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Introduction

In recent years, data has continued to emerge supporting 
operative treatment of various spinal pathologies to 
improve patient pain and function (1-3). Pedicle screw 
instrumentation remains the mainstay of spinal fusion, 
providing rigid three-column fixation. Improper pedicle 
screw placement can lead to increased complications and 
the need for revision surgery. The success of spinal fusion 

depends on accurate pedicle screw placement to achieve 
adequate fixation and to avoid injury to surrounding 
structures (4).

The traditional freehand technique relies on anatomic 
landmarks and knowledge of pedicle trajectory to accurately 
place pedicle screws. However, this technique can 
become even more difficult with patients with significant 
deformity, revision surgery, and overall altered anatomy. 
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Emerging technologies have increasingly been adopted 
in spine surgery in the attempt to increase precision and 
improve outcomes (5,6). Robotic assistance is an area 
of significant interest, with proposed benefits including 
increased accuracy of pedicle screw placement, decreased 
complication rates, and decreased radiation exposure (4-6).

As robotic assistance continues to become increasingly 
popular in spine surgery, it is critical for surgeons to 
understand the technology available and the associated 
outcomes to make informed decisions when considering 
which system to incorporate into their practice. The 
goal of this review is to provide an overview of the 
currently available robotic assistance systems and their 
associated outcomes and limitations. We present this 
article in accordance with the Narrative Review reporting 
checklist (available at https://jss.amegroups.com/article/
view/10.21037/jss-23-40/rc).

Methods

A review of national databases (PubMed and Scopus) was 
performed using literature from 2014 to 2023. Keywords 
included terms “robotic”, “spine”, and “surgery”. Studies 
that aimed to describe the types of robotic devices, clinical 
and radiological outcomes, limitations, and future directions 
were included. Studies unavailable in English were excluded 
(Table 1).

Types of robotic devices

Robotic-assisted spine surgery emerged with the first spine 
robot, the SpineAssist (Mazor Robotics Ltd., Caesarea, 
Israel), in 2004 (7,8). Since then, numerous technical 
advancements have produced fundamental changes in spine 
surgery practice (9). Existing surgical robots typically fall 
into three categories: supervisory-controlled, telesurgical, 

and shared-control. Supervisory-controlled robots allow 
the surgeon to plan the operation pre-operatively, then 
the robot performs the operation under close supervision. 
Telesurgical robots allow the surgeon to directly control the 
robot and its instruments during the operation, essentially 
acting as an extension of the surgeon’s own arms. Spine 
surgery robots fall under the third category, shared-control 
robots, which simultaneously allow both the surgeon and 
robot participate in the operation (7,8). Spine surgery has 
also benefited from computer-assisted navigation (CAN) 
(7,10). Stereotactic navigation systems using computed 
tomography (CT) or pulsed fluoroscopic images, obtained 
pre-operatively or intra-operatively, generate both two-
dimensional (2D) and three-dimensional (3D) projections of 
the anatomy throughout the case (11). CAN is now widely 
used in many spinal procedures and can be integrated with 
currently available spine robot platforms.

There are four spine surgery robots that are most 
commonly utilized and well-studied. As mentioned, Mazor 
released the SpineAssist (Mazor Robotics Ltd.) in 2004, 
which became the first Food and Drug Administration 
(FDA)-approved spine robot and remains widely used. It 
is a shared-control robot that offers navigation superior 
to traditional intraoperative CAN (7). The SpineAssist 
automatically positions its arm along a pre-determined 
trajectory, then all subsequent drilling is performed by 
the surgeon (11). Mazor’s second-generation robot, the 
Renaissance, was released in 2011, which was similar to 
Mazor with some software and hardware improvements. 
However, both robots were criticized for incorrect screw 
trajectory secondary to skiving potential. To address this, 
a newer robot, the Mazor X, released in 2016, includes a 
camera that allows the robot to assess the work environment 
and self-detect its location intra-operatively. It also allows 
registration of each individual vertebral body to improve 
accuracy as well as preoperative planning (Figures 1,2). 

Table 1 The search strategy summary

Items Specification

Date of search February 1, 2023–February 7, 2024

Databases and other sources searched PubMed and Scopus

Search terms used “Robotic”, “spine”, and “surgery”

Timeframe 2014 to 2023

Inclusion criteria English language; PubMed-indexed journal

Selection process Conducted by all authors independently; all sources reviewed and selected by senior author (H.M.)

https://jss.amegroups.com/article/view/10.21037/jss-23-40/rc
https://jss.amegroups.com/article/view/10.21037/jss-23-40/rc
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Figure 1 Example of preoperative planning for T10 to pelvis fusion using the Mazor X. (A) S1 axial and sagittal views, (B) stacked pelvis 
coronal and axial views, (C) stacked sagittal and coronal views, and (D) T11 axial and coronal views. LT, lateral; AP, anteroposterior; 3D, 
three-dimensional; AX, axial; TRJ, trajectory; S, superior; A, anterior; P, posterior; I, inferior; L, left; R, right.
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The ROSA Spine also became FDA-approved in 2016 
and functions similarly to the Mazor X as it also has a 
stereoscopic camera (12). Both the Mazor X and ROSA have 
not been widely validated for use in pedicle instrumentation 
due to their relative novelty and lack of data. The third 
most commonly utilized robotic system is the Da Vinci 
Surgical System, which was initially released in 2000 for 
general laparoscopic procedures. Contrary to the Mazor 
and ROSA systems, the Da Vinci Surgical System follows 
the telesurgical model, meaning the surgeon controls the 
robot from a remote booth equipped with 3D vision during 
the operation (7). In spine surgery, the Da Vinci robot has 
been utilized in anterior lumbar interbody fusions (ALIFs) 
with limited but promising results. A few case series have 
demonstrated successful exposure and interbody placement 
without complications (13). However, its role in posterior 
based instrumentation has yet to considered. Finally, the 
Excelsius GPS (Globus Medical, Inc., Audubon, PA, USA) 
is a recent spine robot released in 2017. It features real-time 
intraoperative imaging, automatic adjustment for patient 

movement, and direct screw insertion without guidewires. 
The robot provides immediate feedback if the drill skives or 
reference frame moves (7,14). Further research pertaining 
to its intra-operative accuracy is required but early results 
suggest precise execution and accurate screw placement (15). 
The recent growth and widespread integration of Excelsius 
GPS suggests excellent consistency and may lead to 
expansion to other indications, including robotic interbody 
placement.

Outcomes

Outcomes important to spine procedures include pedicle 
screw accuracy, radiation exposure, patient-reported 
outcomes and complications. Pedicle screw accuracy is 
one of the major benefits of robotic surgery compared 
to free hand. In Gao et al.’s meta-analysis of randomized 
controlled studies, robotic assistance had superior accuracy 
and consistency of placement of screws and fewer proximal 
facet joint violations (16). This study found that when 
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Figure 2 Axial image of L4 with preoperative planning (A), postoperative lateral (B), and AP (C) spine radiographs. LT, lateral; AP, 
anteroposterior; 3D, three-dimensional.
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accuracy was expanded to include both Grade A and Grade 
B in the Gerztbein-Robbins classification (both considered 
to be satisfactory operative results), there was no significant 
difference between techniques (P=0.71, I2=0%). This 
difference is likely because robots lack the ability to make 
manual errors that may occur secondary to fatigue or 
oversight in repetitive tasks.

Additionally, robotic assistance may decrease radiation 
exposure in surgical candidates. In Gao et al.’s meta-
analysis of randomized control trials, it was demonstrated 
that robotic assistance significantly reduced radiation time 
(mean difference of 12.4 seconds per screw) for the patient 
and surgical staff (16). Hyun et al. found in a prospective 
randomized controlled study that robotic assistance resulted 
in an almost 10 seconds difference of radiation per screw (3.5 
vs. 13.3 seconds, P=0.015) (17). It was hypothesized that 
this difference was observed because placement of screws 
relied on the robotics’ utilization of the preoperative CT 
scan rather than the surgeon requiring multiple views to 
interpret placement intraoperatively.

To date, there appears to be no difference in patient-
reported outcomes between freehand and robotic treatment. 
In a randomized control trial, Park et al. found that there 
was no difference in both visual analogue scale (VAS) and 
Oswestry disability index (ODI) after surgery at a minimum 
follow-up of 2 years (18). In a larger matched cohort study, 
similar results were found as there were no differences 
between robotic or free-hand patients that were able to 
achieve the minimal clinically important difference in VAS, 
ODI, and Short Form-12 Health Surveys at the 1-year 
follow-up (19).

Complicat ions  are  re lat ive ly  rare  within both 
groups. The majority of studies demonstrate little to no 
complications using robotic technology (16,17). In a recent 
multicenter prospective study looking at minimally invasive 
procedures of 400 patients, the MIS ReFRESH Prospective 
Comparative Study found that the complication rate of free 
hand pedicle screw insertion was 5.8 times higher [95% 
confidence interval (CI): 3.5–9.6; P<0.001] and revision 
rate was 11.0 times higher (95% CI: 2.9–41.2; P<0.001) 
when compared to robot-guided placement (20). However, 
complications such as cannula skidding, skiving from soft 
tissue or technical issues such as registration issues resulting 
in robot abandonment have been observed and thus may 
bias results (21). Keric et al. reported complications included 
conversion to freehand secondary to registration failure 
(1.9%, n=6), dural tears (6.4%, n=26), screw misplacement 
(0.48%, n=9 screws), and infection requiring revision 

(4.9%, n=20) (22). Ultimately, however, it does not appear 
that these complications are significant, with some studies 
finding that robotic studies show shorter length of stay; 
Kantelhardt et al. found an average decrease of 3 days when 
compared with free hand technique (11.6 for open robotic 
vs. 14.6 days, P<0.05) (23).

Limitations

Robotic spine surgery is not without significant limitations, 
which include requiring a significant learning curve, possibly 
longer operative cases, and significant associated costs. 
Hu et al. found that the rate of successful pedicle screw 
placement (82% to >90%) increased while the frequency of 
conversion from robotic to manual screw placement (17% 
to 4%) decreased after the first 30 procedures performed by 
each surgeon (24). A recent systematic review found similar 
results (25). With this learning curve, operative times 
expected are longer and generally trend down as more cases 
are performed (26).

Independent of learning curves, the effect of utilizing 
robotic assistance has on operative times when compared 
to free hand technique is unclear. In a prospective single 
surgeon study, Lonjon et al. found that operative timing 
for robotic cases (336 minutes) was significantly longer 
than freehand (226 minutes; P<0.001) (27). Other studies 
have found no significant differences in duration of surgery 
when compared to free hand (23) or fluoroscopic assisted 
screws (28). A recent systematic review and meta-analysis 
of randomized controlled trials of robotic and freehand 
studies found that robotic cases were significantly longer  
(160.9 minutes; 95% CI: 32.37–289.50; P=0.014) (29). 
This is likely secondary to the intraoperative preparation 
required to register landmarks and position the assistant.

Finally, a significant barrier for adoption of robotic 
assistants are the costs associated with the technology. First, 
the fixed costs of a spinal robot ranges from $500,000 to 
$1,200,000, which does not include the yearly maintenance, 
navigation software, or disposable equipment required 
per case (7). There are conflicting reports of both the 
spinal robot’s cost-effectiveness (30,31) and lack thereof 
(32,33) when compared to freehand techniques. Menger 
et al. predicted savings from operating room (OR) time 
utilization and fewer costs associated with prolonged length 
of stay (infections, revisions), with an ultimate cost savings 
of roughly $608,546 over a 1 year period (30). Conversely, 
in a retrospective review, Ezeokoli et al. found 11% higher 
day-of-surgery and 16% higher total encounter costs for 
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patients that underwent robotic surgery when compared to 
freehand procedures; the main factor that drove costs up 
was OR time ($1,521 vs. $880, P<0.001) and OR surgical 
supplies ($11,367 vs. $9,931, P=0.018) (33).

Future directions

There remains great potential for growth in robotic spine 
surgery. A current drawback to current robotic devices 
is the capability to reliably measure screw depth, unlike 
CAN, which provides improved visualization during screw 
placement; this drawback has limited the use of robots in the 
cervical spine. One study comparing the O-arm navigation 
system to robotic assistance demonstrated that the robot 
significantly reduced fluoroscopy and time per screw despite 
similar pedicle screw accuracy (34). The Mazor X Stealth 
Edition (Mazor Robotics Ltd.) has been developed and 
combines use of robotics with intraoperative navigation, but 
further biomechanical and clinical data is necessary prior to 
its safe implementation in the cervical spine.

There are possible applications of robotic assistance 
in addition to pedicle screw placement, including tumor 
resection and osteotomies for spinal deformity correction. 
The use of robots for burrs or saws may eventually enable 
safer decompression or osteotomy. Navigation using 
preoperative magnetic resonance imaging may eventually 
be useful in additional robotic spinal procedures including 
discectomy or mobilization of neural elements. Overall, 
robotic-assisted spine surgery is likely to continue to 
become more routinely used for a variety of expanding 
purposes, although further software development and 
higher-quality studies are necessary to forge growth and 
demonstrate its safety, effectiveness, and value.

Conclusions

Robotic-assisted spine surgery has seen increasing use in 
the attempt to increase precision and improve outcomes 
and has been associated with increased accuracy in pedicle 
screw placement and decreased complication rates. Barriers 
to its adoption include a significant learning curve, possibly 
longer operative cases, and significant associated costs. As 
robotic assistance continues to become increasingly popular 
in spine surgery, it is critical for surgeons to understand 
the technology available and the associated outcomes to 
make informed decisions when considering which system to 
incorporate into their practice.
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