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Introduction

Wearable inertial sensors provide a promising tool for 
capturing the movement of patients in their natural 
environment over a long duration of time (e.g., 24/7). This 
potential is further supported by the continual technological 
advances towards the miniaturization and reduction in cost 
of wearable inertial sensors. However, the said technology is 
no silver bullet. Although measured movement in the “wild” 
using wearable inertial sensors still faces a few challenges 
(e.g., measurement noise, soft tissue artifacts), some 
clinicians have started adopting the use of wearable sensors 
(1-3). Thus, it is important to understand the tools used 
for motion capture to help objectively determine the tool’s 
clinical utility and build confidence in its use (e.g., in which 
situation can they trust the tool and what factors must they 
be wary of).

The technology for capturing movement has come a 
long way. Traditionally, bulky goniometers or strain gauges 
were used to measure body joint angles (4,5). However, 
these devices were cumbersome, restrictive, and requires a 
lot of manual processing. Eventually, this technology was 
replaced by optical systems (e.g., stereo cameras) which 
utilises multiple cameras within a confined space where 
the subjects are attached with multiple markers all over the 
body. It is the current industry standard and can estimate 
position up to millimetre accuracy if well-configured and 
calibrated. Then recently came wearable inertial sensors, 
capable of capturing movement 24/7 (e.g., spatio-temporal 

parameters), albeit with less detail compared to optical 
systems, with batteries capable of lasting weeks on a single 
charge. The portability of wearable inertial sensors has 
enabled larger number of samples and more types of 
movements to be studied (6). Indeed, up to the time of 
writing this paper, technology continues to evolve towards 
making motion capture as comfortable as possible [e.g., use 
of smart textiles (7,8), as few sensors as possible (9,10), and 
body mounted cameras (11)].

Wearable inertial sensors have opened the door of 
possibilities for health monitoring. Optical motion capture 
systems, though accurate, are costly (12), and may capture 
movements not representative of the patient’s gait due to 
unfamiliarity of the capture environment (13). Wearable 
inertial sensors provide a more economical alternative 
and a means to tracking the patient’s movement in their 
natural environment, which improves the likelihood of 
obtaining representative measurement of their gait, while 
also facilitating long-term monitoring, such that the 
progression of a disorder or effect of an intervention can 
be tracked over time-scales spanning days to years. When 
enough information is collected, such frequent remote gait 
monitoring has the potential to identify movement disorders 
in its early stages, which gives clinicians opportunity to 
intervene and possibly prevent the disorder from becoming 
worse [e.g., remotely track a patient’s fall risk, and when 
the fall risk is increasing, execute exercise interventions to 
reduce fall risk (14)].

Given the potential and adoption of wearable inertial 
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sensors in clinical settings, this paper aims to provide 
clinicians insight into on how such sensors work. I will 
first describe the different measurements obtained from 
wearable inertial sensors, and I will then provide insight to 
how wearable inertial sensors are currently used in practice.

Measurements from wearable inertial sensors

Wearable inertial sensors, more commonly known as 
Inertial Measurement Units (IMUs), typically consist 
of accelerometer, gyroscope, and magnetometer, each 
measuring acceleration (m.s–2), angular velocity (rad.s–1), net 
magnetic field (μT), respectively. From these raw sensor 
measurements, an estimate of 3D position (i.e., where the 
tracked person is located) and orientation (i.e., posture of 
tracked person) may be obtained. For example, position 
tells you where a person is inside a hospital building, while 
orientation tells you how a person is lying in bed (e.g., 
facing up or sideways facing right).

In the following sections, more description will be 
provided about position (Sec. Position estimation) and 
orientation (Sec. Orientation estimation) estimates. Sec. 
Calibration will then describe the often not discussed 
step of calibration between the sensor reference frame 
and body frame. Figure 1 shows an overview of a typical 
computational processing that occurs from raw IMU 
measurements to clinical gait parameters.

Position estimation

An accelerometer measures acceleration in m.s–2 along 
one or multiple axes. Measured acceleration consists of 

acceleration due to body movement, gravity, and noise 
which represents every non-idealities. It can be expressed 
in the world frame using orientation estimate and after the 
gravity component is removed, can be integrated once to 
obtain velocity (m.s–1), and twice to obtain position (m). 
However, along with the true acceleration, noise is double 
integrated resulting to a large drift in position estimate. 
There are many techniques to reduce this drift including 
zero velocity update (i.e., velocity is assumed to reset to 
zero every time the foot is flat on the ground). Spatio-
temporal parameters such as stride length, gait velocity, 
step variability can then be estimated from position and 
velocity estimates. Note that there are also techniques 
to obtain spatio-temporal parameters directly from raw 
measurements, as well as performing gait cycle identification 
or activity classification from raw measurements.

Orientation estimation

Angular velocity can be integrated to obtain orientation 
estimates. Similar to position estimation, along with the 
true angular velocity, noise is integrated resulting to drift 
in orientation estimate. Nevertheless, this drift can be 
resolved by the orientation estimation algorithm through 
leveraging of global reference vectors from accelerometer 
measurements (i.e., when the sensor is not moving, 
measurement acceleration points along the gravity vector) 
and magnetometer measurements (i.e., net magnetic field 
points along the magnetic north). Note that orientation 
estimation algorithms typically output the orientation 
estimate of the inertial sensor with respect the world frame, 
whereas the parameter of interest is the orientation estimate 

Figure 1 Overview of measurement outputs from inertial measurement unit.
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of the body segments. Hence, an additional calibration 
step, typically a fixed rotational offset, is needed to align 
the orientation estimate of the sensor with the orientation 
estimate of the body segment. Finally, kinematic parameters 
such as knee and hip joint angles can then be estimated 
from orientation estimates of two or more linked body 
segments.

Calibration

Obtaining prior knowledge about the patient being 
tracked is critical for accurate body pose estimation. 
Obtaining height, body measurements, and mass may be 
easily obtained from manual measurements or through 
questionnaires. However, a special calibration procedure 
is typically needed to obtain the sensor-to-body-segment 
orientation offset, typically assumed as a fixed rotational 
offset between two rigid objects. Note that although inertial 
sensors are typically rigid, your body segment is not 100% 
rigid due to soft tissues, which can be a source of error 
specially prominent during dynamic movements. Sensor-
to-body-segment orientation calibration can be done offline 
before or at the beginning of motion capture. For example, 
the clinician can carefully attach the sensor to the body such 
that the sensor frame aligns with the body frame, which can 
be found from palpation of anatomical landmarks. However, 
this approach is difficult, time consuming, and usually 
requires well trained personnel for accuracy and reliability. 
Another approach is to ask the subject to take a predefined 
posture or movement at the start of the motion capture 
session (15). The predefined posture could be as simple as 
standing upright, while the predefined movement can be 
fully flexing and extending your knee (16,17). However, 
such predefined posture or movement is individual and 
may not be repeatable. Other approaches also include 
exploitation of kinematic constraints (18), and the use of 
external calibration devices (19). 

Inertial wearable sensors in practice

Ultimately, single or multiple inertial sensors, each 
providing position and orientation estimates or derivatives 
of it, can be used to compute gait parameters (20). Gait 
parameters provide quantitative measurements clinicians 
may use to objectively make clinical inference/decisions. 
Spatio-temporal parameters (e.g., speed and stride length) 
are typically obtained from a single inertial sensor, while 
kinematic parameters (e.g., joint angles) typically require 

two or more. Kinetic parameters (e.g., joint moments) 
are computed from kinematic parameters combined with 
force sensor (e.g., pressure insoles) measurements. On one 
hand, using fewer inertial sensors is more comfortable for 
everyday use and will more likely be used in everyday life, 
albeit only capturing less detailed gait parameters (i.e., the 
patient is modelled as a single point) (21). On the other 
hand, multiple inertial sensors can be quite cumbersome, 
with the additional challenges of synchronisation and cost, 
however, at the benefit of more detailed gait parameters (i.e., 
patient is modelled as a skeleton stick figure).

Many consumer electronics now a days (e.g., mobile 
phone, smart watch) have inertial sensors. For example, 
most smart watches have accelerometers and gyroscopes, 
as they consume less power capable of lasting a week 
on a single charge. Note, however, that due to the loss 
of magnetometers, such devices are more susceptible 
to yaw orientation drift. On the other hand, even when 
a magnetometer is present, care must be taken as the 
magnetic field in indoor environments is known to be 
inhomogeneous, typically with stronger disturbances closer 
to the floor (22). Indeed, this is an existing challenge for the 
engineering community to develop orientation estimation 
algorithms that do not depend on magnetometers or are 
robust against magnetic disturbance (23,24). 

Technology will continue to evolve, producing cheaper, 
smaller, power efficient, and more accurate sensors. 
Software, both inside wearable devices and on mobile 
applications or the cloud, will also continue to improve. In 
addition to wearable inertial sensors, wearable devices will 
continue to increase in capability, measuring other health 
parameters such as heart rate and ECG. Indeed, one can 
claim that the future of ubiquitous 24/7 health monitoring 
is not so far away. Nevertheless, care must be given as 
new technologies are adopted to clinical practice. A better 
understanding of the technology enabling the innovation 
can not only remove the mysticism around the black box 
technology, but will also accelerate clinical adoption and 
effective use of innovation, ultimately leading to better 
clinical outcomes.
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