategy

A comprehensive literature search on published literature for records discussing MAS, infants, and risk factors was performed by a researcher. Search strategies applying a combination of keywords and controlled vocabulary was conducted in PubMed, Ovid MEDLINE, Embase.com, Scopus, Web of science, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials from their inception to June 1, 2022. Search terms included "meconium aspiration syndrome", "meconium aspiration

syndrome", "aspiration syndrome, meconium", "syndrome, meconium aspiration", "meconium aspiration", "aspiration, meconium", "meconium inhalation", "newborn", "infant", "infant, newborn", "infants, newborn", "newborn infant", "newborn infants", "newborns", "neonate", "neonates", "infants", "risk factor", "risk factors", "factor, risk", "social risk factors", "factor, social risk", "factors, social risk", "risk factor, social", "risk factors, social", "social risk factor", "health correlates", "correlates, health", "population at risk", "populations at risk", "risk scores", "risk score", "score, risk", "risk factor scores", "risk factor score", "score, risk factor". Additional manual search of bibliographies of identified key articles, use of the "related articles" feature in PubMed, and use of the tool in Web of Science was also performed. No language or location limit were set in the searching strategy. Article with available full text in foreign languages to the researchers was translated using online translator.

Study selection

The inclusion criteria were cohort studies that reported on the risk factors for MAS or case-control studies that aimed on analyzing risk factor for the outcome of MAS within any population; using non-MAS population as control group; the sample size and raw data were provided. Studies were excluded if they were an interventional study, review, metaanalysis or cases report; lack control groups; had incomplete data; did not have available full text; included animals; did not report raw data for the included analyzed risk for MAS. Search strategies for each database can be found in the supplemental materials (Appendix 1). Two investigators screened and evaluated for inclusion independently. If any disagreement occurs, it will be resolved by a third investigator.

All search strategies were completed in June 2022, and a total of 2,090 results, published from 1978 to 2022, were exported to Endnote. Notably, 1,202 records were deleted after using the deduplication.

Risk of bias

The assessment of the risk of bias of the included studies was carried out according to Newcastle-Ottawa Scale. Two investigators conducted evaluation independently. If any disagreement occurs, it will be resolved by a third investigator. A score >7 was considered as low risk of bias; a score <3 as very high risk.

Data extraction

Risk factors that impact the incidence of MAS are of interest to this study. The risk factor reported by the eligible studies were recorded, with special attention on the following fifteen factors: six risk factors related to maternal condition: maternal body mass index (BMI) ≥ 30 kg/m², maternal age >34-year-old, previous cesarean delivery, smoking, nulliparous, as well as maternal fever and chorioamnionitis, which were further combined into maternal inflammatory response according to recent studies (23-25); four peripartum risk factors: oligohydramnios, induction of labor, caesarean section, thick meconium; and five risk factors related to fetal-neonatal factors: abnormal fetal heart rate, male infant, post term, small for gestational age (SGA), and Apgar <7 at 5 min. For each study, when data were available, the raw data and the best estimated effect size of the above factors (the hierarchy being multiple adjusted effect size, and unadjusted effect size) were extracted by one investigator and confirmed by the second. Adjusted effects from subgroups were extracted when adjusted effects were not available in an overall form but detailed in all subgroups, and was dropped when the effect sizes were only provided in selected subgroups. In studies only providing data on rates, manual calculation was performed to convert the rates in the original study into number of cases in the present study.

Statistical analysis

The studies with same extracted risk factors were combined by the factor and meta-analysis was performed using Review Manager (RevMan Version 5.4. The Cochrane Collaboration, 2020). If one or more studies provided data on adjusted effect size of a particular risk factor, the relevant meta-analyses were done by inputting the adjusted effect size from each individual study and combining with Inverse Variance method and other effect sizes from studies only reporting univariate result were displayed in the forest plot but suppressed in the summary estimate. The risk factor of interest with none adjusted effect size available were still analyzed by Mantel-Haenszel method but were marked out in the table to alarm the reader to interpret with caution. Pooled odds ratios (ORs) were calculated as case-control studies were included. In the heterogeneity test, a P value >0.05 and I^2 <50% was considered no heterogeneity, 0.01 < P < 0.05 or $50\% < I^2 < 70\%$ was considered medium heterogeneity, and 0<P<0.01

Figure 1 Flow chart of the study. MAS, meconium aspiration syndrome.

or I²>70% was considered large heterogeneity. Random effects models were used in every analysis due to the nonrandomize nature of the enrolled studies. Sensitivity analysis was done manually by repeating the meta-analysis when removing the included studies one at a time to testify the stability of the pooled OR. An unchanged significance of pooled OR after removing a study was considered stable; an altered significance yet similar direction of pooled OR was considered fair stability; an altered significance and direction of pooled OR was considered unstable. Publication bias analysis was conducted by the Egger's test from the metabias add-on program in Stata (Stata Statistical Software: Release 17. StataCorp LLC. College Station, TX, USA) when more than three studies were included. A P value >0.05 in the Egger's test was considered to be significant. Subgroup analyses were further done for analyses with large heterogeneity. The body of evidence was evaluated by GRADE method.

Results

Literature retrieval result

The search yielded 885 unique records published from

1978 to 2022. Four additional studies were found through reference searches. After excluding 759 records by abstract screening, 129 articles were fully read for eligibility evaluation (Figure 1). A total of 55 studies, including casecontrol studies (n=17) (4-16,18,24-26) and observational cohort studies (n=38) with single center (19,23,27-36), multicenter (17,37-39), and regional/national studies (1,20,40-59), were selected for this meta-analysis, published from 1985 to 2022. A flow chart of the process was shown in Figure 1. An overview of characteristics of the included studies, including study period, country of objects, study population, number of patients in the reported groups, factors analyzed in the study, are presented in Tables 1,2. The list of the excluded fully read studies is presented in Table S1. The detailed results of quality evaluation of the studies by Newcastle-Ottawa quality scale are presented in Tables S2,S3. The study protocol can be found online (https://www.crd.york.ac.uk/PROSPEROFILES/338176_ PROTOCOL 20230111.pdf)

Several studies reporting independent risk factors with well-established cohort were not enrolled because of the lack of raw data, including Persson 2014 (60), Björkman 2015 (61), Caughey 2005 (62), Cheng 2006 (63), Darling

Table 1 Characteristics and reported analyzed factors of enrolled case-control studies

Iable I Chai	ACTELISTICS	s and reported analyz	en factors of enfroned case-control studies				
Author, year	Country	Study design	Population	N of MAS r	N of Jon-MAS	Analyzed factor related to MAS	SON
Alchalabi 1999 (9)	Jordan	Single center nested case- control study	All live-born term and post-term pregnancies with a singleton fetus with cephalic presentation and MSAF in the center between March to September 1997. Exclusion: women with risk factors for fetal distress such as hypertensive disorders, diabetes mellitus, antepartum hemorrhage, intrauterine growth retardation and major fetal anomalies	0 T	325	Maternal age, gestation, non-reassuring FHR, cesarean delivery, Apgar ≤7 at 5 minutes, PROM	ى
Amitai Komem 2025 (4)	Israel	Single center case-control study	All singleton gestations with cephalic presentation, delivered in the presence of MSAF between March 2011 and March 2020. Exclusion: suspected major fetal anomalies or genetic abnormalities as well as planned cesarean deliveries	78	11,778	Previous cesarean delivery, cesarean delivery, delivery <38 weeks, fever >38 °C, nulliparous, smoking, diabetes, hypertensive disorders	2
Avula 2017 (5)	Guntur	Single center nested case- control study	All births with MSAF between October 2015 to February 2016 in the study center. Exclusion: babies born with prematurity and with congenital anomalies and whose parents didn't give consent	21	139	Post term, SGA, oligohydramnios, Apgar <7	9
Bhat 2008 (6) India	Single center nested case- control study	All births with MSAF between June 2002 and May 2004 in the study center. Exclusion not stated	45	364	Birthweight <2,500 g, gestation >37 weeks, Caesarean section, meconium in trachea, thick meconium consistency, BMI increase, amniotic fluid index, serum white blood cell, k/µ	Q
Gad 2020 (7)	Egypt	Single center nested case- control study	All singleton term neonates with MSAF between January, 2013 through December, 2017 in the study center. Exclusion: neonates with congenital anomalies and those with risk factors or evidence of neonatal sepsis	52	62	Gender, Caesarean section, elevated C-reactive protein level, Apgar <7 at 5 min	Q
Gurubachary; 2015 (10)	a Nepal	Single-center cross-sectional study	All live babies born though MSAF between April 2010 to June 2010. Exclusion: newborns with gross congenital anomalies	7	108	Maternal age, Apgar <3 at 1 minute, Apgar <3 at 5 minutes, resuscitation, parity, post-term	9
Lee 2016 (25) Korea	Single center nested case- control study	 Singleton pregnancy; 2) term gestation (gestational age ≥38 weeks); amniotic fluid obtained at the time of cesarean delivery; and 4) MSAF identified at delivery. Exclusion: 1) multiple gestation; 2) stillbirth or fetal death; and 3) presence of major congenital malformations in the study site from July 1995 through June 2009 	10	106	Maternal age, nulliparity, non-reassuring FHR pattern, Apgar <7 at 5 minutes, positive amniotic fluid culture, MMP-8 >23 ng/mL, acute histologic chorioamnionitis	Q
Liu 2002 (8)	NSA	Single center nested case- control study	All infants born through MSAF from May 27, 1994 to June 9, 1997 in the study center. Exclusion not stated	24	660	Apgar <7 at 5 minutes, Apgar <7 at 1 minute, thick meconium, need for resuscitation, infant's stomach suctioned at <5 minutes of age, post-term, Caesarean section, male	Q
Mehar 2016 (26)	India	Single center retrospective cohort studv	Patients admitted to the neonatal intensive care unit of the center. Study period and exclusion not specified	27	372	Gender, gestation	Ŋ

Pediatric Medicine, 2023

Page 5 of 16

Table 1 (continued)

Page 6 of 16

MAS, meconium aspiration syndrome; NOS, Newcastle-Ottawa Scale; MSAF, meconium-stained amniotic fluid; SGA, small for gestational age; FHR, fetal hearty rate; PROM, premature rupture of membrane; BMI, body mass index; MMP, matrix metalloproteinase; LGA, large for gestational age.

Pediatric Medicine, 2023

Table 2 Characteristics and reported analyzed factors of enrolled cohort studies

Page 7 of 16

Author, year	Country/regior of subjects	¹ Study design	Study population	MAS in the observed group	MAS in the reference group	Observed factor of the study	NOS
Andersson 2022 (40)	Denmark	Nationwide cohort study	Singleton births without major congenital malformations, with registered GA, and with in-tended vaginal delivery at GA 41 ⁺⁰ –42 ⁺⁰ weeks between 2009 and 2018 in Denmark	299/55,717	345/79,160	41 ⁺⁰ –41 ⁺³ week GA (ref) <i>vs.</i> 41 ⁺⁴ – 42 ⁺⁰ week GA	9
Ashwal 2014 (27)	Canada	Single center retrospective cohort study	All singleton pregnancies at term who attempted vaginal delivery at the study center between June 1 st and December 31 st 2012	4/987	38/22,280	Oligohydramnios <i>v</i> s. normal amniotic fluid index (ref)	8
Ashwal 2018 (23)	Canada	Single center retrospective cohort study	All singleton pregnancies at term who attempted vaginal delivery at the study center between 2012–2015	4/309	2/618	Intrapartum fever vs. afebrile (ref)	8
Ashwal 2022 (28)	Canada	Single center retrospective cohort study	All women who underwent unplanned intrapartum cesarean delivery following a trial of labor in study site between 2009 and 2016	3/337	16/1,892	an intrapartum cesarean delivery with a history of a previous cesarean delivery vs. without (ref)	9
Bailey 2021 (29)	USA	A secondary analysis of a single center prospective cohort	Women admitted for labor at ≥37 weeks of gestation within a single institution from 2010 to 2015. Exclusion: fetal anomalies	5/614	9/5,727	Cord blood PH ≥7.20 vs Cord blood PH 7.11–7.19 (ref)	9
Blankenship 2020 (30)	USA	Retrospective analysis of a single center prospective cohort	Women at 37–38 weeks of gestation; had a singleton, cephalic infant; presented either for induction of labor or in spontaneous labor; and reached 10 cm cervical dilation in the study site from 2010 to 2015. Exclusion: congenital anomalies, had placenta pre-via or other contraindication to vaginal delivery, delivered by cesarean before achieving complete cervical dilation, or had a prior cesarean delivery	2/682	9/6,141	Labour duration $\ge 90^{th}$ percentile vs. <90 th percentile (ref)	8
Blomberg 2014 (41)	Sweden	Nationwide prospective cohort study	All singleton primiparous women prospectively registered in the Swedish Medical Birth Register who gave births from 1 January 1992 through 31 December 2010	30/29,816 (17–19 y), 363/185,942 (20–24 y), 563/205,905 (30–34 y), 193/63,193 (35–40y), 42/10,634 (40+ y)	649/300,822	Maternal age (years): 17–29, 20–24, 25–29 (ref), 30–34, 35–39, 40+	9
Cassidy 1985 (31)	Ireland	A secondary retrospective analysis of a single center cohort	Pregnancies resulting in an infant below the 5th centile for an Irish delivered over a 16-month period. Study date and exclusion not stated	1/100	0/100	SGA	8
Cedergren 2004 (42)	Sweden	Nationwide prospective population-based cohort study	Pregnancies delivered in Sweden January 1, 1992, through December 31, 2001. Exclusion: women with insulin-dependent diabetes mellitus	85/69,143 (BMI 29.1–35 kg/m²), 42/12,402 (BMI 35.1–40 kg/m²), 11/3,386 (BMI >40 kg/m²)	731/526,038	Maternal BMI (kg/m²): 19.8–26 (ref), 29.1–35, 35.1–40, >40	9
Cedergren 2006 (43)	Sweden	Nationwide prospective population-based cohort study	Singletons born in Sweden between January 1, 1992 to December 31, 2001. Exclusions: were made for pre-existing maternal diabetes and pregnancies where the infant had chromosomal anomalies	130/6,346	10,811/770,355	Cardiovascular defects	9
Cederholm 2005 (44)	Sweden	Nationwide prospective population-based cohort study	Women 35 to 49 years old with single births in Sweden during the period 1991–1996	64/21,748 (Amniocentesis), 5/1,984 (chorionic villus sampling)	99/47,854	Amniocentesis or chorionic villus sampling vs. not exposed (ref)	9
Cheng 2012 (45)	USA	Nationwide retrospective cohort study	Nulliparous women with singleton, vertex live births delivered at 39–42 weeks' gestation in 2005 in USA	19/23,963 (39 wk' GA)ª, 61/30,263 (40 wk' GA)ª, 57/17,379 (41 wk' GA)ª	515/177,733 (39 wk' GA)ª, 189/48,518 (40 wk' GA)ª, 11/2,739 (41 wk' GA)ª	Induction vs. expectant (ref)	9
Chiruvolu 2018 (37)	8 USA	Multicenter cohort study	Nonvigorous newborns born during the retrospective 1-year period before the implementation of new NRP guidelines (October 1, 2015, to September 30, 2016) to infants born during the 1-year prospective period after implementation (October 1, 2016, to September 30, 2017)	7/130	11/101	Born before vs. born after implementation of new NRP guidelines (ref)	9
Clausson 1999 (46)	9 Sweden	Nationwide prospective population-based cohort study	All recorded birth between 1991–1995. Exclusion: multiple births, preterm births, and LGA infants	32/10,321 (term-SGA), 155/39,415 (post term-AGA), 3/1,558 (post term-SGA)	595/458,744	Term SGA/post term SGA/post term AGA vs. term AGA (ref)	8
De los Santos- Garate 2011 (17)	- Mexico	Multi-center retrospective cohort study	All babies born from April 2006 to April 2009 at the study hospitals in NEOSANO's Perinatal Network in Mexico. Exclusion: Multiple births, babies with congenital malformations or inaccurate gestational age	26/4545 (40 wk' GA), 26/3,024 (41 wk' GA), 12/388 (42–44 wk' GA)	26/5,034 (39 wk' GA)ª	GA (weeks): 39 (ref), 40, 41, 42-44	9

Table 2 (continued)

Page 8 of 16

Table 2 (continued)

Author, year	Country/region of subjects	Study design	Study population	MAS in the observed group	MAS in the reference group	Observed factor of the study	NOS
Ding 2021 (1)	USA	Population-based retrospective cohort study	Twin births at a gestational age of 34–40 weeks from national database from 1995 to 2000. Exclusion: (I) extreme birthweights (<500 g or >6,000 g); (II) twin births not delivered at the same gestational week	35/48,942 (34 wk' GA), 56/71,116 (35 wk' GA), 65/95,086 (36 wk' GA) ^b , 55/101,874 (37 wk' GA) ^b , 44/45,318 (39 wk' GA) ^b , 31/20,858 (40 wk' GA) ^b	49/82,844	GA in twin pregnancy (weeks): 34, 35, 36, 37, 38 (ref), 39, 40	9
Greenwood 2003 (32)	Ireland	Single-center prospective cohort study	An established cohort in The National Maternity Hospital, Dublin. Included if they had an early amniotomy that showed clear amniotic fluid	8/435	0/7959	Meconium in amniotic fluid vs. clear amniotic fluid (ref)	8
Flemming 2020 (47)	Canada	A population-based retrospective cohort study	All data routinely collected under universal healthcare coverage in Ontario, Canada from 01/01/2000–12/31/2017	11/2,022	57/10,110	Compensated Cirrhosis vs. general population (ref)	7
Johnson 2005 (48)	USA	State-wide cohort study	Women who had singleton births in Washington state between 1993 and 2001	52/579	14/2,384 (US-Black), 7/2,453 (US-White)	Somali immigrants vs. US-Black (ref) or US-White (ref)	9
King 2012 (38)	USA	Multi-center retrospective cohort study	All women with singleton, term gestations (≥37 weeks) delivered from August 1995 to February 2004. Exclusion: women with a stillbirth or a prior cesarean delivery	10/198	184/12,942	Birthweight >4,500 g <i>vs.</i> birthweight <4,000 g (ref)	9
Knight 2017 (49)	UK	National prospective cohort study	Nulliparous women aged 35–50 years delivering at 39 weeks of gestation or beyond	6/3,715 (39 wk' GA), 26/5,908 (40 wk' GA), 41/7,254 (41 wk' GA)	414/55,785 (39 wk' GA), 242/28,190 (40 wk' GA), 62/6,276 (41 wk' GA)	Induction vs. expectant management (ref)	9
Kortekaas 2020 (50)	The Netherland	National retrospective cohort study	Women with a singleton birth, no known fetal congenital anomalies, ≥37 weeks of gestation and a fetus in cephalic position. Exclusion: women <18 of age, women with both pre-existing and pregnancy induced hypertensive disorder or both pre-existing or gestational diabetes mellitus. Data from 1999 and 2010 in Perined	291/4,778 (35–39 y), 62/884 (>40 y)	1,168/20,629 (18–34 y)	Maternal age (years): 18–34 (ref), 35–39, >40	9
Levin 2020 (39) Israel	Multi-center retrospective cohort study	The study cohort included all nulliparous women who delivered neonates weighing \geq 4,500 g between 2007 and 2018 in the study center	9/78, 13/50	0/43, 4/28	Trial of labor vs. no trial of labor (ref), Vaginal delivery vs. failed (ref)	8
Li 2019 (51)	Taiwan	Regional retrospective cohort study	Newly diagnosed with PIH between January 1, 2000 and December 31, 2013 in a regional database	392/29,013	930/116,052	РІН	9
Lindegren 2017 (52)	Sweden	Nationwide prospective population-based cohort study	Singleton cephalic pregnancies from 2001 to 2013 $\ge 41^{+3}$ weeks, delivered at maternity units with more than 500 deliveries per year during the study period	213/35,252 (primipara), 50/31,180 (multipara)	148/34,985 (primipara) 63/33,081 (multipara)	Deliveries in units expectant management vs. deliveries in units with the most active management of prolonged pregnancies (ref), stratified by parity	9
Lindegren 2020 (20)	Sweden	Nationwide prospective population-based cohort study	Singleton prolonged pregnancies (>41 ⁺³) and fetus in cephalic presentation among women with one previous birth. The first birth took place after 1998, and the second delivery took place during the study period 1999–2014	18/13,312	63/45,571	Induction vs. spontaneous start of labor (ref)	9
Narchi 2010 (33)	UK	Single-center prospective cohort study	Singleton pregnancy, delivered after 24 completed weeks	2/1537 (BMI 25–30 kg/m ²), 7/804 (BMI 30–35 kg/m ²)	4/3,322 (BMI <25 kg/m²)	Maternal BMI (kg/m²) at the first visit: <25, 25–30, 30–35	9
Persson 2016 (53)	Sweden	Nationwide prospective population-based cohort study	Infants of mothers with two consecutive live singleton term births in Sweden between 1992–2012	10/19,608 (weight change <-2) ^a , 19/36,538 (-2 to <-1) ^a , 51/86,441 (1 to <2) ^a , 54/65,060 (2 to <4) ^a , 38/24,051 (\geq 4) ^a	117/198,305 (-1 to <1) ^a	Inter-pregnancy weight change (kg/m ²): <-2, -2 to <-1, -1 to <1 (ref), 1 to <2, 2 to <4, \geq 4	9
Petrova 2001 (54)	USA	Nationwide retrospective cohort analysis	Singleton live births in USA from a national database between 1995–1997	39/7,800 (preterm, primipara), 278/39,714 (term, primipara), 44/11,000 (preterm, multipara), 1,013/112,556 (term, multipara)	1,074/537,000 (preterm, primipara), 11,452/5,726,000 (term, primipara), 805/402,500 (preterm, multipara), 12,103/4,034,333 (term, multipara)	Maternal fever, stratified by parity and term	9
Polnaszek 2018 (19)	USA	A secondary analysis of a prospective cohort study from a single center	Singleton deliveries at 37 weeks of gestation or beyond from 2010 to 2014 in the center	11/3,311	5/3,147	Maternal obese (BMI >30 kg/m ²)	9

Table 2 (continued)

Pediatric Medicine, 2023

Table 2 (continued)

Page 9 of 16

Author, year	Country/region of subjects	Study design	Study population	MAS in the observed group	MAS in the reference group	Observed factor of the study	NOS
Pyykonen 2018 (55)	Finland	Nationwide prospective population-based cohort study	Term, singleton cephalic deliveries between 2006–2012 in Finland	8/6,874 (40 ⁺⁰ -40 ⁺² wk' GA), 10/5,533 (40 ⁺³ -40 ⁺⁵ wk' 2 GA), 11/5,104 (40 ⁺⁶ -41 ⁺¹ wk' GA), 13/5,568 (41 ⁺² -41 ⁺⁴ wk' GA), 40/10,127 (41 ⁺⁵ -42 ⁺⁰ wk' GA)	20/6,862 (40 ⁺⁰ -40 ⁺² wk' GA), 23/5,520 (40 ⁺³ -40 ⁺⁵ wk' GA 28/5,087 (40 ⁺⁶ -41 ⁺¹ wk' GA), 28/5,553 (41 ⁺² -41 ⁺⁴ wk' GA 43/10,124 (41 ⁺⁵ -42 ⁺⁰ wk' GA)	 A), Labor induction vs. Expectant A), management (ref) 	9
Rietveld 2015 (56)	Netherland	National cohort study	Women who delivered for the second time between 2000–2007 in the Netherlands after one previous cesarean	6/5,246	14/7,614	attempted operative vaginal delivery vs. emergency repeat cesarean in trial of labor after cesarean (ref)	9
Roos 2011 (57) Sweden	Nationwide prospective population-based cohort study	Women with singleton pregnancies giving birth between 1995–2007 in Sweden	13/3,787	1,738/1,191,336	Polycystic ovary syndrome	9
Salihu 2011 (58)	USA	State-wide population-based retrospective cohort study	Singleton live births macrocosmic infants born within the gestational age range of 34–42 weeks	81/26,954ª	180/90,022	Maternal pre-pregnancy obese (BMI >30 kg/m ²)	9
Stotland 2006 (34)	USA	Single-center retrospective cohort study	All women delivering term, singleton infants in the center between 1980–2001 with information on pre-pregnancy weight and weight gain	28/4,112 (gain below) ^a , 90/8,860 (gain above) ^a	38/7,492ª	Maternal gestational weight gain by Institute of Medicine guidelines	9
Tyrberg 2013 (59)	Sweden	A national retrospective cohort study	All singleton deliveries in Sweden between 1973 and 2010. No exclusion stated	22/29,408	1,287/893,505	Maternal age (years) <16–19 <i>vs.</i> 20–30 (ref)	9
Usher 1988 (35)	Canada	Single center retrospective cohort study	All births included: The date of the last normal menstrual period was recorded; there was a record of an early ultrasound dating examination; gestational age calculated from early ultrasound examination was concordant within 7 days with that calculated from menstrual history; and delivery occurred at or after 273 days from the last normal menstrual period. Study period between Jan. 1, 1978, and March 31, 1986. No exclusion stated	2/1,407 (41 wk' GA) ^a , 6/340 (42+ wk' GA) ^a	13/5,915 (39–40 wk' GA) ^a	41wk, 42+wk <i>vs.</i> 39–40 wk (ref)	9
Ward 2022 (36) USA	Single center retrospective cohort study	All women with the term and post-term singleton pregnancies (>37 weeks' gestation) at the study site from 1990 to 2008. No exclusion stated	9/689 (38 wk GA), 29/1,537 (39 wk GA), 73/2,772 (40 wk GA), 77/1,989 (41 wk GA), 55/1,156 (42 wk GA)	N/A (observing the rate of MAS with advancing GA)	Gestation	9

^a, calculated from the rates provided by the study; ^b, converted in to individual twins from the twin pairs in the original study. MAS, meconium aspiration syndrome; NOS, Newcastle-Ottawa Scale; GA, gestational age; SGA, small for gestational age; LGA, large for gestational age; AGA, appropriate for gestational age; NRP, Neonatal Resuscitation Program; PIH, pregnancy-induced hypertension; N/A, not applicable; BMI, body mass index; ref, reference group.

2019 (64), Gould 2004 (65) and Gupta 2021 (66).

Risk of bias of included studies

The results of quality evaluation of the studies by Newcastle-Ottawa quality scale are presented in Table 1 and details are presented in Tables S2,S3. The case-control studies were published from 1989 to 2021. The majority of case-control studies were single center studies. All but three [Amitai Komem 2022 (4), Paudel 2020 (16), Vivian-Taylor 2011 (18)] were of small sample size. The majority hit a score of six, with none fell below three. One study was considered as low risk of bias (18) that was determined a score of nine. The main limitation of the case-control studies was that the case definition was extracted from established records, rather than individually validation, that controls were from hospitals, and that adjustment for potential confounders were not performed. The observational cohort studies were published from 1985 to 2022, of which the majority hit a score of nine. In general, the cohort studies were of a higher quality.

Risk factor analysis

Results of the meta-analysis and certainty of evidence body are summarized in *Table 3* reviewed below. The forest plots of each analysis, with the presentation with studies providing unadjusted effect size, were provided in the supplementary figures (Figures S1-S15).

Maternal risk factor

Maternal BMI \geq 30 kg/m² [5 studies, OR 2.27, 95% confidence interval (CI): 1.53-3.35, P<0.001] was a significant risk factor for MAS with large heterogeneity $(I^2=74\%, P=0.002)$; there were one unadjusted effect size from Oliveira et al. (12), and was similar to the combined result (Figure S1). Maternal age >34 years old was significant (2 studies, OR 1.46, 95% CI: 1.15-1.85, P=0.002) to MAS with large heterogeneity (I^2 =83%, P<0.001); there were one unadjusted effect size of maternal age >34 years old from Gurubacharya et al. (10) and was similar in trend with the combined result (Figure S2). Previous cesarean delivery was significant risky to MAS (3 studies, OR 1.27, 95% CI: 1.08-1.50, P=0.004) with no heterogeneity ($I^2=0\%$, P=0.52); the unadjusted effect sizes (14,25) were similar to the pooled OR (Figure S3). Maternal inflammatory response (3 studies, OR 2.20, 95% CI: 1.55-3.13, P<0.001) was a significant

risk factor with small heterogeneity ($I^2=54\%$, P=0.09); the studies with unadjusted effect size (14,15,23) were similar to the summarized effect size of adjusted result (Figure S4). There was only one adjusted effect size for smoking (1 study, OR 1.47, 95% CI: 1.32–1.64) and the unadjusted effect sizes were consistent with this adjusted OR in terms of direction and significance (Figure S5). Nulliparous was a significant risk factor (2 studies, OR 1.42, 95% CI: 1.29–1.56, P<0.001) for MAS with no heterogeneity (I^2 =0%, P=0.99); the remaining unadjusted ORs were also similar (Figure S6). There was no evidence of publication bias for the maternal risk factors and all conclusions were stable. There was no evidence of publication bias and sensitivity test was stable for all maternal factors.

Maternal fever in the domain of maternal inflammatory response showed to be a risk factor (2 studies, OR 2.37, 95% CI: 1.57–3.58, P<0.001). Chorioamnionitis were reported by three studies with only one adjusted OR available (1 study, OR 1.83, 95% CI: 1.18–2.84); the other three unadjusted OR were consistent to this result (Figure S4) (14,15). The subgroup analysis was not done for maternal age >34 years old, since there were only three publications in the meta-analysis. Subgroup analysis was attempted for maternal BMI \geq 30 kg/m², but none of the grouping strategy diminished the heterogeneity.

Peripartum risk factors

Oligohydramnios (2 studies, OR 2.35, 95% CI: 1.09–5.08, P=0.03) and cesarean section (2 studies, OR 2.50, 95% CI: 1.68–3.73, P<0.001) were risk factors for MAS with no heterogeneity; the remaining unadjusted ORs of the two factors were of the same significance to the corresponding summarized effect size (Figures S7,S9). Induction of labor appeared to be a protective factor (6 studies, OR 0.56, 95% CI: 0.47–0.68, P<0.001) with medium heterogeneity (I^2 =60%, P=0.002). There was no adjusted effect size reported for thick meconium in the enrolled studies, and the pooled OR for the univariate effect sizes showed significant risk for MAS (3 studies, OR 3.96, 95% CI: 2.02–7.77, P<0.001). The stability of the conclusion was true for all. There was no evidence of publication bias for the peripartum risk factors.

Fetal-neonatal risk factors

There was no adjusted effect size reported for fetal-neonatal risk factors in the enrolled studies hence the pooled OR

Table 3 Combined studi	es of risk factor.	s									
	N of	Co	mbined effect	Т	eterogene	eity test	Publica	tion bias	Sensitivitv	Certa	ainty of the evidence (GRADE)
Risk factor	participants [studies] ¹	Pooled O	R 95% CI P value	-2	P value He	eterogeneity	P value c	onclusion	analysis	Certainty	Reason for adjusting grading
Maternal factors											
Maternal BMI ≥30 kg/m²	1,202,375 [5]	2.27	1.53-3.35 <0.001	74%	0.002	Large	0.404	None	Stable	Low	nconsistency but large effect size
Maternal age >34 year	3,645,799 [2]	1.46	1.15-1.85 0.002	83%	<0.001	Large	0.210	None	Stable	Very Low	Inconsistency
Previous cesarean delivery	148,962 [3]	1.27	1.08-1.50 0.004	%0	0.52	None	0.470	None	Stable	Very Low	Inconsistency
Maternal inflammatory response ^a	86,091 [3]	2.20	1.55–3.13 <0.001	54%	0.09	Small	0.181	None	Stable	Low	Large effect size but inconsistency
Maternal fever	24,693 [2]	2.37	1.57–3.58 <0.001	41%	0.18	None	0.578	None	Stable	Moderate	Large effect size
Chorioamnionitis	1,336 [1]	1.83	1.18-2.84 0.007	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Smoking ^b	874,865 [1]	1.47	1.32–1.64 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Nulliparous	888,893 [2]	1.42	1.29–1.56 <0.001	%0	0.99	None	0.363	None	Stable	Low	N/A
Peripartum factors											
Oligohydramnios	36,837 [2]	2.35	1.09-5.08 0.03	%0	0.97	None	0.739	None	Stable	Moderate	Large effect size
Induction of labor	1,946,604 [6]	0.56	0.47-0.68 <0.001	60%	0.002	Small	0.524	None	Stable	Very low	Inconsistency
Caesarean section	13,191 [2]	2.50	1.68–3.73 <0.001	29%	0.24	None	0.729	None	Stable	Moderate	Large effect size
Thick meconium $^{\circ}$	2,020 [3]	3.96	2.02-7.77 <0.001	39%	0.20	None	0.482	None	Stable	Low	Large effect size but high risk of bias
Fetal-neonatal Factors											
Abnormal fetal heart rate ^c	14,893 [8]	4.70	3.50-6.32 <0.001	%0	0.60	Small	0.840	None	Stable	Very Low i	Large effect size but large nconsistency and high risk of bias
Male infant $^{\circ}$	953,922 [10]	1.15	0.98-1.36 <0.001	26%	0.20	None	0.335	None	Fair	Very Low	High risk of bias and high risk of bias
Post term $^{\circ}$	305,786 [7]	4.03	2.84–5.71 <0.001	36%	0.15	None	0.214	None	Stable	Low	Large effect size but high risk of bias
SGA ^b	878,078 [4]	1.97	1.76-2.20 <0.001	%0	0.76	None	0.475	None	Stable	Very Low	High risk of bias
Apgar <7 at 5 min [⊳]	74,548 [8]	14.89	9.52- <0.001 23.28	47%	0.07	None	0.983	None	Stable	Moderate	Very large effect size but high risk of bias
^a , combined analysis of univariate analysis were	identified risk available. OR,	factors: odds rat	maternal fever, chori tio; Cl, confidence in	oamnid terval;	bnitis, mai BMI, body	ternal infectio / mass index;	n; ^b , only SGA, sm	one study all for gest	provided tational age	adjusted e e; N/A, not	ffect size; $^\circ,$ only effect sizes from applicable.

Pediatric Medicine, 2023

Page 11 of 16

reported below were conducted on the univariate results. The listed fetal-neonatal risk factors, i.e., abnormal fetal heart rate (8 studies, OR 4.70, 95% CI: 3.50-6.32, P<0.001), male infant (10 studies, OR 1.15, 95% CI: 0.98-1.36, P<0.001), post-term (7 studies, OR 4.03, 95% CI: 2.84–5.71, P<0.001), SGA (4 studies, OR 1.97, 95% CI: 1.76-2.20, P<0.001), and Apgar <7 at 5 min (8 studies, OR 14.89, 95% CI: 9.52-23.28, P<0.001), were significant risk of MAS. There was no heterogeneity between studies for male infant (I²=26%, P=0.20), SGA (I²=0%, P=0.76), and post-term (I^2 =36%, P=0.15), Apgar <7 at 5 min (I^2 =47%, P=0.07), and abnormal fetal heart rate ($I^2=0\%$, P=0.60). There was no evidence of publication bias and the stability of the conclusion was true for all fetal-neonatal risk factors. However, due to the results were from univariate analysis these results should be interpreted with caution.

Certainty of body of evidence

The certainty of evidence were very low for factors including maternal age >34-year-old, previous cesarean delivery, induction of labor, abnormal fetal heart rate, male infant, and SGA, due to the inconsistency from heterogeneity among studies and/or the high risk of bias of included studies (*Table 3*). The certainty of evidence remained at low level for factors including maternal BMI \geq 30 kg/m² and maternal inflammatory response, due to large effect size but inconsistency and for post term and thick meconium due to large effect size but high risk of bias. The certainty of evidence was also low for nulliparous. The certainty for maternal fever, caesarean section and oligohydramnios were moderate due to large effect size (*Table 3*). The certainty for Apgar <7 at 5 min remained at moderate level due to very large effect size but high risk of bias (*Table 3*).

Discussion

Though the incidence and mortality of MAS decreased among the decades, MAS is still one of the causes leading to severe adverse outcome and may require advanced therapy of life support. To date, the predictor for MAS remains to be one of the topics for studies in this field. Clarifying the risk factors of MAS is of significance to early notify of the development of MAS which paves the way for early diagnosis and intervention, and may further reduce the use of advanced support caused by delayed intervention. In this study, instead of pre-defining risk factors at the start of the literature searching, we set the risks of interest after reading through the included article for reported factors, with the attempt to capture wider spectrum of information related to the topic. And we have identified a few factors that were understated in previous studies.

We included maternal fever and maternal chorioamnionitis specified by the article in terms of maternal inflammatory response, a concept that gained much attention in recent years (23-25). We did not include premature rupture of membrane (PROM) since PROM does not directly translate to maternal inflammatory response. The role of inflammation on MAS has gained increasing attention (23-25). Ashwal et al. (23) reported a trend, though not significant, of higher rate of MAS in relation to maternal fever (considering the overall incidence of MAS in the cohort, the insignificance might be due to the small sample size). Lee et al. (25) reported that intra-amniotic inflammation was associated to higher rate of MAS. Yokoi et al. (24) found that inflammatory biomarkers at birth of the neonate including C-reactive protein, haptoglobin were all relate to increased risk of MAS. Though the main pathological mechanism was considered to be triggered premature bowel peristalsis by intrauterine hypoxia-ischemia, there are studies proposing intrauterine inflammation as an independent variable for MAS development (25). A potential explanation might be that the elevated proinflammatory mediators such as interleukins and cytokine, transferred into the fetus, by swallowing or passing the cord, trigger bowel peristalsis and thus meconium passage in utero (23-25).

The other maternal factors analyzed in this study are all statistically significant. Smoking is reported to be a risk factor of neonatal morbidities other than MAS (67,68). A higher risk of SGA was reported in off-springs born to mothers smoking during pregnancy (68), which is another risk factor for MAS seen in this study. Maternal obesity, or BMI \geq 30 kg/m², was focused more in industrialized countries. Furthermore, apart from a set high BMI, Persson et al. (60) showed that a dynamic increase in the BMI is also associated to higher risk of MAS, based on a nation-wide cohort study. Advanced maternal age was reported to be associated with post-term birth (49), which is also a significant risk factor for MAS demonstrated in this study. However, the limited number of combinable studies the large heterogeneity of studies reporting on maternal factors diminished the certainty of evidence of the reported results, calling for high-quality studies to further investigate into risk factors for MAS surrounding maternal characteristics.

Pediatric Medicine, 2023

Our data supports the previously identified peripartum and fetal-neonatal risk factors risk factors for MAS, such as oligohydramnios, caesarean section, thick meconium, abnormal fetal heart rate, post-term, SGA, and low Apgar score (2), of which the main pathway leading to MAS is intrauterine hypoxia. Among the aforementioned risk factors, low Apgar score had the largest effect size, which is a straight-forward consequence of intrauterine hypoxia.

Induction of labor seemed to be a protective factor. Paudel *et al.* (16), reported a different result with comparing different induction method to no induction. However, this study was dropped because of the large heterogeinty among studies and unstable results when including this study. The explanation to this result might be the population and medical strategy in Paudel *et al.* (16) varied from those from other studies. Further randomized trials can be an option to validate this finding.

Some of the risk factors reported in the study are highly linked to the socioeconomic and demographic characteristics of the study site and the study period. For example, in earlier articles, the aforementioned cesarean section, reported by a series of studies to be a risk factor for MAS, were not categorized as elective and emergency. Vivian-Taylor et al. (18) clarified that it was the emergency cesarean section to be the risk factor for MAS, and the elective cesarean section was seen to be protective. They further pointed out that instrumental delivery was also a risk factor, which was rarely reported by other studies. Industrialized countries tend to conduct more large cohort studies and analyze factors relating to demographic characteristics such as ethnicity, teenage mother and maternal obesity. Additionally, new medical management strategies, i.e., induction of labor, has also gained increasing attention in the latest decade. On the other hand, the developing countries focus more on analyzing direct data from the delivery process, such as Apgar score, meconiumstained amnionic fluids, blood markers. These differences indicated a social-economical and temporal impact on the reported factors. Though a large proportion of the target factors in the large cohort studies are hard to combine due to their uniqueness, we have listed all the analyzed factors in Table 1.

To comply to the inclusion criteria for the analysis, several studies reporting independent risk factors with well-established cohort were not enrolled, including birth trauma (66) and large distance from home birth to emergency obstetric services (64), one unit increase in BMI (60) and born to low-risk mothers at low-cesarean delivery hospitals (65).

The strength of this study includes large sample size of cases and controls as the incidence of MAS was low in general. Additionally, we attempted to control selection bias through a predefined protocol. However, there are several limitations to be pointed out. First, the majority of the included studies were small and at overall high risk of bias, especially those case-control studies. As mentioned above, a lot of factors analyzed by the high-quality cohort studies were too unique to combine, resulting in limited number of pooled analyses with limited quality of studies. Second, the standard for MAS diagnosis varied over time. The enrolled studies did not conduct independent evaluation of MAS, but extracted data through medical records, which may lead to heterogeneity in MAS definition. Third, we could not eliminate language bias as only English databases were searched. Moreover, differences in socioeconomic conditions, lifestyles, and available therapies and medical strategies may introduce large inter-study heterogeneity, undermining the certainty of the conclusion. Also, we were unable to run the sub-analysis according to study era for most of the factor due to the large heterogeneity, hence we were not able to answer whether the effect size of risk factor altered over the decades. Last but not least, the majority of certainty of evidence ranged between very low to low due to the observational nature of the studies. However, since risk factors like maternal, peripartum, and fetal-neonatal characteristics cannot be analyzed by randomized controlled trials, our meta-analysis of observational studies can serve as a source of evidence.

Conclusions

In conclusion, despite the limitations, our study provides evidence reporting the risk factors associating to MAS development. As MAS is a disease with multiple risk factors, all 15 risk factors reported can be considered as potential impacting factors. In clinical practice, maternal smoking and obesity should be controlled and induction of labor can serve as a protective factor. The overall limited quality of relevant case-control studies necessitates further highquality researches. The limited number of combinable studies focusing on maternal risk factors indicates more attention on the association of maternal characteristics to MAS should be paid in future studies.

Acknowledgments

Funding: None.

Page 14 of 16

Footnote

Reporting Checklist: The authors have completed the PRISMA reporting checklist. Available at https://pm.amegroups.com/article/view/10.21037/pm-23-5/rc

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://pm.amegroups. com/article/view/10.21037/pm-23-5/coif). LQ serves as an unpaid managing editor of *Pediatric Medicine*. The other authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Ding G, Vinturache A, Yu J, et al. Optimal delivery timing for twin pregnancies: A population-based retrospective cohort study. Int J Clin Pract 2021;75:e14014.
- 2. Dargaville PA, Copnell B. The epidemiology of meconium aspiration syndrome: incidence, risk factors, therapies, and outcome. Pediatrics 2006;117:1712-21.
- Beligere N, Rao R. Neurodevelopmental outcome of infants with meconium aspiration syndrome: report of a study and literature review. J Perinatol 2008;28 Suppl 3:S93-101.
- 4. Amitai Komem D, Meyer R, Yinon Y, et al. Prediction of meconium aspiration syndrome by data available before delivery. Int J Gynaecol Obstet 2022;158:551-6.
- Avula TR, Bollipo S, Potharlanka S. Meconium-stained amniotic fluid and meconium aspiration syndrome- a study on risk factors and neonatal outcome. J Med Dent Sci. 2017;6:4971-4.
- 6. Bhat RY, Rao A. Meconium-stained amniotic fluid and meconium aspiration syndrome: a prospective study. Ann

Trop Paediatr 2008;28:199-203.

- Gad S, Alkhalafawi A, Raza S, et al. Value of neutrophil to lymphocyte ratio in early prediction of meconium aspiration syndrome. J Child Sci 2020;10:E207-11.
- Liu WF, Harrington T. Delivery room risk factors for meconium aspiration syndrome. Am J Perinatol 2002;19:367-78.
- Alchalabi H, Abu-Heija AT, El-Sunna E, et al. Meconiumstained amniotic fluid in term pregnancies-a clinical view. J Obstet Gynaecol 1999;19:262-4.
- Gurubacharya SM, Rajbhandari S, Gurung R, et al. Risk factors and outcome of neonates born through meconium stained amniotic fluid in a tertiary hospital of Nepal. J Nepal Paediatr Soc 2015;35:44-8.
- Meydanli MM, Dilbaz B, Calişkan E, et al. Risk factors for meconium aspiration syndrome in infants born through thick meconium. Int J Gynaecol Obstet 2001;72:9-15.
- Oliveira CPL, Flôr-de-Lima F, Rocha GMD, et al. Meconium aspiration syndrome: risk factors and predictors of severity. J Matern Fetal Neonatal Med 2019;32:1492-8.
- Rossi EM, Philipson EH, Williams TG, et al. Meconium aspiration syndrome: intrapartum and neonatal attributes. Am J Obstet Gynecol 1989;161:1106-10.
- Usta IM, Mercer BM, Sibai BM. Risk factors for meconium aspiration syndrome. Obstet Gynecol 1995;86:230-4.
- Yoder BA, Kirsch EA, Barth WH, et al. Changing obstetric practices associated with decreasing incidence of meconium aspiration syndrome. Obstet Gynecol 2002;99:731-9.
- Paudel P, Sunny AK, Poudel PG, et al. Meconium aspiration syndrome: incidence, associated risk factors and outcome-evidence from a multicentric study in lowresource settings in Nepal. J Paediatr Child Health 2020;56:630-5.
- De Los Santos-Garate AM, Villa-Guillen M, Villanueva-García D, et al. Perinatal morbidity and mortality in late-term and post-term pregnancy. NEOSANO perinatal network's experience in Mexico. J Perinatol 2011;31:789-93.
- Vivian-Taylor J, Sheng J, Hadfield RM, et al. Trends in obstetric practices and meconium aspiration syndrome: a population-based study. BJOG 2011;118:1601-7.
- Polnaszek BE, Raghuraman N, Lopez JD, et al. Neonatal Morbidity in the Offspring of Obese Women Without Hypertension or Diabetes. Obstet Gynecol 2018;132:835-41.
- 20. Lindegren L, Stuart A, Carlsson Fagerberg M, et al.

Retrospective study of maternal and neonatal outcomes after induction compared to spontaneous start of labour in women with one previous birth in uncomplicated pregnancies > 41+3. J Perinat Med 2020;49:23-9.

- Stroup DF, Berlin JA, Morton SC, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA 2000;283:2008-12.
- 22. Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009;6:e1000097.
- Ashwal E, Salman L, Tzur Y, et al. Intrapartum fever and the risk for perinatal complications - the effect of fever duration and positive cultures. J Matern Fetal Neonatal Med 2018;31:1418-25.
- Yokoi K, Iwata O, Kobayashi S, et al. Evidence of both foetal inflammation and hypoxia-ischaemia is associated with meconium aspiration syndrome. Sci Rep 2021;11:16799.
- 25. Lee J, Romero R, Lee KA, et al. Meconium aspiration syndrome: a role for fetal systemic inflammation. Am J Obstet Gynecol 2016;214:366.e1-9.
- Mehar V, Agarwal N, Agarwal A, et al. Meconium-stained amniotic fluid as a potential risk factor for perinatal asphyxia: A single-center experience. J Clin Neonatol 2016;5:157-61.
- 27. Ashwal E, Hiersch L, Melamed N, et al. The association between isolated oligohydramnios at term and pregnancy outcome. Arch Gynecol Obstet 2014;290:875-81.
- Ashwal E, Lavie A, Blecher Y, et al. Intrapartum cesarean delivery and the risk of perinatal complications in women with and without a single prior cesarean delivery. Int J Gynaecol Obstet 2022;157:359-65.
- Bailey EJ, Frolova AI, López JD, et al. Mild Neonatal Acidemia is Associated with Neonatal Morbidity at Term. Am J Perinatol 2021;38:e155-61.
- Blankenship SA, Raghuraman N, Delhi A, et al. Association of abnormal first stage of labor duration and maternal and neonatal morbidity. Am J Obstet Gynecol 2020;223:445.e1-445.e15.
- Cassidy M, Baker S, Stack J, et al. Risk factors and perinatal problems in small for gestational age pregnancies. Ir J Med Sci 1985;154:237-9.
- Greenwood C, Lalchandani S, MacQuillan K, et al. Meconium passed in labor: how reassuring is clear amniotic fluid? Obstet Gynecol 2003;102:89-93.
- Narchi H, Skinner A. Overweight and obesity in pregnancy do not adversely affect neonatal outcomes: new

evidence. J Obstet Gynaecol 2010;30:679-86.

- Stotland NE, Cheng YW, Hopkins LM, et al. Gestational weight gain and adverse neonatal outcome among term infants. Obstet Gynecol 2006;108:635-43.
- Usher RH, Boyd ME, McLean FH, et al. Assessment of fetal risk in postdate pregnancies. Am J Obstet Gynecol 1988;158:259-64.
- Ward C, Caughey AB. The risk of meconium aspiration syndrome (MAS) increases with gestational age at term. J Matern Fetal Neonatal Med 2022;35:155-60.
- Chiruvolu A, Miklis KK, Chen E, et al. Delivery Room Management of Meconium-Stained Newborns and Respiratory Support. Pediatrics 2018;142:e20181485.
- King JR, Korst LM, Miller DA, et al. Increased composite maternal and neonatal morbidity associated with ultrasonographically suspected fetal macrosomia. J Matern Fetal Neonatal Med 2012;25:1953-9.
- 39. Levin G, Meyer R, Yagel S, et al. Which way is better to deliver the very heavy baby: mode of delivery, maternal and neonatal outcome. Arch Gynecol Obstet 2020;301:941-8.
- 40. Andersson CB, Petersen JP, Johnsen SP, et al. Risk of complications in the late vs early days of the 42nd week of pregnancy: A nationwide cohort study. Acta Obstet Gynecol Scand 2022;101:200-11.
- Blomberg M, Birch Tyrberg R, Kjølhede P. Impact of maternal age on obstetric and neonatal outcome with emphasis on primiparous adolescents and older women: a Swedish Medical Birth Register Study. BMJ Open 2014;4:e005840.
- 42. Cedergren MI. Maternal morbid obesity and the risk of adverse pregnancy outcome. Obstet Gynecol 2004;103:219-24.
- Cedergren MI, Källén BA. Obstetric outcome of 6346 pregnancies with infants affected by congenital heart defects. Eur J Obstet Gynecol Reprod Biol 2006;125:211-6.
- 44. Cederholm M, Haglund B, Axelsson O. Infant morbidity following amniocentesis and chorionic villus sampling for prenatal karyotyping. BJOG 2005;112:394-402.
- 45. Cheng YW, Kaimal AJ, Snowden JM, et al. Induction of labor compared to expectant management in low-risk women and associated perinatal outcomes. Am J Obstet Gynecol 2012;207:502.e1-8.
- Clausson B, Cnattingius S, Axelsson O. Outcomes of post-term births: the role of fetal growth restriction and malformations. Obstet Gynecol 1999;94:758-62.
- 47. Flemming JA, Mullin M, Lu J, et al. Outcomes of Pregnant Women With Cirrhosis and Their Infants in a Population-

Page 16 of 16

Based Study. Gastroenterology 2020;159:1752-1762.e10.

- Johnson EB, Reed SD, Hitti J, et al. Increased risk of adverse pregnancy outcome among Somali immigrants in Washington state. Am J Obstet Gynecol 2005;193:475-82.
- Knight HE, Cromwell DA, Gurol-Urganci I, et al. Perinatal mortality associated with induction of labour versus expectant management in nulliparous women aged 35 years or over: An English national cohort study. PLoS Med 2017;14:e1002425.
- 50. Kortekaas JC, Kazemier BM, Keulen JKJ, et al. Risk of adverse pregnancy outcomes of late- and postterm pregnancies in advanced maternal age: A national cohort study. Acta Obstet Gynecol Scand 2020;99:1022-30.
- 51. Li JY, Wang PH, Vitale SG, et al. Pregnancy-induced hypertension is an independent risk factor for meconium aspiration syndrome: A retrospective population based cohort study. Taiwan J Obstet Gynecol 2019;58:396-400.
- 52. Lindegren L, Stuart A, Herbst A, et al. Improved neonatal outcome after active management of prolonged pregnancies beyond 41(+2) weeks in nulliparous, but not among multiparous women. Acta Obstet Gynecol Scand 2017;96:1467-74.
- 53. Persson M, Johansson S, Cnattingius S. Inter-pregnancy Weight Change and Risks of Severe Birth-Asphyxia-Related Outcomes in Singleton Infants Born at Term: A Nationwide Swedish Cohort Study. PLoS Med 2016;13:e1002033.
- Petrova A, Demissie K, Rhoads GG, et al. Association of maternal fever during labor with neonatal and infant morbidity and mortality. Obstet Gynecol 2001;98:20-7.
- 55. Pyykönen A, Tapper AM, Gissler M, et al. Propensity score method for analyzing the effect of labor induction in prolonged pregnancy. Acta Obstet Gynecol Scand 2018;97:445-53.
- 56. Rietveld AL, Kok N, Kazemier BM, et al. Trial of labor after cesarean: attempted operative vaginal delivery versus emergency repeat cesarean, a prospective national cohort study. J Perinatol 2015;35:258-62.
- Roos N, Kieler H, Sahlin L, et al. Risk of adverse pregnancy outcomes in women with polycystic ovary syndrome: population based cohort study. BMJ

doi: 10.21037/pm-23-5

Cite this article as: Luo S, Han J, Yin H, Qian L. The risk factors of meconium aspiration syndrome in newborns: a metaanalysis and systematic review. Pediatr Med 2023;6:3. 2011;343:d6309.

- Salihu HM, Weldeselasse HE, Rao K, et al. The impact of obesity on maternal morbidity and feto-infant outcomes among macrosomic infants. J Matern Fetal Neonatal Med 2011;24:1088-94.
- Tyrberg RB, Blomberg M, Kjølhede P. Deliveries among teenage women - with emphasis on incidence and mode of delivery: a Swedish national survey from 1973 to 2010. BMC Pregnancy Childbirth 2013;13:204.
- 60. Persson M, Johansson S, Villamor E, et al. Maternal overweight and obesity and risks of severe birth-asphyxiarelated complications in term infants: a population-based cohort study in Sweden. PLoS Med 2014;11:e1001648.
- 61. Björkman K, Wesström J. Risk for girls can be adversely affected post-term due to underestimation of gestational age by ultrasound in the second trimester. Acta Obstet Gynecol Scand 2015;94:1373-9.
- 62. Caughey AB, Washington AE, Laros RK Jr. Neonatal complications of term pregnancy: rates by gestational age increase in a continuous, not threshold, fashion. Am J Obstet Gynecol 2005;192:185-90.
- 63. Cheng YW, Shaffer BL, Caughey AB. The association between persistent occiput posterior position and neonatal outcomes. Obstet Gynecol 2006;107:837-44.
- 64. Darling EK, Lawford KMO, Wilson K, et al. Distance from Home Birth to Emergency Obstetric Services and Neonatal Outcomes: A Cohort Study. J Midwifery Womens Health 2019;64:170-8.
- Gould JB, Danielsen B, Korst LM, et al. Cesarean delivery rates and neonatal morbidity in a low-risk population. Obstet Gynecol 2004;104:11-9.
- Gupta R, Cabacungan ET. Neonatal Birth Trauma: Analysis of Yearly Trends, Risk Factors, and Outcomes. J Pediatr 2021;238:174-180.e3.
- 67. Sturrock S, Williams E, Ambulkar H, et al. Maternal smoking and cannabis use during pregnancy and infant outcomes. J Perinat Med 2020;48:168-72.
- Ratnasiri AWG, Gordon L, Dieckmann RA, et al. Smoking during Pregnancy and Adverse Birth and Maternal Outcomes in California, 2007 to 2016. Am J Perinatol 2020;37:1364-76.

Appendix 1

Search date 2022.5.30-6.1

PubMed 265

(((((((Meconium aspiration syndrome[Mesh]) OR (Meconium aspiration syndrome[Title/Abstract]) OR (Meconium aspiration syndrome[Title/Abstract])) OR (Aspiration Syndrome, Meconium[Title/Abstract])) OR (Syndrome, Meconium Aspiration[Title/Abstract])) OR (Aspiration, Meconium[Title/Abstract])) OR (Meconium Inhalation[Title/Abstract])) OR (Meconium Aspiration[Title/Abstract])) OR (Aspiration, Meconium[Title/Abstract])) OR (Meconium Inhalation[Title/Abstract])) AND (((((((("Infant, Newborn"[Mesh]) OR (Infant, Newborn"[Title/Abstract])) OR (Newborn Infants[Title/Abstract])) OR (Newborn Infants[Title/Abstract])) OR (Newborns[Title/Abstract])) OR (Newborn[Title/Abstract])) OR (Neonate[Title/Abstract])) OR (Neonates[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Neonates[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Social Risk Factors"[Mesh]) OR (Risk Factors[Title/Abstract])) OR (Infants[Title/Abstract])) OR (Social Risk Factors"[Mesh]) OR (Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors[Title/Abstract])) OR (Factor, Social Risk[Title/Abstract])) OR (Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors, Social Risk[Title/Abstract])) OR (Social Risk Factors, Social Risk[Title/Abstract])) OR (Correlates, Health[Title/Abstract])) OR (Population at Risk[Title/Abstract])) OR (Risk Scores[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor])) OR (Score, Risk Factor[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Risk Factor[Title/Abstract])) OR (Risk Factor Scores[Title/Abstract])) OR (Score, Ris

EMBASE.com 419

(('Meconium aspiration syndrome'/exp) OR ('Meconium aspiration syndrome':ti,ab,kw) OR ('Aspiration Syndrome, Meconium':ti,ab,kw) OR ('Meconium Aspiration':ti,ab,kw) OR ('Aspiration Meconium':ti,ab,kw) OR ('Meconium Inhalation':ti,ab,kw) OR ('Infants, Newborn':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infant':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Newborn':ti,ab,kw) OR ('Neonate':ti,ab,kw) OR ('Infant':ti,ab,kw) OR ('Infants':ti,ab,kw) OR ('Infant':ti,ab,kw) OR

WOB 577

http://www.webofscience.com/wos/alldb/summary/eadaf559-9e5e-462a-878c-225c63f41115-3b65c535/relevance/1 ((((TS=(Meconium aspiration syndrome)) OR TS=(Aspiration Syndrome, Meconium)) OR TS=(Syndrome, Meconium Aspiration)) OR TS=(Meconium Aspiration)) OR TS=(Aspiration, Meconium)) OR TS=(Meconium Inhalation) AND ((((((TS=(Infant, Newborn)) OR TS=(Infant)) OR TS=(Infants, Newborn)) OR TS=(Newborn Infant)) OR TS=(Newborn)) OR TS=(Newborns)) OR TS=(Newborn)) OR TS=(Neonate)) OR TS=(Neonates)) OR TS=(Infants)

AND

Ovid medline 265

Ovid MEDLINE(R) ALL <1946 to May 27, 2022>

exp Meconium aspiration syndrome/ OR Meconium aspiration syndrome.mp OR Aspiration Syndrome, Meconium.mp OR Syndrome, Meconium Aspiration.mp OR Meconium Aspiration.mp OR Aspiration, Meconium.mp OR Meconium Inhalation.mp 2013 AND exp Infant, Newborn/ OR exp Infant/ OR Infant, Newborn.mp OR Infants, Newborn.mp OR Newborn Infant.mp OR Newborn Infants. mp OR Newborns.mp OR Newborn.mp OR Neonate.mp OR Neonates.mp OR Infant.mp OR Infants.mp AND exp Risk Factors/ OR Risk Factors.mp OR Factor, Risk.mp OR Risk Factor.mp OR Social Risk Factors.mp OR Factor, Social Risk.mp OR Factors, Social Risk.mp OR Risk Factor, Social.mp OR Risk Factors, Social.mp OR Social Risk Factor.mp OR Health Correlates.mp OR Correlates, Health.mp OR Population at Risk.mp OR Populations at Risk.mp OR Risk Scores.mp OR Risk Score.mp OR Score, Risk. mp OR Risk Factor Scores.mp OR Risk Factor Score.mp OR Score, Risk Factor.mp 1312081

Scopus 515

(TITLE-ABS-KEY ("Meconium aspiration syndrome" OR "Meconium aspiration syndrome" OR "Meconium aspiration syndrome" OR "Aspiration Syndrome, Meconium" OR "Syndrome, Meconium Aspiration" OR "Meconium Aspiration" OR "Aspiration, Meconium" OR "Meconium Inhalation") AND TITLE-ABS-KEY ("Newborn" OR "Infant" OR "Infant, Newborn" OR "Infants, Newborn" OR "Newborn Infants" OR "Newborn Infants" OR "Newborns" OR "Newborn" OR "Newborn" OR "Neonate" OR "Neonates" OR "Infant" OR "Infant" OR "Infants, Newborn" OR "Infants") AND TITLE-ABS-KEY ("Risk Factors" OR "Risk Factors, Social Risk Factors" OR "Risk Factor, Social" OR "Risk Factors, Social Risk Factor" OR "Risk Factor") OR "Risk Factor" OR "Risk Factor" OR "Risk Factor" OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Factor") OR "Risk Factor" OR "Risk Factor") OR "Risk Facto

Cochrane 46

Search Name: Date Run: 01/06/2022 01:41:22

Comment:

ID Search Hits

- #1 MeSH descriptor: [Meconium Aspiration Syndrome] this term only 105
- #2 (Meconium Aspiration Syndrome):ti,ab,kw OR (Meconium Inhalation):ti,ab,kw OR (Meconium Aspiration):ti,ab,kw OR (Aspiration, Meconium):ti,ab,kw OR (Aspiration Syndrome, Meconium):ti,ab,kw 311
- #3 (Syndrome, Meconium Aspiration):ti,ab,kw 256
- #4 {OR #1, #2, #3} 311
- #5 MeSH descriptor: [Infant, Newborn] explode all trees 17497

#6 (Infants, Newborn):ti,ab,kw OR (Newborns):ti,ab,kw OR (Newborn):ti,ab,kw OR (Newborn Infants):ti,ab,kw 33140

#7 (Newborn Infant):ti,ab,kw OR (Neonate):ti,ab,kw 23111

- #8 {OR #5, #6, #7} 33803
- #9 MeSH descriptor: [Risk Factors] explode all trees 26247

#10(Populations at Risk):ti,ab,kw OR (Population at Risk):ti,ab,kw OR (Correlates, Health):ti,ab,kw OR (Health Correlates):ti,ab,kw OR(Risk Factor):ti,ab,kw86352

#11(Factor, Risk):ti,ab,kw OR (Risk Factors, Social):ti,ab,kw OR (Social Risk Factor):ti,ab,kw OR (Risk Factor, Social):ti,ab,kw OR(Factors, Social Risk):ti,ab,kw50942

#12 (Factor, Social Risk):ti,ab,kw OR (Social Risk Factor):ti,ab,kw OR (Risk Factor Score):ti,ab,kw OR (Risk Fact

#13 (Risk Scores):ti,ab,kw OR (Score, Risk Factor):ti,ab,kw OR (Score, Risk):ti,ab,kw 43540

#14 {OR #9, #10, #11, #12, #13} 131016

#15 {AND #4, #8, #14} 46

Table S1 Summary of excluded fully read studies

Authors	Title	Year	Journal
Choi W., <i>et al.</i>	Risk factors differentiating mild/moderate from severe meconium aspiration syndrome in meconium-stained	2015	Obstetrics & Gynecology Science
	neonates		
Kalra V. K., <i>et al.</i>	Change in neonatal resuscitation guidelines and trends in incidence of meconium aspiration syndrome in	2020	Journal of Perinatology
	California		
Sandal G, <i>et al.</i>	The admission rate in neonatal intensive care units of newborns born to adolescent mothers	2011	Journal of Maternal-Fetal and Neonatal Medicine
Shah N, <i>et al.</i>	Comparision of obstetric outcome among teenage and non-teenage mothers from three tertiary care	2011	Journal of the Pakistan Medical Association
	hospitals of Sindh, Pakistan		
Wertheimer A, et al.	The effect of meconium-stained amniotic fluid on perinatal outcome in pregnancies complicated by preterm	2020	Archives of Gynecology and Obstetrics
	premature rupture of membranes		
Persson M, <i>et al.</i>	Maternal Overweight and Obesity and Risks of Severe Birth-Asphyxia-Related Complications in Term Infants:	2014	PLoS Medicine
	A Population-Based Conort Study in Sweden		
Hofer N, <i>et al.</i>	Meconium aspiration syndrome - A 21-years' experience from a tertiary care center and analysis of risk	2013	Klinische Padiatrie
Lin H. C, <i>et al.</i>	Meconium aspiration syndrome: Experiences in Taiwan	2008	Journal of Perinatology
Mohammad N, <i>et al.</i>	Meconium stained liquor and its neonatal outcome	2018	Pakistan Journal of Medical Sciences
Hiersch L, <i>et al.</i>	Meconium-Stained Amniotic Fluid and Neonatal Morbidity in Low-Risk Pregnancies at Term: The Effect of	2017	American Journal of Perinatology
	Gestational Age		
Pariente Gali, <i>et al.</i>	Meconium-stained amniotic fluidrisk factors and immediate perinatal outcomes among SGA infants	2015	The Journal of Maternal-fetal & Neonatal Medicine
Raman Ts Raghu and Jayaprakash D G	Neonatal outcome in meconium stained deliveries - a prospective study	1997	Medical Journal, Armed Forces India
Shah S C, <i>et al.</i>	Neonatal outcome of macrosomia	2020	Journal of Nepal Paediatric Society
lanssen P.A. et al	Outcomes of planned home births versus planned hospital births after regulation of midwifery in British	2002	CMAI
	Columbia	2002	
Malik A S. <i>et al</i>	Prelabour runture of membranes and neonatal morbidity in level II nursery in Kelantan	1994	The Medical journal of Malaysia
		1006	Australian and New Zaaland Jawrad of Obstativias and
Orbaniak K 5, <i>et al.</i>	Hisk factors for meconium-aspiration syndrome	1990	Australian and New Zealand Sournal of Obstetrics and Gynaecology
Addisu Dagne, et al	Prevalence of meconium stained amniotic fluid and its associated factors among women who gave birth at	2018	BMC pregnancy and childbirth
Addisu Dagrie, et al.	term in Felege Hiwot comprehensive specialized referral hospital. North West Ethiopia: a facility based cross-	2018	BINC pregnancy and childbirth
	sectional study		
Adhikari M, <i>et al.</i>	Meconium aspiration in South Africa	1995	South African Medical Journal
Adhikari S <i>et al</i>	Morbidities and Outcome of a Neopatal Intensive Care in Western Neoal	2017	The Journal of the Nenal Health Research Council
		2017	
Ahi S, et al.	Correlation between Maternal Vitamin D and Thyroid Function in Pregnancy with Maternal and Neonatal Outcomes: A Cross-Sectional Study	2022	International Journal of Endocrinology
Arbib N. at al	The pro-gentational trial services and high density linearization chalasteral ratio is approxisted with advarge	2020	International Journal of Oursealogy and Obstatrica
Arbib N, et al.	perinatal outcomes: A retrospective cohort analysis	2020	international Journal of Gynecology and Obstetrics
Palaah K. at al	Accessment of Neonatel Respiratory Distance Incidences with Causes, Martality and Marhidity in a Tartiany	2020	lournal of Pharmacoutical Passarah International
Baloch R, et al.	Care Hospital	2020	Journal of Fharmaceutical Research International
Baseer Khaled A et al	Risk Factors of Respiratory Diseases Among Neonates in Neonatal Intensive Care Unit of Open University	2020	Annals of Global Health
Susser Analou A, et al.	Hospital, Egypt	2020	, anas or Global Health
Beaver K M and Wright I P	Evaluating the effects of birth complications on low self-control in a sample of twins	2005	International Journal of Offender Therapy and
Beaver K in and Wright J P	Evaluating the enects of birth complications of low sen-control in a sample of twins	2005	Comparative Criminology
Bonny BS at al	Meconium aspiration - role of obstetric factors and suction	1087	Australian and New Zealand Journal of Obstatrics and
Benny F 3, et al.		1907	Gynaecology
Biorkman K and Wesstrom J	Risk for girls can be adversely affected post-term due to underestimation of gestational age by ultrasound in	2015	Acta Obstetricia et Gynecologica Scandinavica
	the second trimester	2010	nota obototnota or aynocologica obanamavida
Bogomazova I M. <i>et al.</i>	Neonatal meconium aspiration: Risk factors and adaptation by the newborns	2019	Obstetrics, Gynecology and Reproduction
	The approximation between placente approximation of the markers and composite adverse delivery	2021	
Bowe S, et al.	outcome of a likely placental cause in healthy post-date pregnancies	2021	Acta Obstetricia el Gynecologica Scandinavica
Brockleburst P. et al	Perinatal and maternal outcomes by planned place of birth for healthy women with low risk pregnancies: The	2012	BM-L (Opline)
	Birthplace in England national prospective cohort study	2012	
Caughey A B. et al.	Neonatal complications of term pregnancy: Bates by gestational age increase in a continuous, not threshold	2005	American Journal of Obstetrics And Gynecology
	fashion	2000	Amonoan boarnar of obstantias find ayricology
Cavallin E. <i>et al.</i>	Bisk factors for mortality among neonates admitted to a special care unit in a low-resource setting	2020	BMC Preanancy and Childbirth
Chand Saraan et al	Factors Loading To Macanium Appiration Sundrome in Term, and Dest term Nacantae	2010	
		2019	
Cheng Yvonne W, et al.	The association between persistent occiput posterior position and neonatal outcomes	2006	Obstetrics and Gynecology
Colvin Z, <i>et al.</i>	Duration of labor induction in nulliparous women with hypertensive disorders of pregnancy and maternal and	2020	Journal of Maternal-Fetal and Neonatal Medicine
	neonatal outcomes		
Conway D L, <i>et al.</i>	Isolated oligohydramnios in the term pregnancy: is it a clinical entity?	1998	Journal of Maternal-Fetal and Neonatal Medicine
Currie J and Rossin-Slater M	Weathering the storm: hurricanes and birth outcomes	2013	Journal of Health Economics
Dargaville P A and Copnell B	The epidemiology of meconium aspiration syndrome: Incidence, risk factors, therapies, and outcome	2006	Pediatrics
Darling E K. <i>et al.</i>	Distance from Home Birth to Emergency Obstetric Services and Neonatal Outcomes: A Cohort Study	2019	Journal of midwifery & women's health
	Incidence of and factors associated with meconium staining of the ampiotic fluid in a Nigerian Liniversity	2006	Journal of Obstatrics and Gunaecology
David A N, et al.	Teaching Hospital	2000	Journal of Obstetrics and Gynaecology
De Oliveira C. A. <i>et al</i>	Hypertensive syndromes during pregnancy and perinatal outcomes	2006	Revista Brasileira de Saude Materno Infantil
	The impact of Neoretel Decuseitation Dreament equivalence on martelity and markidity of neuroper inferte with	2000	
Duran R, <i>et al.</i>	perinatal asphyxia	2008	Brain & Development
Espishaira M.C. at al	Maganium appiration sundrame, the experience of a tertiany conter	2011	Povisto Portugueso do poumologio
		2011	
Fedakar A	The incidence and clinical features of meconium aspiration syndrome: A two-year neonatal intensive care	2019	European Research Journal
		0010	
Firdaus U, <i>et al.</i>	Meconium stained amniotic fluid: A clinical study of maternal and neonatal attributes	2013	Current Pediatric Research
Fischer C, <i>et al.</i>	A Population-Based Study of Meconium Aspiration Syndrome in Neonates Born between 37 and 43 Weeks	2012	International Journal of Pediatrics
Gluck O, <i>et al.</i>	Bloody amniotic fluid during labor - Prevalence, and association with placental abruption, neonatal morbidity, and adverse pregnancy outcomes	2019	European Journal of Obstetrics & Gynecology and
Gonen N, <i>et al.</i>	Placental Histopathology and Pregnancy Outcomes in "Early" vs. "Late" Placental Abruption.	2021	Reproductive Sciences
Gould J B, <i>et al</i> .	Cesarean delivery rates and neonatal morbidity in a low-risk population	2004	Obstetrics and Gynecology
Gupta P, <i>et al.</i>	Clinical and biochemical asphyxia in meconium stained deliveries	1998	Indian Pediatrics
Gupta R and Cabacungan E T	Neonatal Birth Trauma: Analysis of Yearly Trends, Risk Factors, and Outcomes	2021	Journal of Pediatrics
Gupta S K. <i>et al.</i>	Meconium aspiration syndrome in infants of HIV-positive women: A case-control study	2016	Journal of Perinatal Medicine
Gupta V et al	Meconium stained amniotic fluid: antenatal intranartum and neonatal attributes	1996	Indian Pediatrics
	Drimony opportion position in and devide anti-	0015	Roual Madical Invent
Hashim N, <i>et al.</i>	Primary cesarean section in grandmultiparity	2015	Rawal Medical Journal
Hofer N, <i>et al.</i>	Inflammatory indices in meconium aspiration syndrome	2016	Pediatric Pulmonology
Horgan M J, <i>et al.</i>	The relationship of thrombocytopenia to the onset of persistent pulmonary hypertension of the newborn in	1985	New York State Journal of Medicine
	the meconium aspiration syndrome		
Khazardoost S, <i>et al.</i>	Risk factors for meconium aspiration in meconium stained amniotic fluid	2007	Journal of Obstetrics and Gynaecology
Kominiarek M, <i>et al.</i>	Gestational weight gain and obesity: Is 20 pounds too much?	2013	American Journal of Obstetrics and Gynecology
Lewis L, <i>et al.</i>	Obstetric and neonatal outcomes for women intending to use immersion in water for labour and birth in	2018	Australian and New Zealand Journal of Obstetrics and
	Western Australia (2015-2016): A retrospective audit of clinical outcomes		Gynaecology
Oddie S J	Perspective on meconium staining of the amniotic fluid	2010	Archives of Disease in Childhood: Fetal and Neonatal
			Edition
Paz Y, et al.	Variables associated with meconium aspiration syndrome in labors with thick meconium	2001	European Journal of Obstetrics and Gynecology and
			Reproductive Biology
Perlman J N	Maternal fever and neonatal depression: Preliminary observations	1999	Clinical Pediatrics
Pourcyrous M, <i>et al.</i>	Significance of serial C-reactive protein responses in neonatal infection and other disorders	1993	Pediatrics
Qian L. et al.	Current status of neonatal acute respiratory disorders: A one-year prospective survey from a Chiposo	2010	Chinese Medical Journal
· · · , - · ·· ·	neonatal network		
Sandstrom A. et al.	Durations of second stage of labor and pushing, and adverse neonatal outcomes: a population-based cohort	2017	Journal of Perinatology
	study		
Saunders K	Should we worry about meconium? A controlled study of neonatal outcome	2002	Tropical Doctor
Schneiderman M and Balavla J	A comparative study of neonatal outcomes in placenta previa versus cesarean for other indication at term	2013	Journal of Maternal-Fetal and Neonatal Medicine
Shishayan MK at al	The according of heir coloring during programmy with an analysis of a sector of the individual terms	2004	
Shishavan ivi K, et al.	me association of nair coloring during pregnancy with pregnancy and neonatal outcomes: A cross-sectional study	2021	memanonal Journal or Women's Health and Reproduction Sciences
Shreetha M. at al	Profile of asphyviated babies at Tribhuwan University Teaching Usersite	2000	Journal of Nanal Pandiatria Sociation
		2009	
Smid Marcela C, <i>et al.</i>	Maternal Super Obesity and Neonatal Morbidity after Term Cesarean Delivery	2016	American Journal of Perinatology
Spain, J. E, <i>et al.</i>	Risk factors for serious morbidity in term nonanomalous neonates	2015	American Journal of Obstetrics and Gynecology
Swain P K and Thapalial A	Meconium stained amniotic fluid - A potential predictor of Meconium Aspiration Syndrome	2008	Journal of Nepal Paediatric Society
Tay, S. K.	Spurious labor: A high risk factor for dysfunctional labor and fetal distress	1991	International Journal of Gynecology and Obstetrics
Thornton Patrick D. et al	Meconium aspiration syndrome: Incidence and outcomes using discharge data	2019	Early Human Development
Tuuli Methodius C. et al	Limbilical Cord Arterial Lactate Compared With pH for Prodicting Noopatal Morbidity at Torm	2014	Obstetrics and Gynecology
		· · · · · · · · · · · · · · · · · · ·	

Author, year	Is the case definition adequate	Representativeness of the cases	Selection of Controls	Definition of Controls	Comparability of cases and controls on the basis of the design or analysis	Ascertainment of exposure	Same method of ascertainment for cases and controls	Non-Response rate	Total
Alchalabi 1999 (9)				*	*	*	*	*	5
Amitai Komem 2022 (4)		*		*	**	*	*	*	7
Avula 2017 (5)		*		*	*	*	*	*	6
Bhat 2008 (6)		*		*	*	*	*	*	6
Gad 2020 (7)				*	**	*	*	*	6
Gurubacharya 2015 (10)		*		*	*	*	*	*	6
Lee 2016 (43)		*		*	*	*	*	*	6
Liu 2002 (8)		*		*	*	*	*	*	6
Mehar 2016 (21)				*	*	*	*	*	5
Meydanli 2001 (11)				*	*	*	*	*	5
Oliveira 2019 (12)		*		*	*	*	*	*	6
Paudel 2020 (16)		*		*	**	*	*	*	7
Rossi 1989 (13)				*	*	*	*	*	5
Usta 1995 (14)				*	*	*	*	*	5
Vivian-Taylor 2011 (18)	*	*	*	*	**	*	*	*	9
Yoder 2002 (15)		*		*	*	*	*	*	6
Yokoi 2021 (22)		*		*	**	*	*	*	7

Author, y	Representativeness of the exposed cohort	Selection of the non- exposed cohort	Ascertainment of exposure	Demonstration that outcome of interest was not present at start of study	Comparability of cohorts on the basis of the design or analysis	Assessment of outcome	Was follow-up long enough for outcomes to occur	Adequacy of follow-up of cohorts	Total
Andersson 2022 (40)	*	*	*	*	**	*	*	*	9
Ashwal 2014 (27)	*	*	*	*	*	*	*	*	8
Ashwal 2018 (23)	*	*	*	*	*	*	*	*	8
Ashwal 2022 (28)	*	*	*	*	**	*	*	*	9
Bailey 2021 (29)	*	*	*	*	**	*	*	*	9
Blankenship 2020 (30)	*	*	*	*	×	*	*	*	8
Blomberg 2014 (41)	*	*	*	*	**	*	*	*	9
Cassidy 1985 (31)	*	*	*	*	*	*	*	*	8
Cedergren 2004 (42)	*	*	*	*	**	*	*	*	9
Cedergren 2006 (43)	*	*	*	*	**	*	*	*	9
Cederholm 2005 (44)	*	*	*	*	**	*	*	*	9
Cheng 2012 (45)	*	*	*	*	**	*	*	*	9
Chiruvolu 2018 (37)	*	*	*	*	**	*	*	*	9
Clausson 1999 (46)	×	*	*	*	×	*	*	*	8
De los Santos-Garate 2011 (17)	×	*	*	*	**	*	*	*	9
Ding 2021 (1)	×	*	*	*	**	*	*	*	9
Greenwood 2003 (32)	×	*	*	*	×	*	*	*	8
Flemming 2020 (47)		*	*	*	×	*	*	*	7
Johnson 2005 (48)	*	*	*	*	**	*	*	*	9
King 2012 (38)	*	*	*	*	**	*	*	*	9
Knight 2017 (49)	*	*	*	*	**	*	*	*	9
Kortekaas 2020 (50)	*	*	×	*	**	*	*	*	9
Levin 2020 (39)	*	*	×	*	*	*	*	*	8
Li 2019 (51)	*	*	*	*	**	*	*	*	9
Lindegren 2017 (52)	*	*	*	*	**	*	*	*	9
Lindegren 2020 (20)	*	*	*	*	**	*	*	*	9
Narchi 2010 (33)	*	*	*	*	**	*	*	*	9
Persson 2016 (53)	*	*	*	*	**	*	*	*	9
Petrova 2001 (54)	*	*	*	*	**	*	*	*	9
Polnaszek 2018 (19)	*	*	*	*	**	*	*	*	9
Pyykonen 2018 (55)	*	*	*	*	**	*	*	*	9
Rietveld 2015 (56)	*	*	*	*	**	*	*	*	9
Roos 2011 (57)	*	*	*	*	**	*	*	*	9
Salihu 2011 (58)	*	*	*	*	**	*	*	*	9
Stotland 2006 (34)	*	*	*	*	**	*	*	*	9
Tyrberg 2013 (59)	*	*	*	*	**	*	*	*	9
Usher 1988 (35)	*	*	*	*	**	*	*	*	9
Ward 2022 (36)	*	*	*	*	**	*	*	*	9

Table S3 Results of the risk of bias assessment of cohort studies using the Newcastle - Ottawa quality assessment scale assessment tool

Study or Subgroup	log[Odds Ratio]	SE	BMI≽30 kg/m ² Total	BMI<30 kg/m ² Total	Weight	Odds Ratio IV, Random, 95% Cl	Odd: IV, Rand	s Ratio om, 95% Cl	
Amitai 2021	0.5291	0.2323	3327	8529	15.8%	1.70 [1.08, 2.68]			
Cedergren 2004 (1)	1.0473	0.2946	3386	526038	13.8%	2.85 [1.60, 5.08]			
Cedergren 2004 (2)	1.0543	0.1521	12402	526038	18.2%	2.87 [2.13, 3.87]		-	
Narchi 2010	1.9601	0.5577	804	4859	7.4%	7.10 [2.38, 21.18]			
Oliveira 2019	0.1398	0.1398	37	50	18.5%	1.15 [0.87, 1.51]		+	
Polnaszek 2018	0.5481	0.5489	11	5	7.6%	1.73 [0.59, 5.07]	-	+	
Salihu 2011	0.3507	0.1349	26954	90022	18.7%	1.42 [1.09, 1.85]		-	
Total (95% CI)			46921	1155541	100.0%	2.01 [1.39, 2.92]		•	
Heterogeneity: Tau ² =	0.18; Chi ² = 31.04,	df = 6 (F	P < 0.0001); I ² = 8 ⁴	1%			0.002 0.1	1 10	500
Test for overall effect: 2	Z = 3.67 (P = 0.000	12)					Favours [experimental]	Favours [control]	500
Footnotes (1) RMI > 40									

(1) BMI > 40 (2) BMI 35.1-40

Figure S1 Forest Plot for maternal body mass index (BMI) \geq 30 kg/m².

		;	>34 years	Control		Odds Ratio	Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	m, 95% CI	
2.1.1 Analyzed group									
Blomberg 2014 (1)	0.392	0.0903	63163	300822	27.2%	1.48 [1.24, 1.77]		+	
Blomberg 2014 (2)	0.5988	0.1796	10634	300822	18.9%	1.82 [1.28, 2.59]		-	
Kortekaas 2020 (3)	0.1135	0.0528	286717	1321366	30.2%	1.12 [1.01, 1.24]		•	
Kortekaas 2020 (4)	0.5254	0.1263	40909	1321366	23.8%	1.69 [1.32, 2.17]		+	
Subtotal (95% CI)			401423	3244376	100.0%	1.46 [1.15, 1.85]		◆	
Heterogeneity: Tau ² =	0.05; Chi ² = 17.66	df = 3 (P	= 0.0005); I	²= 83%					
Test for overall effect:	Z = 3.11 (P = 0.002	2)							
	-								
2.1.2 Studies with un	ivariate effect size	e for displ	ay						
Gurubacharya 2015	0.207	0.7551	25	772	0.0%	1.23 [0.28, 5.40]			
Subtotal (95% CI)			0	0		Not estimable			
Heterogeneity: Not ap	plicable								
Test for overall effect:	Not applicable								
Total (95% CI)			401423	3244376	100.0%	1.46 [1.15, 1.85]		◆	
Heterogeneity: Tau ² =	0.05; Chi ² = 17.66	df = 3 (P	= 0.0005); (²= 83%			t t		
Test for overall effect:	Z = 3.11 (P = 0.002	2)					0.01 0.1 1	10	100
Test for subaroup diff	erences: Not appli	cable					Favours [experimental]	Favours [control]	
Footnotes									
(1) 35-39 years old									
(2) 40+ years old									
(3) 35-39 years old									
(4) 40+ years old									

Figure S2 Forest Plot for maternal age >34 years old.

			Previous c-delivery	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
3.1.1 Analyzed studie	es						
Amitai 2021	0.6206	0.4634	1066	10790	3.2%	1.86 (0.75, 4.61)	<u> </u>
Andersson 2022	0.2241	0.0845	55717	79160	96.2%	1.25 [1.06, 1.48]	
Ashwal 2022	1.1086	1.116	337	1892	0.6%	3.03 [0.34, 27.00]	
Subtotal (95% CI)			57120	91842	100.0%	1.27 [1.08, 1.50]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 1.32,	df = 2 (P	= 0.52); I ² = 0%				
Test for overall effect:	Z = 2.92 (P = 0.00	4)					
3.1.2 Studies with un	ivariate effect siz	e for disj	olay				
Lee 2016	-1.4271	1.6215	15	103	0.0%	0.24 [0.01, 5.76]	
Usta 1995	1.1537	0.3457	145	767	0.0%	3.17 [1.61, 6.24]	
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not ap	plicable						
Test for overall effect:	Not applicable						
Total (95% CI)			57120	91842	100.0%	1.27 [1.08, 1.50]	•
Heterogeneity: Tau ² =	0.00; Chi ² = 1.32,	df = 2 (P	= 0.52); I ² = 0%				
Test for overall effect:	Z = 2.92 (P = 0.00	4)					Eavours [experimental] Eavours [control]
Test for subaroup diff	erences: Not appli	cable					r avours (experimental) - Pavours (control)

Figure S3 Forest Plot for previous caesarean delivery.

			Maternal inflammatory response	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Tota	I Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
4.2.1 Maternal fever							
Amitai 2021	0.3577	0.65	236	3 11548	6.6%	1.43 [0.40, 5.11]	
Ashwal 2018	1.3962	0.866	309	618	0.0%	4.04 [0.74, 22.05]	
Oliveira 2019	1.4633	0.7315	11	55	0.0%	4.32 [1.03, 18.12]	
Petrova 2001 (1)	1.0613	0.0801	278	3 11452	46.2%	2.89 [2.47, 3.38]	
Petrova 2001 (2)	0.5481	0.3278	39	3 1074	18.8%	1.73 [0.91, 3.29]	+ • <u>-</u>
Subtotal (95% CI)			553	3 24074	71.6%	2.37 [1.57, 3.58]	◆
Heterogeneity: Tau ² =	0.06; Chi ² = 3.38,	df = 2 (P =	= 0.18); l ² = 41%				
Test for overall effect:	Z = 4.08 (P < 0.00	01)					
4.2.2 Chorioamnionti	s						
Usta 1995	1.0852	0.4159	80) 857	0.0%	2.96 [1.31, 6.69]	
Yoder 2002	-0.0619	0.3646	221	1205	0.0%	0.94 [0.46, 1.92]	
Yokoi 2021	0.6043	0.2239	602	2 734	28.4%	1.83 [1.18, 2.84]	
Subtotal (95% CI)			602	2 734	28.4%	1.83 [1.18, 2.84]	◆
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 2.70 (P = 0.00	7)					
Total (95% CI)			1155	j 24808	100.0%	2.20 [1.55, 3.13]	•
Heterogeneity: Tau ² =	0.06; Chi ² = 6.50,	df = 3 (P :	= 0.09); I ² = 54%				
Test for overall effect:	Z = 4.40 (P < 0.00	01)					Control Constrained Foreurs (control)
Test for subgroup diff	erences: Chi ² = 0.	70, df = 1	(P = 0.40), I ² = 0%				Favours (experimental) Favours (control)
Footnotes							
(1) Term							
(2) Preterm							

Figure S4 Forest Plot for maternal inflammatory response.

			Smoking	Control		Odds Ratio	Odds	Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Rando	om, 95% Cl	
5.1.1 Analyzed studies	S								
Vivian-Taylor 2011	0.3853	0.0549	139200	735665	100.0%	1.47 [1.32, 1.64]			
Subtotal (95% CI)			139200	735665	100.0%	1.47 [1.32, 1.64]		•	
Heterogeneity: Not app	olicable								
Test for overall effect: 2	Z = 7.02 (P < 0.00	001)							
5.1.2 Studies with univ	variate effect size	e for disj	play						
Amitai 2021	1.5831	0.4316	204	11652	0.0%	4.87 [2.09, 11.35]			
Oliveira 2019	0.5933	0.6564	11	76	0.0%	1.81 [0.50, 6.55]			
Usta 1995	0.3646	0.3328	193	754	0.0%	1.44 [0.75, 2.76]			
Subtotal (95% CI)			0	0		Not estimable			
Heterogeneity: Not app	olicable								
Test for overall effect: N	Vot applicable								
Total (95% CI)			139200	735665	100.0%	1.47 [1.32, 1.64]		•	
Heterogeneity: Not app	olicable							1 10	100
Test for overall effect: 2	Z = 7.02 (P < 0.00	001)					Eavours [experimental]	Eavours [control]	100
Test for subaroup diffe	rences: Not appli	cable					i avours [experimental]	r avours (controlj	

Figure S5 Forest Plot for maternal smoking.

			Primipara	Multipara		Odds Ratio	Odds Ratio	
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl	
6.1.1 Analyzed studie	s							
Amitai 2021	0.3436	0.6428	5736	6120	0.6%	1.41 [0.40, 4.97]		
Vivian-Taylor 2011	0.3507	0.049	360999	516038	99.4%	1.42 [1.29, 1.56]		
Subtotal (95% CI)			366735	522158	100.0%	1.42 [1.29, 1.56]	•	
Heterogeneity: Tau ² =	0.00; Chi ² = 0.00, (df = 1 (P =	: 0.99); l ² =	0%				
Test for overall effect:	Z = 7.18 (P < 0.000	01)						
6.1.2 Studies with un	ivariate effect size	e for displ	lay					
Gurubacharya 2015	0.131	0.2946	480	313	0.0%	1.14 [0.64, 2.03]		
Lee 2016	-0.3425	1.6143	95	23	0.0%	0.71 [0.03, 16.80]		
Oliveira 2019	0.5365	0.049	61	23	0.0%	1.71 [1.55, 1.88]		
Yoder 2002	0.0488	0.2688	545	881	0.0%	1.05 (0.62, 1.78)		
Subtotal (95% CI)			0	0		Not estimable		
Heterogeneity: Not ap	plicable							
Test for overall effect:	Not applicable							
Total (95% CI)			366735	522158	100.0%	1.42 [1.29, 1.56]	•	
Heterogeneity: Tau ² =	0.00: Chi ² = 0.00. (df = 1 (P =	: 0.99); l ² =	0%				-
Test for overall effect:	7 = 7.18 (P < 0.00)	001	//				0.01 0.1 1 10 1	00
Test for subgroup diff	pronces: Not annli	shle					Favours [experimental] Favours [control]	
reactor aupuroup uni	erences. Nut appli	abie						

Figure S6 Forest Plot for nulliparous.

			Oligohydramnios	Control		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
7.1.1 Analyzed studies	s						
Amitai 2021	0.8416	0.5899	201	11583	44.2%	2.32 [0.73, 7.37]	
Ashwal 2014	0.8671	0.5253	987	22280	55.8%	2.38 [0.85, 6.66]	+
Subtotal (95% CI)			1188	33863	100.0%	2.35 [1.09, 5.08]	
Heterogeneity: Tau ² = (0.00; Chi ² = 0.00,	df = 1 (P	= 0.97); l² = 0%				
Test for overall effect: Z	Z = 2.18 (P = 0.03))					
7.1.2 Studies with univ	variate effect siz	e for disp	olay				
Avula 2017	1.0332	0.5221	28	132	0.0%	2.81 [1.01, 7.82]	
Cassidy 1985	1.1086	1.6474	100	100	0.0%	3.03 [0.12, 76.51]	
Yoder 2002	1.5129	0.4664	38	1388	0.0%	4.54 [1.82, 11.33]	
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not app	olicable						
Test for overall effect: N	Not applicable						
Total (95% CI)	0.00.058-0.00	df - 1 /P	1188 - 0.07\:15 - 0%	33863	100.0%	2.35 [1.09, 5.08]	
Test for overall effect: 2 Test for subgroup diffe	Z = 2.18 (P = 0.03) rences: Not appli	cable	- 0.57),1 = 0%				0.01 0.1 1 10 100 Favours [experimental] Favours [control]

Figure S7 Forest Plot for oligohydramnios.

			Induction	No induction		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI
Amitai 2021	0.3075	0.4008	7	10956	4.1%	1.36 [0.62, 2.98]	
Cheng 2012 (1)	-1.204	0.233	23963	177733	8.0%	0.30 [0.19, 0.47]	
Cheng 2012 (2)	-0.5621	0.1438	30263	48518	11.3%	0.57 [0.43, 0.76]	-
Cheng 2012 (3)	-0.0834	0.3649	17379	2739	4.7%	0.92 [0.45, 1.88]	
Knight 2017 (4)	-1.5141	0.4023	3715	55946	4.1%	0.22 [0.10, 0.48]	
Knight 2017 (5)	-0.6539	0.202	5908	28140	9.1%	0.52 [0.35, 0.77]	
Knight 2017 (6)	-0.5621	0.1936	7254	6276	9.4%	0.57 [0.39, 0.83]	
Lindegren 2021	-0.0514	0.261	13330	45634	7.1%	0.95 [0.57, 1.58]	
Pyykonen 2018 (7)	-0.9176	0.4078	6874	205270	4.0%	0.40 [0.18, 0.89]	
Pyykonen 2018 (8)	-0.8226	0.3779	5533	155339	4.5%	0.44 [0.21, 0.92]	
Pyykonen 2018 (9)	-0.9443	0.3413	5104	106784	5.2%	0.39 [0.20, 0.76]	
Pyykonen 2018 (10)	-0.7785	0.3325	5568	64356	5.3%	0.46 [0.24, 0.88]	
Pyykonen 2018 (11)	-0.0728	0.2158	10127	27035	8.6%	0.93 [0.61, 1.42]	
Vivian-Taylor 2011	-0.4943	0.0528	218617	658236	14.6%	0.61 [0.55, 0.68]	•
Total (95% CI)			353642	1592962	100.0%	0.56 [0.47, 0.68]	•
Heterogeneity: Tau ² =	0.06: Chi ² = 32.48.	. df = 13 ((P = 0.002)	$ ^2 = 60\%$			
Test for overall effect: 2	Z = 5.99 (P < 0.000	001)					0.01 0.1 1 10 100
							Favours (experimental) Favours [control]
E e ete ete e							

Footnotes (1) 39 week (2) 40 weeks (3) 41 weeks (4) 39 weeks (5) 40 weeks (6) 41 weeks (7) 40+0-40+2 (8) 40+3-40+5 (9) 40+6-41+1 (10) 41+2-41+4 (11) 41+5-42+0

Figure S8 Forest Plot for induction of labor.

			C-section I	non-C-section		Odds Ratio	Odds Ratio
Study or Subgroup	log[Odds Ratio]	SE	Total	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
9.2.1 Analyzed studi	es						
Amitai 2021	1.1151	0.2388	1767	10088	51.3%	3.05 [1.91, 4.87]	
Yokoi 2021	0.708	0.2474	240	1096	48.7%	2.03 [1.25, 3.30]	
Subtotal (95% CI)			2007	11184	100.0%	2.50 [1.68, 3.73]	•
Heterogeneity: Tau ² =	= 0.02; Chi ² = 1.40,	df = 1 (P	= 0.24); l ² = 2	29%			
Test for overall effect	Z = 4.50 (P < 0.00	001)					
9.2.2 Studies with ur	nivariate effect siz	e for disp	olay				
Alchalabi 1999	1.5892	0.4942	50	294	0.0%	4.90 [1.86, 12.91]	
Bhat 2008	0.9243	0.3261	45	364	0.0%	2.52 [1.33, 4.78]	
Liu 2002	0.4886	0.485	118	566	0.0%	1.63 [0.63, 4.22]	
Meydanli 2001	1.2169	0.6657	35	35	0.0%	3.38 [0.92, 12.45]	
Oliveira 2019	0.4121	0.4542	36	42	0.0%	1.51 [0.62, 3.68]	
Usta 1995	1.8469	0.3394	205	732	0.0%	6.34 [3.26, 12.33]	
Yoder 2002	0.7885	0.3537	198	1228	0.0%	2.20 [1.10, 4.40]	
Subtotal (95% CI)			0	0		Not estimable	
Heterogeneity: Not a	oplicable						
Test for overall effect	Not applicable						
Total (95% CI)			2007	11184	100.0%	2.50 [1.68, 3.73]	
Heterogeneity: Tau² =	= 0.02; Chi ² = 1.40,	df = 1 (P	= 0.24); I ^z = 2	29%			
Test for overall effect	Z = 4.50 (P < 0.00	001)					Favours [experimental] Favours [control]
Test for subaroup dif	ferences: Not appli	cable					, areas feeting

Figure S9 Forest Plot for cesarean delivery.

Figure S10 Forest Plot for thick meconium.

	Abnormal fetal hear	rt rate	Control		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
11.1.1 Data before 90	s						
Rossi 1989	16	190	6	48	10.7%	0.64 [0.24, 1.74]	
Subtotal (95% CI)		190		48	10.7%	0.64 [0.24, 1.74]	
Total events	16		6				
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 0.87 (P = 0.39)						
11.1.2 Data after 90s							
Alchalabi 1999	10	89	9	255	11.4%	3.46 [1.36, 8.82]	
Amitai 2021	20	900	58	10956	16.3%	4.27 [2.56, 7.13]	
Gurubacharya 2015	15	21	14	66	9.6%	9.29 [3.04, 28.33]	
Lee 2016	5	18	7	100	8.2%	5.11 [1.41, 18.49]	
Meydanli 2001	9	25	6	47	9.0%	3.84 [1.18, 12.55]	
Oliveira 2019	15	21	14	66	9.6%	9.29 [3.04, 28.33]	
Usta 1995	5	20	34	883	10.0%	8.32 [2.86, 24.23]	
Yoder 2002	47	712	14	714	15.2%	3.53 [1.93, 6.48]	
Subtotal (95% CI)		1806		13087	89.3%	4.70 [3.50, 6.32]	•
Total events	126		156				
Heterogeneity: Tau ² =	0.00; Chi ² = 5.51, df =	7 (P = 0.	60); l² = 0	1%			
Test for overall effect:	Z = 10.28 (P < 0.0000	1)					
Total (95% CI)		1996		13135	100.0%	4.13 [2.56, 6.65]	•
Total events	142		162				
Heterogeneity: Tau ² =	0.30; Chi ² = 19.68, df:	= 8 (P = 1	0.01); I ^z =	59%			
Test for overall effect:	Z = 5.82 (P < 0.00001)	1					Equation of the second
Test for subaroup diffe	erences: Chi ² = 14.06.	df = 1 (P	= 0.0002	2). I ² = 92	2.9%		Favours (experimental) Favours (control)

Figure S11 Forest Plot for abnormal fetal heart rate.

	Ma	le	Fem	ale		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl
Amitai 2021	37	6006	41	5847	10.2%	0.88 [0.56, 1.37]	
Gad 2020	12	51	10	50	2.7%	1.23 [0.48, 3.18]	
Liu 2002	13	351	11	333	3.6%	1.13 [0.50, 2.55]	
Mehar 2016	11	249	16	150	3.8%	0.39 [0.17, 0.86]	
Oliveira 2019	15	45	14	42	3.1%	1.00 [0.41, 2.44]	
Paudel 2020	71	32401	51	27661	13.9%	1.19 [0.83, 1.70]	
Usta 1995	24	451	15	486	5.3%	1.76 [0.91, 3.41]	
Vivian-Taylor 2011	1209	449875	940	427162	39.1%	1.22 [1.12, 1.33]	•
Yoder 2002	31	677	30	749	8.2%	1.15 [0.69, 1.92]	
Yokoi 2021	56	733	32	603	10.1%	1.48 [0.94, 2.31]	+
Total (95% CI)		490839		463083	100.0%	1.15 [0.98, 1.36]	•
Total events	1479		1160				
Heterogeneity: Tau ² =	0.02; Ch	i ² = 12.16,	df = 9 (P	= 0.20); P	²= 26%		
Test for overall effect:	Z=1.74	(P = 0.08)					Favours [experimental] Favours [control]

Figure S12 Forest Plot for gender.

	Gestational age ≽	42 wks	Gestational age	Gestational age < 42 wks		Odds Ratio	Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	M-H, Random, 95% Cl		
Avula 2017	2	4	19	156	2.8%	7.21 [0.96, 54.24]			
De los 2011	12	388	78	12603	18.9%	5.12 [2.77, 9.49]			
Gurubacharya 2015	2	41	45	694	5.1%	0.74 [0.17, 3.16]			
Mehar 2016	1	7	26	392	2.5%	2.35 [0.27, 20.22]			
Paudel 2020	10	1459	112	58603	17.8%	3.60 [1.88, 6.90]	_ _		
Usher 1988	6	340	15	7322	10.4%	8.75 [3.37, 22.70]			
Vivian-Taylor 2011	174	19882	1975	857155	42.5%	3.82 [3.27, 4.47]			
Total (95% CI)		22121		936925	100.0%	4.03 [2.84, 5.71]	•		
Total events	207		2270						
Heterogeneity: Tau ² =	0.07; Chi ² = 9.35, df	= 6 (P = 0.1	15); I² = 36%					1	
Test for overall effect: 2	Z = 7.83 (P < 0.0000	1)					Favours [experimental] Favours [control]	,	

Figure S13 Forest Plot for post-term (gestational age ≥42 weeks).

	SG	A	Con	trol		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Ashwal 2022	18	109	3	55		Not estimable	
Avula 2017	18	109	3	55	0.7%	3.43 [0.96, 12.19]	
Cassidy 1985	1	100	0	100	0.1%	3.03 [0.12, 75.28]	
Usta 1995	7	120	32	817	1.7%	1.52 [0.66, 3.52]	- <u>-</u> -
Vivian-Taylor 2011	380	86477	1769	790300	97.4%	1.97 [1.76, 2.20]	
Total (95% CI)		86806		791272	100.0%	1.97 [1.76, 2.20]	•
Total events	406		1804				
Heterogeneity: Tau ² =	0.00; Chi	² = 1.17,	df = 3 (P	= 0.76); I	²=0%		
Test for overall effect:	Z=12.10	(P < 0.0	10001)				Favours [experimental] Favours [control]

Figure S14 Forest Plot for small for gestational age (SGA).

Figure S15 Forest Plot for Apgar <7 at 5 min.