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Background: Wearable accelerometer-containing devices have become a mainstay in clinical studies 
which attempt to classify the gait patterns in various diseases. A gait profile for lumbar spinal stenosis (LSS) 
has not been developed, and no study has validated a simple wearable system for the clinical assessment 
of gait in lumbar stenosis. This study identifies the changes to gait patterns that occur in LSS to create a 
preliminary disease-specific gait profile. In addition, this study compares a chest-based wearable sensor, 
the MetaMotionC© device and inertial measurement unit python script (MMC/IMUPY) system, against a 
reference-standard, videography, to preliminarily assess its accuracy in measuring the gait features of patients 
with LSS. 
Methods: We conduct a cross-sectional observational study examining the walking patterns of 25 LSS 
patients and 33 healthy controls. To construct a preliminary disease-specific gait profile for LSS, the gait 
patterns of the 25 LSS patients and 25 healthy controls with similar ages were compared. To assess the 
accuracy of the MMC/IMUPY system in measuring the gait features of patients with LSS, its results were 
compared with videography for the 21 LSS and 33 healthy controls whose walking bouts exceeded 30 m. 
Results: Patients suffering from LSS walked significantly slower, with shorter, less frequent steps and 
higher asymmetry compared to healthy controls. The MMC/IMUPY system had >90% agreement with 
videography for all spatiotemporal gait metrics that both methods could measure.
Conclusions: The MMC/IMUPY system is a simple and feasible system for the construction of a 
preliminary disease-specific gait profile for LSS. Before clinical application in everyday living conditions is 
possible, further studies involving the construction of a more detailed disease-specific gait profile for LSS by 
disease severity, and the validation of the MMC/IMUPY system in the home environment, are required.
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Introduction

Neurological and musculoskeletal diseases often impact 
walking (1). These diseases affect the kinematics and 
dynamics of movement, directly by reducing joint range of 
motion, muscle strength and endurance (2); semi-directly 
by impairing movement speed and conscious control (3); 
and indirectly by causing pain and numbness which drive 
compensatory maladaptive walking patterns (4,5). In this 
way, diseases may present with a unique disease-specific 
gait pattern (DSGP) which describes the walking patterns 
of a typical patient with the disease (6). Some well-known 
DSGPs are the shuffling gait in Parkinsonism (7) and the 
Duchenne limp of hip osteoarthritis (8). In a clinical setting, 
a practitioner can match their patient’s unique gait profile to 
a DSGP, which may help to confirm or reject a preliminary 
diagnosis (9). Physicians can also monitor a patient’s disease 
status by identifying if any features of the unique gait profile 
are improving or worsening (10,11), and compare pre- 
and post-intervention gait profiles to assess intervention  
efficacy (12,13). 

Gait analysis has evolved with advancements in 
technology. Historically, gait evaluation has been performed 
by the clinician directly observing a walking bout and 
making empirical observations regarding the patient’s  
gait (14). However, this method is entirely subjective, 
has high inter-observer and test-retest variability, and 
lacks usefulness in long-term disease monitoring (15). 
As they could not directly measure or quantify changes 
to gait features like step length or step frequency, 
comprehensive DSGPs could not be developed using these 
techniques. These shortcomings have stimulated interest 
in more objective gait analysis techniques: 3D-motion 
capture systems, and wearable devices which contain 
accelerometers, gyroscopes, and magnetometers, so-called 
inertial measurement units (IMUs) (16-18). Both techniques 
are capable of quantifying various gait features, including 
spatiotemporal, balance-, smoothness-, and symmetry-
related features. While the former technique is the gold-
standard for accuracy, it requires dedicated laboratories 
and technicians which limit its clinical viability (19). 
Additionally, the unfamiliar setting increases the Hawthorne 
effect (20), where subjects consciously alter their walking 
when being observed. IMUs on the other hand are smaller, 
cheaper and do not require an operator (18). Moreover, 
IMUs can record several walking bouts and be taken home 
by a patient, giving the clinician insight into ‘free-living’ 
gait, which avoids the Hawthorne effect (20). A meta-

analysis assessing the accuracy and test-retest reliability 
of IMU devices in assessing gait of healthy adults showed 
that the devices accurately measured all spatiotemporal gait 
parameters when compared to gold-standards (21). As such, 
IMUs have become a mainstay in clinical studies which 
perform gait assessment (18). 

Although IMUs have been used to develop DSGPs in 
various neurological diseases such as Parkinson’s disease (22), 
stroke (23), multiple sclerosis (24) and cerebral palsy (25), 
there are few studies which use IMUs in the assessment of 
lumbar spinal stenosis (LSS) and its gait alterations. As the 
stenosis worsens, the cross-sectional area of open spaces 
within the spine is reduced, resulting in compression and 
tension of nerves (20) (Figure 1). Consequently, the patient’s 
capacity to walk long distances is compromised (20,26), and 
results in changes to walking patterns. Patients will adjust 
the position of their pelvis, torso and legs to alleviate pain, 
or compensate for weakness (27), which would be detected 
by IMUs. The studies that compare the gait between 
patients with LSS and healthy controls have shown that 
LSS patients have a decreased gait velocity, step length, and 
step duration with a more variable gait pattern compared 
to healthy controls (20,28-33). However, these studies have 
only considered 2–5 gait metrics each (34), with significant 
overlap. These gaps in knowledge preclude the adoption 
of IMUs for gait analysis in clinical assessment and 
management of LSS. The present study is a cross-sectional 
observational study to compare the gait characteristics of 
patients suffering from symptomatic LSS with those of 
healthy controls using the MetaMotion C sensor and a 
comprehensive battery of gait metrics. With this, we aim to 
contribute towards the development of a preliminary DSGP 
for LSS and simultaneously highlight the potential for the 
uptake of wearable technology in the clinical evaluation of 
patients with disorders of the lumbar spine. 

We present the following article in accordance with the 
STROBE reporting checklist (available at https://dx.doi.
org/10.21037/jss-21-16).

Methods

Study population

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). Ethics 
approval for this study was obtained from the South Eastern 
Sydney Local Health District Ethics Committee, with 
reference code 17/184. Informed consent was taken from 

https://dx.doi.org/10.21037/jss-21-16
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all patients. For the construction of a preliminary DSGP 
for LSS, patients presenting to a single neurosurgery clinic 
(NeuroSpineClinic, Suite 7, Level 7, Prince of Wales 
Private Hospital) between February and August 2020 were 
screened for eligibility. Inclusion and exclusion criteria 
are detailed in Table 1. After accounting for BluetoothTM 
connectivity issues or IMUGait application bugs which 
caused a loss of data, and discarding trials which required 
intervention by an investigator, data were available from 25 
LSS patients (Table 2). 47 healthy participants were recruited 
with verbal outreach from Prince of Wales Private Hospital. 
Of these, 25 with similar demographic characteristics to 
the LSS cohort (Table 2) were used as healthy controls to 
investigate the gait of LSS patients. To test the accuracy 
of the MMC device, the 21 LSS patients and 33 healthy 
individuals whose walking bouts were recorded by both the 
MMC and a reference standard (videography), and exceeded 
30 m, (as approximations made by videography would have 
a greater margin of uncertainty for shorter walking bouts) 
were used.

Wearable device

The IMU device used in this study was the MetaMotionC© 
(MMC) device developed by Mbientlab Inc. which was 
placed on the skin immediately overlying the sternal angle 
during all walking bouts (Figure 2). The MMC contains 
a 100 Hz triaxial accelerometer for detection of linear 
acceleration, a 100 Hz triaxial gyroscope for detection of 
angular acceleration and a 25 Hz triaxial magnetometer for 
orientation to Earth’s magnetic field. The data captured 
by the MMC was stored as a matrix of the values captured 
by the three sensors at each time point. This data was 
transmitted via Bluetooth™ to a device running the 
IMUGait application developed for this study where a 
modified version of the GaitPY program (35) was used to 
interpret the data (Figure 3). The sensor was placed on the 
skin overlying the sternal angle. Gait metrics obtained by 
the sensor are defined in Table 3. Configuration files, setup 
instructions, detailed descriptions and calculations of gait 
metrics can be accessed via Appendix 1. 

A B

C D

Figure 1 Pathological processes in spinal stenosis. (A) Transverse section showing typical vertebral morphology with spinal cord/cauda 
equina running through patent central canal and traversing nerve roots (left and right) in the lateral recesses. (B) Vertebral canal stenosis 
with disc prolapse (blue) causing right lateral recess and partial central canal stenosis and ligamentum flavum (yellow) hypertrophy 
contributing to central stenosis. (C) Sagittal section showing typical vertebral morphology with nerve root exiting the right neural foramen. 
(D) Foraminal stenosis with disc prolapse (blue), loss of disc space, spondylolisthesis and osteophyte formation causing compression of 
exiting nerve root.

https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
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Table 2 Demographic features of the healthy control and lumbar spinal stenosis patients included in the analysis of gait for the construction of a 
preliminary disease-specific gait profile for lumbar spinal stenosis

Demographic variables Healthy controls (n=25) Lumbar spinal stenosis (n=25)

Continuous {mean [range, (SD)]}

Age (years) 55.1 [37–94, (15.5)] 59.4 [32–92, (16.7)]

BMI (kg/m2) 24.8 [19.5–39.1, (4.16)] 28.1 [19.0–37.7, (5.37)]

Height (m) 1.71 [1.55–1.86, (0.0872)] 1.73 [1.54–1.90, (0.102)]

Categorical [n, (% of total)]

Gender

Male 13 [52] 17 [68]

Female 12 [48] 8 [32]

Smokes regularly 0 [0] 2 [8]

Diabetic 2 [8] 2 [8]

Fall in previous year 1 [4] 7 [28]

BMI, body mass index; n = number of data entries for the respective category.

Table 1 Eligibility criteria for lumbar spinal stenosis cohort

Inclusion criteria

Present with complaint of neurogenic claudication. We defined neurogenic claudication as pain, numbness, and/or fatigue below the 
gluteal line with or without back pain (if back pain is present, leg pain is greater than back pain) that is precipitated by walking and 
alleviated by sitting down or lumbar flexion

Clinical diagnosis of lumbar spinal stenosis

Aged greater than 18

Exclusion criteria

Women who are pregnant

Serious spinal pathology including cancer, infection, cauda equina syndrome, spinal fracture, inflammatory arthritis

Present with active Paget’s disease of the spine

Previous lumbar spinal surgery

Presence of known or demonstrated peripheral vascular disease-causing vascular claudication, i.e., claudication accompanied by 
absent foot pulse or vascular insufficiency detected with Doppler ultrasound or CT angiography

Presence of significant lumbar scoliosis (Cobb angle >25°) or other spinal deformities

Meyerding classification grade 2 or greater spondylolisthesis

Symptomatic hip disease with symptoms reproduced with external or internal rotation of the hip joint

Inability to walk independently without the use of a walking aid or investigator assistance

Cognitive impairment or inadequate English language skills that interfere with patient’s ability to give fully informed consent or complete 
the baseline or follow-up assessments



258 Betteridge et al. Using wearables in people with LSS

J Spine Surg 2021;7(3):254-268 | https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

Procedural details

Participants were consented and underwent a structured 
interview to gather demographic information. The MMC 
device was attached to the chest and connected to the 
IMUGait application. After a 3-second pause to orient the 
MMC while the participant stood upright, participants 
walked at a comfortable pace along an unobstructed 
corridor (spanning 60 m) for a self-selected distance of at 
least 5 meters and a maximum distance of 120 m. 

To investigate the gait of LSS patients, gait was measured 
by the MMC for the 25 LSS patients and compared to 
25 healthy controls with similar ages. To investigate the 
accuracy of the MMC, both the MMC and videography 
were used to analyse the walking bouts of an additional 
32 healthy controls regarding the number of steps and 
time taken, which were used to calculate gait velocity, step 
length, stride length, cadence, step time and stride time. For 
the walking bouts measured using videography, a handheld 
camera was used, with specifications including a wide-angle 
f/1.8 aperture, telephoto f/2.4 aperture, six-element lens, 
and 2436-by-1125-pixel resolution at 458 ppi. The video 
was assessed by 2 independent reviewers (CB and DH) to 
determine the total number of steps and strides during the 

walking bout (with discrepancies being resolved by a third 
reviewer, NP), and a surveyor’s wheel was used to measure 
the total distance travelled during that walking bout. The 
relevant gait metrics were subsequently manually calculated 
as below:

Gait velocity = (Distance travelled)/(Time taken),
Step length = (Distance travelled)/(Steps taken),
Strides taken = (Steps taken)/2,
Stride length = (Distance travelled)/(Strides taken),
Step time = (Steps taken)/(Time taken)
Cadence =60/(Step time), and
Stride time = (Strides taken)/(Time taken).

Statistical analyses

To investigate the gait of LSS patients compared to 
controls, normality for each gait parameter measured by 
the MMC was assessed using the Shapiro-Wilk tests. The 
groups were then compared using two-sided Welch’s t-tests 
at 5% significance to determine which metrics were altered 
in the LSS cohort. To investigate the accuracy of the MMC 
against a videography using a sample of healthy individuals, 
methods were compared by visually inspecting for normality 
of the inter-method difference using a histogram. Bland-
Altman plots with 95% confidence intervals and limits 
of agreement were then used to estimate consistency and 
average inter-method difference. The methods were also 
examined using the intraclass correlation coefficient to 
determine the consistency of the inter-method agreement. 
This was done in accordance with the reporting standards 
for Bland-Altman testing (36). All statistical analyses were 
conducted using R studio version 1.3.959.

Results

Demographic characteristics

The demographic features of the LSS cohort differed slightly 
from their healthy controls (Table 2). In particular, the LSS 
cohort had a higher BMI (28.1 kg/m2) than their healthy 
controls (24.8 kg/m2), despite there being a negligible height 
difference between the groups. In addition, the LSS cohort 
had a slightly higher mean age (59.4 years) compared to 
their healthy controls (55.1 years). The LSS cohort had a 
male predominance, while there was a more even gender 
distribution amongst the healthy controls. Furthermore,  
7 subjects in the LSS cohort had fallen in the previous year, 
compared to 1 subject out of the healthy controls.

Figure 2 Frontal view of male subject showing where the 
MetaMotionC wearable device was placed. Device was placed on 
the skin immediately overlying the sternal angle for gait analysis of 
both healthy controls and lumbar spinal stenosis patients.



259Journal of Spine Surgery, Vol 7, No 3 September 2021

J Spine Surg 2021;7(3):254-268 | https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

Gait differences between spinal stenosis patients and 
controls

There was a significant difference between LSS patients 
and healthy controls in most gait metrics measured by the 
MMC (Table 4). Compared to the healthy cohort, the LSS 
cohort had a more asymmetrical gait, with a 67.9% and 
153% increase in step length and step time asymmetry, 
respectively. Furthermore, their temporal features (stride 
time, step time, and cadence) were approximately 12–16% 
slower and spatial features (stride length and step length) 
approximately 12–15% shorter than healthy controls, 
resulting in a 23.1% reduction in gait velocity. However, 
there was no statistically significant difference between 
the irregularity of gait between LSS patients and healthy 
controls, measured using the variability of gait metrics, 
notably, gait speed, step time, and step length variability. 
Together, these findings allow the construction of a 

preliminary disease-specific gait pattern for LSS (Figure 4).

The MMC accurately estimated gait metrics in spinal 
stenosis patients and healthy controls

Results for the accuracy analysis were available for 54 trials 
(21 LSS patients, and 33 healthy controls). There was 
greater than 90% agreement between the methods for all 
spatiotemporal features across both cohorts (Tables 5,6). 
There was no significant inter-method disagreement for 
temporal metrics (stride time, cadence, and step time). 
Additionally, high intraclass coefficients and narrow limits 
of agreement on Bland-Altman plots (Appendix 2) indicated 
low inter-method variability for these metrics. However, 
for distance related metrics (gait velocity, stride length, 
step length), the sensor underestimated the true value by 
approximately 7–8%. Visual inspection of Bland-Altman 
plots (Appendix 2) revealed a trend whereby non-temporal 
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Figure 3 Summary of data collection, processing, and outputs from the MetaMotionC sensor and IMUGaitPY program for gait analysis 
used in this study. (A) First output is a .html file which documents the vertical acceleration measured by the sensor (y-axis) against time (x-axis) 
during the walk done by the participant. Green circles represent the initial foot contact with the ground, usually the ‘heel strike’ phase of 
gait and orange circles represent the final foot contact with the ground, usually the ‘toe-off’ phase of gait. (B) The IMUGaitPY program 
uses the gait cycle events detected in image a to identify when gait cycles begin and end, and thus creates a .csv file with the values of each 

gait parameter displayed per gait cycle and for the bout overall. For calculations see Appendix 1. Additionally, a .c3d file is created which 
can be viewed using Mokka, an open source platform, and the configuration file in Appendix 1. This creates a visual recreation of the gait 
using the accelerometry data. WORM, walking orientation randomness metric; MMC, MetaMotionC sensor from Mbient Labs, used to 
measure gait in the present study.

https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
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Table 3 Definitions of each gait metric captured by the wearable system used in the present study

Simple metric Definition Type4 Units
Derivative 
metrics3 Definition (unit) Type4

Steps1 The number of steps taken over 
the entire walking bout

N/A N/A N/A N/A N/A

Gait velocity1 Average distance travelled in the 
ambulant direction per second

Combined 
spatiotemporal

Meters per 
second  
(m/s)

Gait speed 
variability2

Step-to-step variability of 
gait velocity

Smoothness 
-related

Stride time1 Average amount of time between 
two consecutive contacts of the 
same foot with the ground

Temporal Seconds  
(s)

Stride time 
variability2

Step-to-step variability of 
stride time

Smoothness 
-related

Step time1 Average amount of time between 
two consecutive contacts of any 
foot with the ground

Temporal Seconds  
(s)

Cadence1 Frequency of steps (steps/
minute)

Temporal

Step time 
variability2

Step-to-step variability of 
step time

Smoothness 
-related

Step time 
asymmetry

Average of difference 
in time taken between 
successive steps on left 
and right foot (s)

Symmetry 
-related

Stride length1 Average distance between two 
consecutive contacts of the 
same foot with the ground

Spatial Meters  
(m)

Stride length 
variability2

Step-to-step variability of 
stride length

Smoothness 
-related

Step length1 Average distance between two 
consecutive contacts of any foot 
with the ground

Spatial Meters  
(m)

Step length 
variability2

Step-to-step variability of 
step length

Smoothness 
-related

Step length 
asymmetry

Average of difference in 
length of successive steps 
on left and right foot (m)

Symmetry 
-related

For calculations see Appendix 1. 1, these metrics can be estimated using both videography and the MMC/IMUPY device; 2, all variability 
metrics are defined in this paper as the coefficient of variation of the set of values taken from each step or stride of the walking bout 
i.e., stride length variability is the coefficient of variation of the set of stride lengths from the first to the last stride; 3, derivative metrics 
refers to metrics that are, in some way, calculated using the values from their simple base metric; 4, Temporal = time-related, spatial = 
distance related, combined spatiotemporal = dependent on both spatial and temporal features, balance-related = related to postural 
instability, asymmetry-related = related to differences between steps on left and right feet, smoothness-related = related to the regularity 
or consistency of the movement.

parameters were overestimated at lower magnitudes and 
underestimated at higher magnitudes. Additionally, there 
was moderate inter-method variability for these metrics.

Discussion

In this study, we found significant differences between 
the gait of LSS patients and healthy controls using a 
single-point chest-based wearable sensor, facilitating the 
construction of a preliminary disease-specific gait pattern 
for LSS. This provides the groundwork upon which future 
studies can construct more refined gait profiles for LSS, 

adjusted for LSS severity and patient characteristics such 
as age and sex. In addition, the MMC and IMUPY gait 
analysis system (MMC/IMUPY) had high agreement with 
videography for all spatiotemporal gait metrics that both 
methods were able to measure. Together, these findings 
allude to the possibility of a future where wearable sensors 
are routinely used in clinical practice for the diagnosis and 
monitoring of gait-altering medical conditions such as LSS.

Gait profile of LSS

By comparing spatiotemporal gait metrics between LSS 

https://cdn.amegroups.cn/static/public/JSS-21-16-supplementary.pdf
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Lumbar Spinal Stenosis Gait Profile
Combination of:
· Back and/or lower limb pain or numbness
· Motor deficit
· Stenosis on imaging of the lumbar spine
· Reduced daily steps; and

Gait
velocity

Gait speed
variability Gadence

Stride
time

Step
time

Step time
asymmetry

Step time
variability

Stride
length

Step
length

Step length
variability

Step length
asymmetry

Figure 4 Preliminary gait profile describing the differences between the gait patterns of lumbar spinal stenosis patients compared to the 
baseline gait patterns of healthy controls that were identified in the present study. Upward arrows (↑) represent an increase in the value of 
the metric in lumbar spinal stenosis patients compared to healthy controls. Downward arrows (↓) represent a decrease in the value of the 
metric in lumbar spinal stenosis patients compared to healthy controls. Dashes (-) represent a negligible difference (<5%) in the value of the 
metric in lumbar spinal stenosis patients compared to healthy controls. Double arrows represent a change of high magnitude (>40%).

Table 4 Comparison of gait metrics between cohorts of lumbar spinal stenosis patients and healthy controls during a walking bout

Gait metrics

Healthy controls 

(n=25)
LSS (n=25) Mean difference

95% CI of mean  

difference P value

Mean (SD) Mean (SD) LSS − control % of control Lower Upper

Gait velocity (m/s) 1.35 (0.254) 1.03 (0.277) −0.311 −23.1 −0.462 −0.160 <0.001*

Gait speed variability 0.0921 (0.0426) 0.0909 (0.0619) −0.00127 −1.38 −0.0315 0.0289 0.933

Cadence (steps/min) 116 (10.3) 102 (12.6) −14.0 −12.0 −20.6 −7.44 <0.001*

Stride time (s) 1.05 (0.0850) 1.21 (0.191) 0.166 15.9 0.0808 0.251 <0.001*

Step time (s) 0.524 (0.0430) 0.606 (0.0972) 0.0822 15.7 0.0390 0.125 <0.001*

Step time asymmetry (s) 0.0346 (0.0206) 0.0877 (0.0886) 0.0531 153 0.0166 0.0897 0.005*

Step time variability 0.0949 (0.0654) 0.105 (0.0709) 0.00972 10.2 −0.0291 0.0485 0.617

Stride length (m) 1.383 (0.254) 1.214 (0.251) −0.168 −12.1 −0.312 −0.0245 0.023*

Step length (m) 0.706 (0.107) 0.606 (0.128) −0.0997 −14.1 −0.167 −0.0327 0.004*

Step length asymmetry (m) 0.056 (0.03) 0.093 (0.07) 0.038 67.9 0.0113 0.0756 0.01*

Step length variability  0.0973 (0.0346) 0.144 (0.120) 0.0464 47.7 −0.00472 0.0975 0.0740

*P values less than 0.05, which indicates a significant difference between the cohorts for that metric. Welch’s t-tests were used for stride 
time, step time, step time asymmetry, step length asymmetry, and step length variability due to these metrics having unequal variances 
between population groups, while Independent t-tests were performed for all other metrics. n, number of data entries for the respective 
category; SD, standard deviation; 95% CI, 95% confidence intervals; (m), measured in meters; (s), measured in seconds; (m/s), measured 
in meters per second.

patients and healthy controls, we constructed a preliminary 
disease-specific gait pattern for LSS, summarized in  
Figure 4. This study largely agrees with other studies which 
have examined the gait of patients with LSS, whilst offering 
additional information surrounding the impact of the 
disease on symmetry and variability. 

Pertaining to the spatial and temporal gait patterns 
of LSS patients, studies (17,20,29,32,37) found that 

patients took strides of 0.96–1.1 m in length, at a rate of  
96–114 steps/minute. The same is true for gait velocity, 
where most studies of LSS patients (17,32,37) found values 
of 1.02–1.09 m/s. However, Perring et al. (20) found a 
lower average gait velocity for LSS patients at 0.80 m/s. 
Additionally, while Conrad et al. (29) found that male LSS 
patients walked at 1.02 m/s, the female cohort walked much 
slower, at 0.75 m/s. Notably, the average age of the LSS 
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Table 5 Results of Bland-Altman plots and intraclass correlation coefficient analysis measuring the inter-method agreement between gold-standard 
(videography) and MetaMotionC sensor estimation of gait parameters captured during walking bouts of 30 meters and over in healthy controls

Metrics

Healthy controls (n=33)

Video Sensor Mean difference 
(video-sensor)

95% CI
Accuracy (%) ICC P value

Mean (SD) Mean (SD) Lower Upper

Steps 236 (98.7) 236 (97.5) 0.030 −1.13 1.19 100 1.00 <0.001

Gait velocity* (m/s) 1.29 (0.173) 1.38 (0.224) −0.0923 −0.130 −0.0543 93.3 0.875 <0.001

Cadence (steps/min) 111 (8.13) 111 (7.43) −0.291 −0961 0.379 99.7 0.985 <0.001

Stride time (s) 1.09 (0.0804) 1.09 (0.0710) 0.00194 −0.00530 0.00920 99.8 0.982 <0.001

Step time (s) 0.545 (0.0402) 0.545 (0.0359) 0.000600 −0.00290 0.00410 99.9 0.984 <0.001

Stride length* (m) 1.40 (0.168) 1.50 (0.241) −0.0987 −0.141 −0.0567 93.4 0.862 <0.001

Step length* (m) 0.707 (.08) 0.759 (.11) −0.0491 −0.0701 −0.0281 93.5 0.862 <0.001

Metrics with an asterisk * have a statistically significant (P<0.05) mean inter-method difference between sensor device and reference-
standard. Accuracy is measured as 100 minus the absolute mean difference as a percentage of the reference-standard estimated value. 
The P value shown is for the correlation analysis using the ICC, bolded values imply significant correlation. N, number of data entries for 
the respective category; SD, standard deviation; 95% CI, 95% confidence interval; ICC, intraclass correlation coefficient; (m), measured in 
meters; (s), measured in seconds; (m/s), measured in meters per second.

Table 6 Results of Bland-Altman plots and intraclass correlation coefficient analysis measuring the inter-method agreement between reference 
standard (videography) and MetaMotionC sensor estimation of gait parameters captured during walking bouts of 30 meters and over in lumbar 
spinal stenosis patients

Metrics

Lumbar spinal stenosis patients (n=21)

Video Sensor Mean difference  
(video-sensor)

95% CI
Accuracy (%) ICC P value

Mean (SD) Mean (SD) Lower Upper

Steps 267 (96.2) 266 (95.4) 0.333 −2.04 2.71 99.9 0.999 <0.001#

Gait velocity* (m/s) 1.02 (0.233) 1.10 (0.245) −0.0790 −0.131 −0.0275 92.8 0.917 <0.001#

Cadence (steps/min) 105 (10.9) 106 (9.91) −0.302 −1.49 0.883 99.7 0.985 <0.001#

Stride time (s) 1.155 (0.141) 1.155 (0.130) 0.0000300 −0.0127 0.0128 100 0.990 <0.001#

Step time (s) 0.575 (0.0724) 0.579 (0.0646) −0.00270 −0.0115 0.00610 99.5 0.980 <0.001#

Stride length* (m) 1.15 (0.218) 1.25 (0.245) −0.0989 −0.158 −0.0402 92.1 0.877 <0.001#

Step length* (m) 0.575 (0.109) 0.625 (0.123) −0.0492 −0.0786 −0.0198 92.1 0.877 <0.001#

Metrics with an asterisk * have a statistically significant (P<0.05) inter-method difference between sensor device and reference-standard. 
Accuracy is measured as 100 minus the absolute mean difference as a percentage of the reference-standard estimated value. #, the 
P value shown is for the correlation analysis using the ICC, imply significant correlation. n, number of data entries for the respective 
category; SD, standard deviation; 95% CI, 95% confidence interval; ICC, intraclass correlation coefficient; (m), measured in meters; (s), 
measured in seconds; (m/s), measured in meters per second.

cohort in Perring et al. (20), and female patients in Conrad 
et al. (29) were 5–15 years above the SSRGA cohort used in 
this study, and age over 65 is known to correlate with slow 
walking speed (38). 

However, our study did not demonstrate significant 

differences in gait variability between LSS patients and 
healthy controls. The only other study to examine gait 
variability in LSS patients (28) also found that LSS patients 
exhibit more variable gait than healthy controls. A follow-up 
study by the same author group also demonstrated that the 
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variability was reduced following operative intervention (12). 
However, these authors measured the variability of the 
patients’ gait as a whole using a differential entropy 
algorithm, while we measured the variability of individual 
gait metrics using their coefficient of variance. In addition, 
despite not reaching statistical significance, our findings 
demonstrated that the step time of LSS patients was 10.2% 
more variable than controls, and the step length 47.7% 
more variable. It is possible that these results may reach 
statistical significance with a larger study population. 
Overall, it is likely that LSS leads to a more variable gait 
pattern compared to healthy individuals, lending credence 
to the role of gait variability in pre- and post-intervention 
assessment. 

The present study is the first to compare the gait 
symmetry of LSS patients and healthy controls. The findings 
suggest that asymmetry of step length and time are features 
of the DSGP of spinal stenosis. In addition, observational 
studies of LSS patients have identified that gait asymmetry 
improves following surgical intervention and is associated 
with a greater degree of disability (16,37,39). This is in 
accordance with empirical observations, where a limp is a 
well-documented feature of the gait pattern in LSS (39).

Due to a limited sample size, the present study did not 
perform regression analysis controlling for several possible 
covariates which may influence gait, including age, gender, 
disease severity, and height, constituting a limitation of 
our study. While the age and height of LSS and healthy 
controls in our gait analysis were comparable, there were 
4 more males in our LSS cohort than amongst our healthy 
controls. Age-matched men and women have been found 
in some instances to have differences in spatiotemporal gait 
metrics. For example, Cho, Park & Kwon (40) found that 
women had a shorter stride length (and hence step length), 
and narrower step width, although other gait metrics such 
as cadence and gait velocity were not significantly different 
between sexes. Meanwhile, in a study (41) involving men 
and women with osteoarthritis of the knee, there was no 
significant difference in walking speed, cadence, and step 
length between sexes, while differences were found in 
other gait characteristics such as swing phase and toe-out 
angle. Although it is possible that the inconsistency in sexes 
between the groups in our study may introduce differences 
between LSS patients and healthy controls that may not 
explicitly be due to the presence of LSS, the expected 
direction of this difference would be favouring shorter 
spatial parameters and slower temporal parameters amongst 
women. In our study, we were still able to find shorter 

spatial parameters and slower temporal parameters amongst 
our predominantly male LSS cohort, supporting the use 
of these metrics in our gait profile for LSS. Finally, the 
present study did not compare the gait of subcategories of 
LSS (LSS with unilateral predominance, LSS with bilateral 
predominance) to identify if the syndromes had unique 
DSGPs. This is likely to be the case, as it is known that the 
presence of a limp and therefore gait asymmetry factors, 
is more common in unilateral LSS (6). Furthermore, the 
present study did not characterize its LSS cohort based 
on radiological severity, where patients with radiologically 
more severe LSS would be expected to demonstrate more 
significantly altered gait patterns compared to controls.  

Future studies should endeavour to collect a larger cohort 
of symptomatic individuals, ideally no less than 30 per 
subcategory of LSS, perform regression analysis accounting 
for possible cofactors and compare the gait patterns 
occurring in spinal pathology at different anatomical 
locations and with differing levels of radiological severity. 
This would provide a more rigorous DSGP for LSS and 
provide greater discriminative power to IMU-based gait 
profiling for LSS, improving clinical utility. Future studies 
could construct disease-specific gait profiles for other 
lumbar spine pathologies which commonly present to spine 
clinics, such as lumbar disc herniation, or mechanical low 
back pain. Building upon this, it is interesting to speculate 
whether single-point IMUs would be able to routinely 
partake in differentiating (using DSGPs) between lumbar 
spine pathologies to aid clinicians in their decision-making 
process. In addition, the potential for IMUs to be worn 
by patients in everyday living conditions indicates that 
IMUs could be useful in the long-term remote monitoring 
of patients with gait-altering disease states. For example, 
in a recent case report by Mobbs, Katsinas, Choy, Rooke 
and Maharaj, a sudden decrease in daily step count and 
gait velocity measured using an Apple Watch allowed for 
the detection of a recurrent disc herniation on day 57 
postoperatively, which was later confirmed with a lumbar 
MRI (42). This demonstrates how continuous objective 
data streamed remotely to clinicians can facilitate the early 
detection of post-operative complications—one of the many 
potential applications of long-term continuous monitoring.

MMC/IMUPY accuracy

The findings from the present study demonstrate that 
the MMC/IMUPY has good (>90%) agreement with 
videography for each gait metric that both methods could 
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estimate. Thus, a system like the MMC/IMUPY can 
capture the gait features of SSRGA patients in a single 
walking bout over 30 m with reasonable accuracy.

While there is no consistent bias for estimation of 
temporal features, the system underestimated the true value 
of non-temporal gait features by 7–9% on average, however 
this bias was proportional to the value of the parameter. 
Thus, the MMC/IMUPY should adjust its estimations of 
spatial metrics using a linear transformation rather than a 
fixed value correction which is more optimal for a consistent 
error (43). This better approximates the gait features for 
clinical use and allows results to be compared between this 
method and others. However, clinicians should still consider 
the adjusted estimation of non-temporal gait features by 
the MMC/IMUPY to be within 10% of the true value on 
account of the inconsistency when estimating these metrics. 
This may prevent our gait analysis system from detecting 
minor or early signs of gait-altering disease, detracting from 
its current clinical utility. 

The results are similar to those found in studies 
examining healthy subjects using comparable devices  
(21,44-47) which suggested that single and multi-point IMU 
devices provide excellent estimations of temporal features 
of gait, but poorer and less reliable estimations of spatial 
features. There was evidence of a similar proportional error 
for spatial parameters in the IMU used by Washabaugh 
et al. (48). However, studies which utilised single (49) and 
multi-point (50) IMU devices in patients with various upper 
motor neuron diseases found that the devices had 5–10% 
inaccuracy when estimating the true values of both spatial 
and temporal features of gait. Given that IMU devices rely 
on acceleration signals from gait cycle events like heel-strike 
and toe-off, the signal can be made to detect false gait cycle 
events or fail to detect true gait cycle events. False negatives 
often occur in Parkinson’s disease due to low foot clearance, 
or hemiplegia due to irregularity of foot placement, while 
spastic movements in Huntington’s disease cause “noisy” 
acceleration signals and therefore false positives (51). 
Thus, the conditions examined in these studies may cause 
over- or under-estimation of the true step count, resulting 
in imperfect estimation of temporal characteristics. This 
does not happen in LSS patients as they often experience 
localised dysfunction (52) or fine motor impairments(s) (53) 
but rarely present with difficulty initiating and controlling 
coarse movements of the limbs.

While our results may suggest that the chest-based 
MMC/IMUPY system has poor reliability for spatial 
metrics, the present study did not examine test-retest 

reliability and therefore cannot confirm this result. 
Additionally, while the present study did not examine the 
accuracy of IMU estimation of variability, or asymmetry, 
it has been shown that similar devices have lower accuracy 
for these variables (21,54-56). Finally, videography could 
not be used for trials under 30 m. While it is unlikely that 
the MMC/IMUPY device has lower accuracies for shorter 
walking bouts, this assumption cannot be confirmed by 
the present study. Future studies should test the accuracy 
of this system for shorter walking bouts, especially as it is 
unlikely that elderly patients or patients with balance issues 
will be undergoing continuous walking bouts exceeding 
30 m whilst in their home environment. We were also 
unable to test the surrounding environment for ferrous 
interference, which could distort the Earth’s magnetic 
field and thereby disturb the magnetometer of our MMC 
sensor (57). Nonetheless, our sensor still demonstrated 
good agreement for gait metrics that both methods could 
estimate, suggesting that there was no significant effect 
of ferrous interference. Future studies using this system 
should assess test-retest reliability in addition to accuracy 
analysis. They should also attempt to validate results from 
the MMC/IMUPY pertaining to symmetry and variability 
against more complex gold-standard techniques like 3D 
motion capture, or gait mats, which can also capture shorter 
gait cycles without compromising accuracy. They could also 
test for ferrous interference.

Although most studies performing gait analysis using 
wearable sensors rely on positioning at the thighs, ankles, 
knees, or wrists (18), our use of a chest-based sensor is 
not a new approach. For instance, a systematic review 
investigating the measurement of gait in Parkinson’s disease 
using wearable sensors found that 9 out of 36 papers used 
chest-based sensors, which together cumulatively measured 
various metrics including those in the present study (58). 
However, no study in the review used a single-point chest-
based sensor alone as we did, and there are a limited number 
of studies in the literature which do so. Nazarahari & 
Rouhani (59) found that a single-point chest-based triaxial 
accelerometer measured step count and walking speed with 
an accuracy over 80% when compared to a 3D motion 
capture system (gold-standard). Meanwhile, Hashmi, Riaz, 
Zeehsan, Shahzad & Fraz (60) performed measurements of 
gait metrics (notably, step and stride length, and step and 
stride time) using a smartphone (containing a built-in IMU) 
attached to the participant’s chest. However, no accuracy 
analysis was performed. Another study by Del Din et al. 
measured the accuracy of an IMU system when placed at 
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the chest, compared to its accuracy when placed at the lower 
back for which it was developed. The system demonstrated 
high agreement of mean spatiotemporal gait features (such 
as step length, and step time, with intraclass correlation 
coefficient values exceeding 0.88) but showed less 
agreement when measuring variability and asymmetry (61). 
Overall, studies have shown that single-point chest-
based sensors have potential for the measurement of 
spatiotemporal gait metrics, while more research is required 
to assess the use of chest-based sensors for the measurement 
of gait asymmetry and variability. In addition, placement 
of IMUs at the chest have the advantage of detecting less 
“noise”, compared to ankle- or wrist-based wearables 
where sensors frequently change orientation due to the 
degree of freedom of the upper and lower extremities (60). 
Furthermore, the flat bony surface of the sternum enables 
repeatable sensor attachment by even unskilled users (59), 
which is important for future possibilities of being used by 
patients in everyday living conditions. Therefore, there is 
a need to perform additional investigations into the use of 
single-point chest-based wearables for the measurement of 
gait metrics.

The clinical utility of IMUs relies on their potential 
to be taken home to measure gait in everyday living 
conditions away from the Hawthorne effect (20), unlike 
more sophisticated methods of gait analysis such as 3D 
motion capture or gait mats. While IMUs focussing on 
the measurement of physical activity (most notably, step 
counts) can be easily shown to operate in everyday living 
conditions such as with the widely used Fitbit fitness 
trackers (62,63), there is limited evidence to demonstrate 
the same for IMUs that measure advanced spatiotemporal 
gait metrics (such as step and stride length and time, and 
variability and asymmetry measures). Even the sensor used 
in the present study is only designed to measure walking 
bouts with a duration up to 30 minutes due to limitations 
on data storage capacity. This restricted data collection to a 
corridor outside the neurosurgery clinic, which constitutes 
an unfamiliar environment for patients that may cause them 
to inadvertently alter their walking patterns in accordance 
with the Hawthorne effect. In addition, our accuracy 
analysis was conducted using a long, straight unobstructed 
pathway, which is dissimilar to a typical home environment. 
It is unlikely that patients in their home environment 
would routinely walk at least 30 m in a straight line, unless 
outdoors, which is unlikely for patients with relatively 
severe forms of LSS, and patients living in cold climates. 

Technological advancements are required to overcome 
limitations on battery life, allowing for IMUs to be 
validated in home environments in future studies. A possible 
solution is for IMUs to operate on a reasonable threshold, 
for instance, by only operating at high frequencies of data 
capture once 10 steps have occurred, or once 10 seconds 
of activity has elapsed. This would facilitate operation 
during longer walking bouts by eliminating battery usage 
during relatively inactive segments of daily life. Another 
potential solution is for IMUs to, during periods of activity, 
perform several short episodes of data capture rather 
than measure gait metrics continuously throughout the 
entire period of activity. This would conserve processer 
and battery resources, but further studies are required to 
explore the accuracy of this approach. To demonstrate the 
clinical feasibility of gait analysis using IMUs, future studies 
measuring spatiotemporal gait parameters are required in 
everyday conditions. 

Conclusions

This study has constructed a preliminary disease-specific 
gait profile for LSS. A unique gait profile taken by the 
MMC/IMUPY or a similar device may be compared to 
the DSGP from this study to aid in the diagnosis of LSS. 
Additionally, the present study demonstrated that the chest-
based MMC/IMUPY device has a high agreement with 
videography when measuring spatiotemporal gait metrics. 
While promising, further studies are required before this 
or a similar system can have clinical applications in the 
patient’s home environment—particularly pertaining to the 
development of a more nuanced disease-specific gait profile 
for LSS, and the validation of the system in the home 
environment.

Acknowledgments

The authors would like to thank Dr. Matthew Brodie 
for assisting with project conceptualisation and Jessie 
Ding for providing artwork. Additionally, I would like to 
personally thank Professor Boaz Shulruf and Dr. Greg 
Smith for assistance with statistical analysis and manuscript 
preparation, respectively. Finally, I would like to thank 
Associate Professor Stephen Redmond and Scientia 
Professor Nigel Lovell for their help in recruiting Dr. Luke 
W. Sy for engineering assistance.
Funding: None.



266 Betteridge et al. Using wearables in people with LSS

J Spine Surg 2021;7(3):254-268 | https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

Footnote

Reporting Checklist: The authors have completed the 
STROBE reporting checklist. Available at https://dx.doi.
org/10.21037/jss-21-16

Data Sharing Statement: Available at https://dx.doi.
org/10.21037/jss-21-16

Peer Review File: Available at https://dx.doi.org/10.21037/
jss-21-16

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at https://dx.doi.
org/10.21037/jss-21-16). RJM serves as the Editor-in-
Chief of Journal of Spine Surgery. The other authors have no 
conflicts of interest to declare.

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013). Ethics approval for this study was obtained 
from the South Eastern Sydney Local Health District 
Ethics Committee, with reference code 17/184. Informed 
consent was taken from all patients. 

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. Pirker W, Katzenschlager R. Gait disorders in adults and 
the elderly : A clinical guide. Wien Klin Wochenschr 
2017;129:81-95.

2. Fasano A, Bloem BR. Gait disorders. Continuum (Minneap 
Minn) 2013;19:1344-82.

3. Gao C, Liu J, Tan Y, et al. Freezing of gait in Parkinson's 
disease: pathophysiology, risk factors and treatments. 
Transl Neurodegener 2020;9:12.

4. Ro DH, Lee J, Lee J, et al. Effects of Knee Osteoarthritis 
on Hip and Ankle Gait Mechanics. Adv Orthop 
2019;2019:9757369.

5. Paton J, Hatton AL, Rome K, et al. Effects of foot and 
ankle devices on balance, gait and falls in adults with 
sensory perception loss: a systematic review. JBI Database 
System Rev Implement Rep 2016;14:127-62.

6. Kyeong S, Kim SM, Jung S, et al. Gait pattern analysis 
and clinical subgroup identification: a retrospective 
observational study. Medicine (Baltimore) 2020;99:e19555.

7. Bello O, Sánchez JA, Vazquez-Santos C, et al. 
Spatiotemporal parameters of gait during treadmill and 
overground walking in Parkinson's disease. J Parkinsons 
Dis 2014;4:33-6.

8. Reininga IH, Stevens M, Wagenmakers R, et al. Subjects 
with hip osteoarthritis show distinctive patterns of trunk 
movements during gait-a body-fixed-sensor based analysis. 
J Neuroeng Rehabil 2012;9:3.

9. Vienne A, Barrois RP, Buffat S, et al. Inertial Sensors 
to Assess Gait Quality in Patients with Neurological 
Disorders: A Systematic Review of Technical and 
Analytical Challenges. Front Psychol 2017;8:817.

10. Aşuroğlu T, Açıcı K, Erdaş ÇB, et al. Parkinson's disease 
monitoring from gait analysis via foot-worn sensors. 
Biocybern Biomed Eng 2018;38:760-72.

11. Filli L, Sutter T, Easthope CS, et al. Profiling walking 
dysfunction in multiple sclerosis: characterisation, 
classification and progression over time. Sci Rep 
2018;8:4984.

12. Papadakis NC, Christakis DG, Tzagarakis GN, et al. Gait 
variability measurements in lumbar spinal stenosis patients: 
part B. Preoperative versus postoperative gait variability. 
Physiol Meas 2009;30:1187-95.

13. Ghent F, Mobbs RJ, Mobbs RR, et al. Assessment and 
Post-Intervention Recovery After Surgery for Lumbar 
Disk Herniation Based on Objective Gait Metrics from 
Wearable Devices Using the Gait Posture Index. World 
Neurosurg 2020;142:e111-6.

14. Renggli D, Graf C, Tachatos N, et al. Wearable Inertial 
Measurement Units for Assessing Gait in Real-World 
Environments. Front Physiol 2020;11:90.

15. Chang YW, Chang YH, Pan YL, et al. Validation and 
reliability of Falls Risk for Hospitalized Older People 
(FRHOP): Taiwan version. Medicine (Baltimore) 
2017;96:e7693.

16. Toosizadeh N, Yen TC, Howe C, et al. Gait behaviors 
as an objective surgical outcome in low back disorders: 
A systematic review. Clin Biomech (Bristol, Avon) 

https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://dx.doi.org/10.21037/jss-21-16
https://creativecommons.org/licenses/by-nc-nd/4.0/


267Journal of Spine Surgery, Vol 7, No 3 September 2021

J Spine Surg 2021;7(3):254-268 | https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

2015;30:528-36.
17. Sun J, Liu YC, Yan SH, et al. Clinical Gait Evaluation 

of Patients with Lumbar Spine Stenosis. Orthop Surg 
2018;10:32-9.

18. Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-
Zorrilla A. Gait analysis methods: an overview of 
wearable and non-wearable systems, highlighting clinical 
applications. Sensors (Basel) 2014;14:3362-94.

19. Akhtaruzzaman M, Shafie AA, Khan M. Gait analysis: 
Systems, technologies, and importance. J Mech Med Biol 
2016;16:1630003.

20. Perring J, Mobbs R, Betteridge C. Analysis of Patterns 
of Gait Deterioration in Patients with Lumbar Spinal 
Stenosis. World Neurosurg 2020;141:e55-9.

21. Kobsar D, Charlton JM, Tse CTF, et al. Validity and 
reliability of wearable inertial sensors in healthy adult 
walking: a systematic review and meta-analysis. J Neuroeng 
Rehabil 2020;17:62.

22. Del Din S, Galna B, Godfrey A, et al. Analysis of Free-
Living Gait in Older Adults With and Without Parkinson's 
Disease and With and Without a History of Falls: 
Identifying Generic and Disease-Specific Characteristics. J 
Gerontol A Biol Sci Med Sci 2019;74:500-6.

23. Punt M, Bruijn SM, van Schooten KS, et al. Characteristics 
of daily life gait in fall and non fall-prone stroke survivors 
and controls. J Neuroeng Rehabil 2016;13:67.

24. Moon Y, Wajda DA, Motl RW, et al. Stride-Time 
Variability and Fall Risk in Persons with Multiple 
Sclerosis. Mult Scler Int 2015;2015:964790.

25. Chen X, Liao S, Cao S, et al. An Acceleration-Based Gait 
Assessment Method for Children with Cerebral Palsy. 
Sensors (Basel) 2017;17:1002.

26. Kikkert LHJ, de Groot MH, van Campen JP, et al. Gait 
dynamics to optimize fall risk assessment in geriatric 
patients admitted to an outpatient diagnostic clinic. PLoS 
One 2017;12:e0178615.

27. DeFroda SF, Daniels AH, Deren ME. Differentiating 
Radiculopathy from Lower Extremity Arthropathy. Am J 
Med 2016;129:1124.e1-7.

28. Papadakis NC, Christakis DG, Tzagarakis GN, et al. Gait 
variability measurements in lumbar spinal stenosis patients: 
part A. Comparison with healthy subjects. Physiol Meas 
2009;30:1171-86.

29. Conrad BP, Shokat MS, Abbasi AZ, et al. Associations 
of self-report measures with gait, range of motion and 
proprioception in patients with lumbar spinal stenosis. 
Gait Posture 2013;38:987-92.

30. Najafi B, Armstrong DG, Mohler J. Novel wearable 

technology for assessing spontaneous daily physical activity 
and risk of falling in older adults with diabetes. J Diabetes 
Sci Technol 2013;7:1147-60.

31. Sharif Bidabadi S, Tan T, Murray I, et al. Tracking 
Foot Drop Recovery Following Lumbar-Spine Surgery, 
Applying Multiclass Gait Classification Using Machine 
Learning Techniques. Sensors (Basel) 2019;19:2542.

32. Ohtaki Y, Mamizuka N. Gait characterization of pre-and 
postoperative patients with lumbar spinal stenosis utilizing 
a body-mounted inertial measurement unit. In: 2014 IEEE 
Healthcare Innovation Conference (HIC), 2014; Seattle.

33. Nagai K, Aoyama T, Yamada M, et al. Quantification of 
changes in gait characteristics associated with intermittent 
claudication in patients with lumbar spinal stenosis. J 
Spinal Disord Tech 2014;27:E136-42.

34. Chakravorty A, Mobbs RJ, Anderson DB, et al. The role 
of wearable devices and objective gait analysis for the 
assessment and monitoring of patients with lumbar spinal 
stenosis: systematic review. BMC Musculoskelet Disord 
2019;20:288.

35. Czech MD, Patel S. GaitPy: an open-source python 
package for gait analysis using an accelerometer on the 
lower back. J Open Source Soft 2019;4:1778.

36. Gerke O. Reporting Standards for a Bland-Altman 
Agreement Analysis: A Review of Methodological Reviews. 
Diagnostics (Basel) 2020;10:334.

37. Loske S, Nüesch C, Byrnes KS, et al. Decompression 
surgery improves gait quality in patients with symptomatic 
lumbar spinal stenosis. Spine J 2018;18:2195-204.

38. Mobbs RJ. Gait velocity (walking speed) is an indicator 
of spine health, and objective measure of pre and post 
intervention recovery for spine care providers. J Spine 
Surg 2020;6:353-5.

39. Lee SY, Kim TH, Oh JK, et al. Lumbar Stenosis: A 
Recent Update by Review of Literature. Asian Spine J 
2015;9:818-28.

40. Cho SH, Park JM, Kwon OY. Gender differences in three 
dimensional gait analysis data from 98 healthy Korean 
adults. Clin Biomech (Bristol, Avon) 2004;19:145-52.

41. Debi R, Mor A, Segal O, et al. Differences in gait patterns, 
pain, function and quality of life between males and 
females with knee osteoarthritis: a clinical trial. BMC 
Musculoskelet Disord 2009;10:127.

42. Mobbs RJ, Katsinas CJ, Choy WJ, et al. Objective 
monitoring of activity and Gait Velocity using wearable 
accelerometer following lumbar microdiscectomy to detect 
recurrent disc herniation. J Spine Surg 2018;4:792-7.

43. Doğan NÖ. Bland-Altman analysis: A paradigm to 



268 Betteridge et al. Using wearables in people with LSS

J Spine Surg 2021;7(3):254-268 | https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

understand correlation and agreement. Turk J Emerg Med 
2018;18:139-41.

44. Zhou L, Fischer E, Tunca C, et al. How We Found Our 
IMU: Guidelines to IMU Selection and a Comparison 
of Seven IMUs for Pervasive Healthcare Applications. 
Sensors (Basel) 2020;20:4090.

45. Yeo SS, Park GY. Accuracy Verification of Spatio-
Temporal and Kinematic Parameters for Gait Using 
Inertial Measurement Unit System. Sensors (Basel) 
2020;20:1343.

46. Aqueveque P, Gómez B, Saavedra F, et al. Validation of 
a portable system for spatial-temporal gait parameters 
based on a single inertial measurement unit and a mobile 
application. Eur J Transl Myol 2020;30:9002.

47. Cho YS, Jang SH, Cho JS, et al. Evaluation of Validity 
and Reliability of Inertial Measurement Unit-Based Gait 
Analysis Systems. Ann Rehabil Med 2018;42:872-83.

48. Washabaugh EP, Kalyanaraman T, Adamczyk PG, et al. 
Validity and repeatability of inertial measurement units for 
measuring gait parameters. Gait Posture 2017;55:87-93.

49. Trojaniello D, Ravaschio A, Hausdorff JM, et al. 
Comparative assessment of different methods for the 
estimation of gait temporal parameters using a single 
inertial sensor: application to elderly, post-stroke, 
Parkinson's disease and Huntington's disease subjects. 
Gait Posture 2015;42:310-6.

50. Aich S, Pradhan PM, Park J, et al. A Validation Study 
of Freezing of Gait (FoG) Detection and Machine-
Learning-Based FoG Prediction Using Estimated Gait 
Characteristics with a Wearable Accelerometer. Sensors 
(Basel) 2018;18:3287.

51. Tunca C, Pehlivan N, Ak N, et al. Inertial Sensor-Based 
Robust Gait Analysis in Non-Hospital Settings for 
Neurological Disorders. Sensors (Basel) 2017;17:825.

52. Genevay S, Atlas SJ. Lumbar spinal stenosis. Best Pract 
Res Clin Rheumatol 2010;24:253-65.

53. Omori M, Shibuya S, Nakajima T, et al. Hand Dexterity 

Impairment in Patients with Cervical Myelopathy: A New 
Quantitative Assessment Using a Natural Prehension 
Movement. Behav Neurol 2018;2018:5138234.

54. Ekvall Hansson E, Tornberg Å. Coherence and reliability 
of a wearable inertial measurement unit for measuring 
postural sway. BMC Res Notes 2019;12:201.

55. Neville C, Ludlow C, Rieger B. Measuring postural 
stability with an inertial sensor: validity and sensitivity. 
Med Devices (Auckl) 2015;8:447-55.

56. Mancini M, Salarian A, Carlson-Kuhta P, et al. ISway: a 
sensitive, valid and reliable measure of postural control. J 
Neuroeng Rehabil 2012;9:59.

57. Wang Y, Li Z, Li X. External Disturbances Rejection for 
Vector Field Sensors in Attitude and Heading Reference 
Systems. Micromachines (Basel) 2020;11:803.

58. Brognara L, Palumbo P, Grimm B, et al. Assessing Gait in 
Parkinson's Disease Using Wearable Motion Sensors: A 
Systematic Review. Diseases 2019;7:18.

59. Nazarahari M, Rouhani H. Detection of daily postures and 
walking modalities using a single chest-mounted tri-axial 
accelerometer. Med Eng Phys 2018;57:75-81.

60. Hashmi MA, Riaz Q, Zeeshan M, et al. Motion Reveal 
Emotions: Identifying Emotions from Human Walk 
Using Chest Mounted Smartphone. IEEE Sens J 
2020;20:13511-22.

61. Del Din S, Hickey A, Hurwitz N, et al. Measuring gait 
with an accelerometer-based wearable: influence of 
device location, testing protocol and age. Physiol Meas 
2016;37:1785-97.

62. Hui J, Heyden R, Bao T, et al. Validity of the Fitbit One 
for Measuring Activity in Community-Dwelling Stroke 
Survivors. Physiother Can 2018;70:81-9.

63. Mobbs RJ, Phan K, Maharaj M, et al. Physical Activity 
Measured with Accelerometer and Self-Rated Disability in 
Lumbar Spine Surgery: A Prospective Study. Global Spine 
J 2016;6:459-64.

Cite this article as: Betteridge C, Mobbs RJ, Fonseka RD, 
Natarajan P, Ho D, Choy WJ, Sy LW, Pell N. Objectifying 
clinical gait assessment: using a single-point wearable sensor to 
quantify the spatiotemporal gait metrics of people with lumbar 
spinal stenosis. J Spine Surg 2021;7(3):254-268. doi: 10.21037/
jss-21-16



https://dx.doi.org/10.21037/jss-21-16© Journal of Spine Surgery. All rights reserved.

Supplementary

Appendix 1: Link to more information on the MetaMotionC/IMUPY system

The following link will take you to a Github.io webpage which has detailed set-up instructions, configuration files and data 
explanations.
https://lsy3.gitlab.io/IMUGaitPy/index.html 

Appendix 2: Bland-Altman plots when comparing the MetaMotionC/IMUPY system with videography

Green lines indicate 95% limits of agreement. The red line indicates the mean difference.
Healthy controls
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