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Introduction

Wearable sensors have become pervasive in society. Most 
individuals carry or wear some type of device that measures 
some aspect of their life. This ranges from simple measures 
of movement (1) and location (2) made by smart phones, 
to comprehensive analysis of health measures derived from 
specialised devices that, in addition to movement, measure 
biological variables such as heart rate and estimate parameters 
such as sleep, stress, and activity level (3). Wearable 

devices and their derived measures are being increasingly 
implemented to aid management of a diverse array of health 
conditions including low back pain (LBP) (4). This has most 
commonly related to evaluation of physical activity (4),  
but with advances in technology and analysis, more 
sophisticated assessments are beginning to be possible, such 
as measurement of posture and movement in the real world 
(5,6), which has been the topic of several extensive systematic 
reviews (4,6,7). Wearable sensor technology is rapidly evolving 
and the potential utility for LBP management is immense. 
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This paper aims to: (I) provide a brief overview of some 
topical areas of current literature regarding applications of 
wearable sensors in management of LBP; (II) present a vision 
for a future comprehensive system that integrates wearable 
sensors to measure multiple parameters in the real world 
that contributes data to guide treatment selection (aided by 
artificial intelligence), uses wearables to aid treatment support, 
adherence and outcome monitoring, and interrogates the 
response of the individual patient to the prescribed treatment 
to guide future decision support for other individuals who 
present with LBP; and (III) consider the challenges that will 
need to be overcome to make such a system a reality. We 
present the following article in accordance with the Narrative 
Review reporting checklist (available at https://jss.amegroups.
com/article/view/10.21037/jss-21-112/rc).

Methods

This narrative review presents a synthesis of available 
literature regarding a broad range of issues. The intention 
was not to systematically review the literature for each 
topic, but to present current opinions, recent findings and 
identify new directions for application of wearable sensors 
in spine care. 

Overview of current application of wearable 
sensors in management of LBP

The most common application of wearable sensors in the 
management of LBP is for activity monitoring (4). In most 
cases this has been straightforward assessment of activity 
level of patients for assessment (8) or to monitor outcome 
after treatments, including surgery (4,9). Wearable sensors 
have also been used to assess not just whether a person 
moves, but how they move, such as evaluation of the spinal 
curvature/posture and movement (5,6) and movement 
patterns (7,10) during function and sometimes in the real-
world, outside the treatment clinic. Several trials have used 
wearables to provide feedback for training, with variable 
success (11-14). This has also been integrated into gamified 
approaches to movement training (15,16). Most research 
has provided evidence for the validity and potential utility 
of the devices (17-19), but evidence on whether patient 
outcomes are improved by such application is scarce  
(20-22). Trials of interventions that have used wearable 
sensors to address a single feature in LBP [e.g., improve 
posture (23)] have had limited success in reducing pain, 
which is not surprising considering the heterogeneity and 

complexity of the condition.
More complex applications of wearables to treatment 

for LBP have been trialled. These include use of activity 
sensors to monitor and guide progress of a treatment 
aimed to improve self-management of LBP (24). Data 
from wearable sensors was used to monitor progress and 
guide dosage of physical activity, education and exercises 
for strength and flexibility. Despite the sophistication of 
the model of application of intervention, the results from 
this randomised controlled trial, indicated only a slight and 
probably not clinically important improvement in outcome 
relative to intervention unsupported by data from wearable 
sensors (25). This finding concurs with the observation 
that although self-management approaches that include 
exercise are more effective than no treatment, there is 
little difference in outcome between different models of 
application of this management strategy (26). From one 
perspective this might suggest that the hype of wearable 
sensors is unfounded, but from another it might suggest 
that we are not yet capturing the full potential of wearables.

Measures other than movement are also being developed 
and evaluated. Recordings of electromyography (EMG) 
from back muscles with wearable sensors have been 
available for many years (27) and have been implemented 
clinical interventions (28). Advances in technology, such as 
wearable “tattoo” electrodes provide promise (29). Analysis 
algorithms to automate analysis of data are being developed 
and tested (30). Whether data derived from wearable EMG 
can guide effective treatment has not yet been confirmed.

Estimation of sleep parameters using activity monitoring 
devices is also beginning to provide information regarding 
the association between sleep and LBP (31,32). Home-
based electroencephalography (EEG) measures with 
wearable devices are also becoming available and applied to 
provide more detailed evaluation of sleep architecture (33), 
but not yet in LBP. Also not yet applied to LBP is the use 
of wearable sensors to evaluate physiological parameters 
associated with stress such as heart rate variability and 
pulse transit time from electrocardiography (ECG) and 
photoplethysmography recordings (34-36) and novel 
sensors for detection of cortisol in sweat (37,38).

In summary, there has been widespread use of wearables 
to monitor physical activity in LBP. This provides greater 
accuracy of monitoring of treatment outcomes and when 
integrated into a treatment support system, small benefits 
for treatment outcomes have been achieved. The question 
that remains is whether there is further potential to generate 
larger benefits for individuals with spinal complaints using a 
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system that integrates data from multiple wearable sensors 
to provide a more comprehensive picture of an individual’s 
presentation that could provide refined information for 
treatment selection and provision? 

A vision for a future comprehensive system 
using wearable sensors

Advances in technology are beginning to present 
possibilities to go beyond the use of sensors to simply 
enhance the application current management practices, and 
instead lead to a reconceptualization of the entire system for 
management of LBP. The following provides an overview of 
some key issues that plague the current management system 
and what to consider for a vision for an alternative system 
that might be possible with these technological advances.

Current LBP management

Current management of LBP generally depends on a 
limited number of assessments that capture narrow view 
of specific aspects of the state of the individual at a single 
timepoint (39) or over a limited period of time (40), or 
require recall of events/exposures (41). These assessments 
are generally made in an artificial setting (i.e., in a clinical 
facility when the individual is aware they are being 
scrutinised) (42,43). This is unlikely to replicate the context 
within which an individual lives (7) or the performance of 
the individual in their usual functional environment (40). 
The scope of assessments is generally influenced by the 
discipline of the clinician undertaking the assessment (44).  
This information is then used to select from a limited 
array of treatments (or referral to another clinician) that 
are most commonly applied in a generic one-size-fits-all 
manner, perhaps with some individualisation of dosage (45). 
Treatments may include application of an intervention, 
prescription of a drug, a home program or a supported self-
management program (45). The outcome is reviewed to 
evaluate success or failure, followed by subsequent progression 
of treatment, change to a different treatment approach 
(often using a trial-and-error stepped approach) (46),  
or perhaps referral to another clinician. There are many 
challenges: assessments are limited in scope and detail and 
may not reflect actual lived experience (7,42); treatments 
are narrowly applied (46); treatment effects are challenged 
by poor adherence (47); and the individual’s response to 
treatment is not used to inform future decision making for 
others.

It could be argued that this model of care is unable to 
address the complexity of LBP and other spinal complaints. 
It is accepted that LBP is characterised by a huge array of 
biopsychosocial features that interplay uniquely for each 
individual who has the condition (48). Adding complexity 
is the recognition that LBP is a fluctuating condition 
that varies over time (49,50), and with a unique set of 
features driving this variation (51,52). These realities 
imply personalized care is likely to be needed. From one 
perspective it could be argued that this complexity is too 
great, and we should search for simple solutions that make 
some impact, even if small. The alternative perspective 
is to find ways to develop complex interventions (53) and 
support the decisions regarding care (54). This will not be 
straightforward; modelling work suggests that integration 
of multiple features for personalisation of care quickly 
becomes impossible once more than a handful of factors 
are considered (55). Wearable sensors might be part of the 
solution. 

New potential from advances in technology

Advances in technology have enhanced the potential to 
evaluate features with potential relevance to LBP in the real 
world and to make these measures over an extended period 
time (56). These advances are beginning to make it possible 
to conceptualise the possibility to pervasively collect a 
broad array of variables across biological, psychological, 
and social domains in the real world as a person lives their 
life. These data could be interrogated to identify if and 
how each (or the interaction between them) relates to an 
individual’s LBP experience, including any relationship to 
fluctuation of the condition. Recent work has highlighted 
that LBP is mostly experienced as an ongoing condition 
characterised by fluctuations in symptoms (sometimes 
referred to as flares) (49,57). Qualitative research suggests 
people often consider themselves to have LBP, even when 
they are in remission (58). Wearable sensors would lie 
at the core of analysis of the factors that could explain 
the fluctuation of the condition, and that are potentially 
modifiable by treatments.

In the biological domain, research is already providing 
some insight into the potential utility of data collected in the 
real world, albeit from a limited set of domains/measures 
(5,51). For instance, although LBP can interfere with sleep, 
real-world data from wearable sensors and information 
that a user inputs into a smartphone application show that 
for some individuals a night of poor sleep quality (but not 
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quantity) increases risk for a flare of the condition (51). New 
simplified EEG sensor systems that involve a headband are 
being applied to evaluate sleep architecture and provide 
potential for more detailed analysis of this relationship (59).  
For some individuals, transient exposure to a day of 
low physical activity is also a risk factor for flare while 
exposure to moderate activity is protective for flare (51).  
Potential to evaluate biological features in the real-world 
might also reveal a relevance of factors for LBP that have 
not yet been considered (because of inability to make 
appropriate measures), factors that might be relevant for 
some individuals but not others, or factors that have been 
largely dismissed or criticised based on data assessed in 
artificial settings. 

There has been substantial debate regarding the 
relevance of posture and movement for LBP (60). 
Several reviews have concluded that there is an absence 
of supporting evidence (61,62). Although differences in 
kinematics and posture between individuals with and 
without pain are common in the literature [e.g., (63,64)], 
this does not confirm that it is relevant for their condition. 
Most studies measure spine motion and posture in cross-
sectional studies in a laboratory (65) with unclear relevance 
to the real-world, use measures that have not been 
validated (66), or rely on subjective reporting of exposure 
to posture/movements (67). Many studies measure variables 
such as range of motion which have unclear relevance 
for interpretation of real-world function which involves 
consideration of multiple factors such as coordination 
between segments (68). Most studies use small sample sizes, 
cannot exclude bias, and measure an enormous variety 
of parameters that are not consistently applied between 
studies (60). Further, most studies assume that support 
for the relevance of a feature of posture or movement to 
LBP depends on evidence for its presence in individuals 
with LBP, but not those without LBP (61), and that all 
individuals with LBP would present in a similar manner (69). 
These assumptions ignore the reality of individual variation 
and that the relevance of a posture or movement for an 
individual’s LBP is likely to depend on the exposure, and 
other contextual or individual factors. Although individuals 
without LBP might present with a specific feature (such as 
flexion of the spine during lifting), that does not preclude 
the possibility that that this feature of movement is 
problematic and provocative of symptoms for an individual 
with LBP. It is well known that individuals with LBP that 
adopt different movement patterns, and in some cases a 
cluster of movement and posture features are identified that 

can be used to allocate individuals to subgroups (64,70,71). 
It is plausible that continuous assessment of movement and 
posture in the real-world enabled by advances in wearable 
technology might reveal an association between specific 
postures and movements and fluctuations of the condition 
for an individual and provide meaningful guidance for 
treatment selection. Algorithms are being developed to 
classify postures, movements, and transitions in real world 
settings (72,73). 

Although measures in the psychological domain are more 
challenging to collect in an automated way, advances in 
technologies and analysis are providing potential to estimate 
some psychological factors from biological correlates. 
For instance, algorithms have been developed to estimate 
stress from measures that include heart rate variability (35). 
Sensors have been developed, but not yet widely available, 
to measure cortisol and other molecules from sweat that 
might provide additional information of stress (74) and 
immune signalling (75), that both have potential relevance 
for LBP. Of course, not all psychological features of 
potential relevance to LBP can be automatically obtained. 
For measures of many psychological phenomena (e.g., fear 
of pain/movement; pain catastrophising; mood; depression; 
self-efficacy) there may be no simple physiological analogue, 
and user input is likely to be required. Life-logging 
applications (35,51) present possibility to prompt users to 
input potentially relevant data at specific times to integrate 
with wearable sensor data. The individual’s experience of 
pain itself is not a simple measure and depends on user 
input.

Although transient exposure to social factors is also 
likely to require user input into life-logging applications, 
GPS data from wearable sensors is  already being 
interrogated for information regarding social engagement 
and broader aspects  of  funct ion (76) .  Data from 
smartphones and wearables related to communication and 
voice characteristics is also being used to quantify social 
exchanges (with mechanisms to protect privacy) in mental 
health conditions (77-79). 

Together, there is potential to capture complex data across 
multiple domains to provide unrivalled data of an individual’s 
experience. Integration of such data is likely to provide 
a foundation to shift the paradigm of LBP management 
towards truly personalised selection of intervention. As a 
critical steppingstone, the availability of new technologies 
to provide new insights an individual’s condition, demands a 
new phase of discovery research to identify relevant factors 
prior to integration into health care.
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A future comprehensive system for management of LBP 
enabled by wearable sensors

With the potential for collection of detailed ongoing 
real-world data regarding an array of potentially relevant 
factors across biological, psychological and social domains 
using wearable sensors and user input, a new model of 
management of LBP is possible. A vision for such a system 
could include: (I) assessment and decision support; (II) 
treatment support; and (III) ongoing refinement of more 
precise personalisation of care. An overview of the model is 
presented in Figure 1.

Assessment and decision support
On presentation to a health care provider, the future might 
include provision of a suite of sensors and a user input 
interface to the individual with LBP to enable evaluation 
of an array of features in the real world. Table 1 presents 
a summary of many of the wearable sensor types that are 
currently available and their potential utility. These data 
could be automatically interrogated (using machine learning 
algorithms, or other data classification methods) to extract 
measures that relate to an array of variables across domains 
(e.g., sleep quality; time in specific postures; activity level; 
variation in stress; social interaction; interaction between 
the multiple domains; etc.). These data could be integrated 
with other relevant information of the individual and 
their condition [e.g., imaging (80,81), history (82), omics 
(genomic; transcriptomic; proteomic; metabolomic data) 
(83,84), likely neurobiological mechanisms contributing 
to pain (85,86)]. The large individual dataset would then 
be interrogated to identify the factors (and interactions 
between factors) that are relevant for the individual’s 
experience of LBP (such as those that fluctuate with the 
waxing and waning of LBP). These would serve as potential 
targets for treatments to be selected from an available suite 
of management options. 

Based on the sheer number of variables to consider, 
mechanisms for decision support would be necessary. Advances 
in application of artificial intelligence make this possible. 
Neither the use of computerised decision support (87),  
nor the application of artificial intelligence (88) is new in 
LBP. What is new is the diversity of available data upon 
which decisions can be made. For this system to be possible 
the relationship between each factor and its responsiveness 
to treatments would also need to be known, how they 
might interact, and whether this responsiveness is affected 
by other elements of the individual patient’s unique 

profile. Ideally, prediction of potential effects of matched 
treatments would be informed by a database built from data 
accrued from all previous individuals with LBP whose data 
has been interrogated in this manner (see below). Thus, 
comprehensive assessment, including that provided by 
wearables, could provide a foundation for personalisation of 
care beyond what is even possible to imagine today. 

Treatment support
Application of treatment could be supported by data derived 
from wearable sensors. Wearable sensor data can provide 
biofeedback (89), alert to problems (12), and monitoring of 
progress (25). Already data has been interrogated to track 
improvement of function such as physical activity and gait, 
and this information has been used to guide refinement of 
care (25). Data of spine posture and movement has been 
used to monitor and provide feedback as a component 
of motor learning interventions to train changes in 
performance (5). This reinforces the potential for wearable 
sensors to provide data to support care but, as yet, without 
comprehensive consideration of other variables. 

There has been considerable work undertaken to develop 
electronic/mobile health (eHealth/mHealth) care resources 
for LBP that address different elements relevant to the pain 
experience (90-92) and some of these already incorporate 
data from wearable sensors (5,93), including social  
factors (94). Additional work is required to enhance the breadth 
of features that can be targeted by mHealth interventions, and 
to incorporate the use of innovative new sensors.

There are considerable advantages to support treatment 
with data from wearable sensors. First, remote application of 
treatment through telehealth applications (which currently 
rely on video assessment) (95) would be facilitated by 
provision of objective real time data from wearable sensors. 
Second, a major barrier to treatment efficacy is adherence 
to care (96); wearable sensors might contribute to strategies 
to address this issue (e.g., enhanced motivation to promote 
adherence (97); identification of non-adherence (98).  
Third, ideally data from the wearable sensors (and life-
logging) that is recorded during the management period would 
be automatically uploaded to a server/cloud, automatically 
interrogated, used to modify (progress or change) treatments, 
and fed to clinical providers for review/alert. 

Ongoing refinement of more precise personalisation of 
care
A major potential benefit from a system that provides 
detailed and automatically analysed data, along with 
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Figure 1 Framework for integration of wearable sensor data to guide personalized management of low back pain. (A) Continuous data 
from multiple domains are recorded using wearable sensors in the real world. User input data are recorded using apps to record factors that 
cannot be recorded with wearables (e.g., pain, psychological variables, etc.); (B) other patient data are collected to contribute to decision 
support. This might include multi-omics data (genomic, transcriptomic, proteomic, metabolomic, etc.), clinical features, imaging, clinically 
identified primary pain mechanism grouping, etc.; (C) data from wearable sensors are analysed using automated algorithm-based analysis 
supported by machine learning and combined with user input data; (D) all data inputs are interrogated to evaluation the complex interaction 
between multiple dimensions and low back pain experience using analytic methods including artificial intelligence to provide decision 
support for allocation of tailored interventions; (E) personalized management plan is provided that, depending on the individual patient, 
could include “in person” treatment and a suite of mobile Health (mHealth) solutions for self-management. mHealth solutions might 
include use of wearable data to support treatment (e.g., biofeedback, motivation, etc.); (F) wearable sensors and user input apps are used to 
monitor treatment adherence and evaluation of progress. These data would be fed back to a treating clinician; (G) all data from individual 
patients, the applied treatments and the treatment outcomes are uploaded to a central server to continue to build the accuracy of decision 
support. LBP, low back pain.
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Table 1 Examples of wearable sensors with potential application to low back pain

Sensors Measurements Example clinical information

Activity

Accelerometer Activity level; step count; sedentary time; 
speed

Physical activity; energy expenditure; sleep

Pedometer Steps count Physical activity

Global positioning system (GPS) Distance travelled; location Function; social interaction; participation

Movement/posture/muscle activity

Magnetic (magnetometer), angular rate  
(gyroscope) and gravity (accelerometer) sensors

Orientation relative to earth Joint angle/posture or relative angle/posture 
when 2 sensors are incorporated 

Strain sensors (e.g., fibre optic;  
inductance)

Length change Spine—movement/posture;  
chest—breathing 

Goniometer Angle Joint angular motion

Pressure sensor Force Shoe—foot contact; ground reaction forces; 
inverse dynamics; chest—breathing

Electromyography (single channel and grid) Muscle activity Contraction/relaxation of muscle

Physiological

Photoplethysmography (PPG) Heart rate; heart rate variability; heart rate 
recovery; oxygen saturation; sleep stages; 
cardiac output

Exercise tolerance; stress

Electrocardiography (ECG) Heart rate; heart rate variability Exercise tolerance; stress

Electroencephalography (EEG) Brain activity Sleep; sleep architecture; attention

Near Infrared spectroscopy Muscle oxygenation; Oxy-, deoxy- and 
total haemoglobin; cerebral oxygenation

Oxygen saturation in muscle

Biochemical sensors (e.g., epidermal; sweat; 
transdermal)

Cortisol; pH; electrolytes; glucose; lactate Stress; nutrition; fatigue

Skin conductance

Temperature Body temperature Temperature; heat stress

Other measures

Video (smart glasses) Activity; social interaction 

Sound Language analysis; ambient sound Social interaction; environmental context;  
social ambience measures

Light Ambient light Environmental context

information of applied treatments and the response 
to these treatments, is that with each new participant, 
additional data are provided for refinement of decision 
support. Theoretically, the precision of decision support 
for the allocation of treatments would likely improve. 
Similar approaches have been applied in LBP to refine self-
management using a limited number of variables (99). 

Challenges to overcome to make the system a 

reality

Although elements of the proposed system are available 

and have been trialled in LBP, there is considerable work to 

be done to make it a reality. Major considerations include 

those that relate to sensors/sensor data, treatment selection, 
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availability of mHealth options, treatment provision and 
governance/security/privacy and usability of wearable 
sensors.

In terms of wearable sensors there are physical and 
technical issues that need to be addressed. From a physical 
perspective, sensors should not restrict or influence function. 
An ideal sensor would be one that a participant agrees to 
wear but is unaware of, once in use. One that a participant 
has little to do to affix, remove, recharge or to transfer 
data. How to make this possible is not yet clear, but many 
attempts have been made to meet these requirements. For 
instance, simplified EEG system have been designed with 
electrodes embedded in a headband (59), various sensors 
have been embedded in clothing (100,101), fibre optic 
sensors have been used in flexible materials to measure  
movement (102), and sensors for electrical signals (e.g., 
EMG and ECG) are available as removable “tattoos” (29). 
From a technical perspective there are issues of battery life/
charging (103) and transmission or recording of data. New 
electronic designs are being trialled for options such as 
stretchable materials with integrated energy storage (104). 
Innovative methods to harvest energy from body heat and 
kinetic energy from body movement are possible (105). 
Ideally, data would be automatically uploaded to a server 
for analysis and interrogation (106). Current technology 
generally requires transfer to a computer or smartphone 
as an intermediate step to transfer to permanent storage. 
Direct transfer is not yet possible. As new technologies and 
new data management opportunities become available that 
enable new features to be measured in new ways, it will be 
necessary to undertake discovery research to evaluate the 
potential relevance for LBP management. Other health 
economic evaluation will be critical to consider the balance 
between costs and benefits of different application methods. 
For instance, analysis of sleep from EEG data might be 
more cumbersome and less feasible than use of movement 
sensors, but this sacrifice of ease might be outweighed by the 
additional information that can be extracted from analysis of 
sleep architecture from EEG (59). Even if movement sensors 
were considered acceptable, there is also the consideration 
of validity of estimation of sleep parameters from different 
combinations and placements of accelerometers, some of 
which are more acceptable than others (107).

Data analysis poses multiple challenges. There are many 
challenges for analysis of data from sensors in the real 
world. For instance, position and movement are generally 
evaluated by fusion of data from accelerometers, gyroscopes 
and magnetometers, but these measures are impacted by 

linear accelerations, drift and metal objects, respectively and 
require application of algorithms to identify and remove the 
impact of these factors (108-110). Accuracy and validity of 
measures is paramount and is currently variable (7). There 
will be challenges with interpretation of data. For motion 
sensors, any sensor system that involves markers attached to 
the skin will be influenced by skin motion (111).

Availability of meaningful data is paramount. A major 
hurdle is the challenge of classification of daily-life 
behaviours (112-114). For instance, from movement data 
it is critical to identify different functions and tasks (e.g., 
sitting, standing, walking and lifting) to reduce the diversity 
of activities, postures, movements to an interpretable set 
of meaningful variables (e.g., variation of spine posture 
in sitting). This requires development of application of 
mathematical rules/methods that must be validated. In 
many cases, it is probable that classification and analysis 
will be facilitated by fusion of data from multiple sources. 
For instance, interpretation of stress from data of heart 
rate variability requires fusion with context data [e.g., to 
differentiate heart rate responses between those induced by 
physical activity and those induced by stressful events (35)]. 

Once the challenges of data collection and analysis are 
overcome the challenge shifts to using this information 
for selection. This depends on availability of treatments 
to address the identified parameters, methods to optimise 
the success of treatments that take advantage of the new 
technologies, and potential to predict the response to 
treatments (and the interaction between them). This 
step might require a reconsideration of the literature. 
For instance, when considering the suite of treatments, 
it is plausible that some treatments that have been found 
to be ineffective when applied in generic manner to the 
heterogeneous group with LBP might be effective to 
address specific relevant features for and individual patient. 
Further, a key element of interventions implemented 
using wearables is behaviour change. Although change 
is achievable, it is often discussed that interaction with 
wearable devices and platforms can be short lived 
(115,116). Adaptive interventions are required to maintain 
engagement (117) and pre-empt non-adherence (118). 

For a proposed system to be viable, the health system 
needs to enable the inclusion of this model of care (115). Co-
development with clinicians and patients will be necessary 
to ensure that the sensors and system have utility, and co-
development with health services will be necessary to ensure 
the potential to integrate the model of care. There will be 
security and governance considerations regarding access to 
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data (3) and cybersecurity tools such as blockchain might 
provide a solution (119). Models of payment will need to 
be considered and differ between health systems. It will be 
critical to consider issues of cost effectiveness, feasibility, 
and convenience (115). The proposed model of care might 
not be cost effective to use for all participants. Perhaps a 
“light” version is necessary for individuals at low risk of poor 
outcome, and the “full” intensive version is reserved for 
those at high risk of poor outcome. These decisions might 
be supported by tools such as StartBack (a LBP screening 
tool to stratify care) approach to risk stratification (120). 

Some of these challenges will need to be considered 
sequentially, and some in parallel. First it is critical to 
resolve, with discovery research, whether new wearable 
sensor technologies provide data that have plausible 
mechanistic associations with an individual’s condition. 
Second, there will need to be co-design with clinicians, 
patients, industry and health services to build the elements 
of the system to ensure it is feasible and that utility 
of a system is optimised. Third, the efficacy and cost 
effectiveness of the system will need to be tested. Fourth, 
the system will need to be future proofed to embrace new 
technologies, new knowledge and new methods become 
available. If effective, the system has great potential for 
application to other conditions.

Conclusions

This paper aimed to provide an overview of how wearable 
sensors might be integrated into a model of personalised 
and supported care for LBP (and other spinal conditions). 
Major advantages of this system are real world measurement 
(over time) of data from multiple domains, fusion of data 
from different sources, decision support (that improves over 
time as data from more patients are added), and treatment 
support. Recent technological advances are bringing this 
closer to reality. Although exciting, it cannot be assumed 
that this more complex perspective will be more effective 
than simpler forms of care, that will need to be tested, as 
will the cost effectiveness of the approach. 
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