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ABSTRACT

KEY WORDS  

Pancreatic cancer is the fourth leading cause of cancer related death in the US. Despite the advances in medical and surgi-
cal treatment, the 5-year survival rate for such cancer is only approximately 5% when considering all stages of disease. The 
lethal nature of pancreatic cancer stems from its high metastatic potential to the lymphatic system and distant organs. 
Lack of effective chemotherapies, which is believed to be due to drug-resistance, also contributes to the high mortality of 
pancreatic cancer. Recent evidence suggests that epithelial-mesenchymal transition of pancreatic cancer cells contributes 
to the development of drug resistance and an increase in invasiveness. Future strategies that specifically target against 
epithelial-mesenchymal transition phenotype could potentially reduce tumoral drug resistance and invasiveness and 
hence prolong the survival of patients with pancreatic cancer. 
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Introduction

Pancreatic cancer (PC) is the tenth cause of new cancer 
cases and the fourth leading cause of cancer related death 
in the US, with an estimated 43,140 new cases and 36,800 
deaths in 2010 (1). Despite the advances in surgical and 
medical treatment, the 5-year survival rate for PC is only 
approximately 5% when considering all stages of disease 
(1). Without a speci f ic diagnost ic marker and being 
asymptomatic in early stage, PC is often diagnosed at an 
advanced/late stage when only palliative measures can be 
offered, which can only partially explain its observed poor 
prognosis (2). The 5-year survival rate of PC remains low at 
only 10-25% for those with locoregional disease due to local 
recurrence and/or distant metastasis after curative surgery 
(3). The lethal nature of PC therefore stems from its high 

metastatic potential to the lymphatic system and distant 
organs. In addition, lack of effective chemotherapies, which 
is believed to be due to drug-resistance, also contributes to 
the high mortality of patients diagnosed with PC (4). Recent 
evidence suggests that epithelial-mesenchymal transition 
(EMT) of PC cells contributes to the development of drug 
resistance (5).

EMT plays crucial roles in the formation of the body 
plan and in the dif ferentiation of t issues and organs. 
During EMT, epithelial cells undergo profound phenotypic 
changes such as loss of cel l-cel l adhesion, loss of cel l 
pola r it y, a nd acqu isit ion of m ig rator y a nd i nvasive 
properties (6). EMT not only occurs during embryonic 
development or as a physiological response to injur y, 
but is also an important element in cancer progression 
through a variety of mechanisms. EMT endows cel ls 
with migratory and invasive properties, induces stem cell 
properties, prevents apoptosis and senescence, induces 
resistance to conventional chemotherapy, and contributes 
to immunosuppression (6). 

To support the role of EMT in PC progression, several 
reports have shown the increased expression of EMT 
markers such as N-cadherin (7), transcription factors 
including Snail, Slug and Twist (8), fibronectin (9), and 
vimentin (9,10) in surgically resected PC specimens but 
not in the normal noncancerous pancreatic t issue. In 
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addition, the presence of EMT in PC is often associated 
with undifferentiated phenotype and overall poor survival 
compared to the tumors without EMT (9,10). As mentioned 
previously, EMT contributes to drug resistance in cancer 
cells probably through induction of the formation of cancer 
stem cells (CSCs) or stem-like cells (4,11). This concept is 
supported by the findings of the increased expression of 
stem cell markers in drug-resistant PC cells (12-14).

In this concise review, we will summarize the current 
knowledge regarding the mechanisms and implications of 
EMT in PC.  

Molecular mechanisms of EMT 

EMT is a process by which epithel ia l cel ls lose their 
polarity and are converted to a mesenchymal phenotype. 
EMT has been considered as the critical event inducing 
morphogenetic changes during embryonic development, 
organ fibrosis and tumor metastasis. Phenotypic changes 
of EMT include the downregulation of epithelial markers 
(e.g., E-cadherin, desmoplak in and plakoglobin) and 
upregulation of mesenchymal markers (e.g., v imentin, 
fibronectin and α-smooth muscle actin) (6,15,16). A variety 
of transcriptional factors, including Snail, Slug, Twist, 
Zeb1, SIP1, and E47, were shown to induce EMT through 
repression of E-cadherin transcription (17-22). In addition 
to transcriptional repression, other mechanisms can also 
repress E-cadherin expression.  A previous study reported 
that promoter hy permethylation was associated with 
E-cadherin repression and induction of EMT (23). Recent 
evidences highlight the role of chromatin modification 
in E-cadherin repression. Snail interacts with histone 
deacetylase 1 (HDAC1)-histone deacetylase 2 (HDAC2), 
AJUBA-protein arginine methyltransferase 5 (PR MT5), 
or polycomb repressive complex 2 (PRC2) to repress 
E-cadherin expression (24-26). We recently demonstrated 
that regulation of the polycomb repressive complex 1 
(PRC1) protein Bmi1 by Twist1 is essential in Twist1-
induced suppression of E-cadherin (27). 

Hypoxia is an important microenvironmental factor for 
triggering metastasis during cancer progression. Recent 
studies showed that hypoxia-inducible factor 1 and 2 (HIF-
1α and HIF-2α) induces the expression and coordinates 
the interplay of EMT regulators. HIF-1α regulates the 
expression of EMT regulators such as Snail, Zeb1, SIP1 
eit her d irect ly or ind irect ly (28, 29). We prev iously 
demonstrated the direct regulation of Twist1 by HIF-1α, 
suggesting the critical role of hypoxia in the induction of 
EMT (30). HIF-2α has also been shown to regulate Twist1 
expression (31). The results from these studies suggest the 
critical role of intratumoral hypoxia in the induction of 

EMT through either HIF-1α or HIF-2α or both. 
Accumulating evidences suggest that cells can acquire 

stem-like properties during induction of EMT (32,33). 
This finding provides a crucial link between the acquisition 
of metastatic traits and tumor-initiating capability in 
cancer cells undergoing EMT. To support this theory, 
we previously demonstrated the direct regulation of the 
stemness gene Bmi1 by Tw ist1. Tw ist1 and Bmi1 act 
cooperatively to repress E-cadherin and p16I NK4A, 
leading to the induction of EMT and stem-like properties 
of cancer cells. A recent report showed that Bmi1 is induced 
by another EMT regulator Zeb1 through regulation of 
the miR-200 family in pancreatic cancer cells (34). It 
indicates that the polycomb repressive protein Bmi1 may 
play a central role in the induction of EMT and stemness in 
pancreatic cancers.

Pancreatic CSCs

B a s e d  o n  t h e  C S C  t h e o r y,  a  t u m o r  c o n t a i n s  a 
heterogeneous population of mature cancer cel ls and 
a small number of CSCs. These CSCs, similar to their 
normal counterparts, have the abi l ity to self-renewal 
and undergo mult i l ineage di f ferentiat ion (35). Most 
of the CSCs are identified by their specific cell surface 
markers. Pancreatic CSCs have been identified based on 
the expression of CD24, CD44, and epithelial-specific 
antigen (ESA). These cells represent only 0.5% to 1% 
of all PC cells but have at least 100-fold greater tumor-
initiating potential than the majority of the tumor cells 
that are negative for these markers. More importantly, 
tumors derived from CD24+CD44+ESA+ PC cells have 
been shown to be able to copy the phenotypic diversity 
characterized in the original tumor (36,37). Different 
populations of pancreatic CSCs have also been reported 
based on their expression of CD133 and CXCR4 (38) 
a nd a ldehyde dehyd rogena se (A L DH) (39).  L it t le 
overlap existed between the A LDH+ and CD24+CD44+ 

cell population despite the fact that they had a similar 
tumor formation capacity in vivo (39). It is conceivable 
that multiple phenotypically distinct cell populations 
are clonogenic in an indiv idual tumor. A lternatively, 
it is possible that the phenot y pe of CSCs changes in 
response to cel lu la r ac t ivat ion stat us ,  i nterac t ions 
w i t h  t h e  e x t e r n a l  m i c r o e n v i r o n m e n t ,  o r  d i s e a s e 
stage. A nother possibil ity is that these dif ferent CSC 
populations are interrelated by a retained hierarchical 
arrangement in which the expression of each specif ic 
marker is restricted to a specific cellular compartment, 
wh ich is rem in iscent of t he str uct ured relat ionsh ip 
between long- and short-term stem cells and progenitors 
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in normal hematopoiesis (39).

EMT, Pancreatic CSCs, and drug resistance

Existing therapies for patients with cancer are largely 
against differentiated tumor cells, while sparing the relative 
quiescent CSCs (35). This paradigm can plausibly explain 
the commonly seen relapse after debulking chemotherapy 
due to the persistence of CSCs. The possible mechanisms 
underlying drug resistance in CSCs include the expression 
of energy-requiring transporters, the resistance to drug-
induced apoptosis, and an active DNA-repair capacity 
(40). Du et al. (14) reported that chemoradiation-resistant 
PC cells acquired characteristics of CSCs and have high 
expression of anti-apoptotic protein bcl-2 and apoptosis 
inhibitory protein survivin. In another study, Hong et 
al. (41) reported that an ATP-binding cassette (A BC) 
transporter, ABCB1 (MDR1), was significantly augmented 
during the acquisition of drug resistance to gemcitabine.  
Pancreatic CSCs have been show n to be resistant to 
gemcitabine, the most commonly used chemotherapeutic 
agent for PC, in multiple studies (12,14,38,41,42). Treatment 
with gemcitabine can therefore enrich the CSC population 
likely through selection process that eventually leads to 
treatment failure (12,38,42). Emerging evidence suggests 
that Hedgehog pathway is important to CSC signaling 
(43). To support the critical role of pancreatic CSCs in 
the development of drug resistance, combined treatment 
with gemcitabine and cyclopamine, a small molecule 
smoothened antagonist, not only induced tumor regression 
but also decreased in CSC markers and Hedgehog signaling 
(42). In addition, A BC transporter inhibitor verapamil 
resensitized drug-resistant CSCs to gemcitabine in a dose-
dependent manner (41). 

Accumulating evidence suggests that EMT is important 
in cancer progression conceivably through commencing 
stem cel l propert ies to cancer cel ls (4,6,11). Several 
studies have reported that pancreatic CSCs also possess 
mesenchy mal features (12-14, 39,4 4 -4 6). During the 
EMT, mesenchymal cells are characterized by decreased 
expression of epithelial marker E-cadherin and increased 
expression of genes that encode members of the Snail 
family of transcriptional repressors (8,39). Rasheed et al. 
(39) reported that the expression of CDH1 that encodes 
for E -cad her i n a nd of SNA I 2 t hat encodes for Slug 
was decreased up to 5-fold and increased up to 51-fold, 
respectively, in A LDH+ CSCs compared with unsorted 
tumor cel ls (39). Both Shah et a l . (12) and Du et a l . 
(14) reported that drug-resistant CSCs have decreased 
expression of E-cadherin and increased expression of 
v imentin, which are features of EMT. Transforming 

growth factor-β (TGF-β) is a regulator of many types of 
physiological and pathological EMT (11). When incubated 
in the presence of TGF-β, the side population (SP) cells, 
a CSC enriched f ract ion f rom PC cel l l ine, changed 
their shape into mesenchymal-like appearance including 
spindle shaped assembly. This alteration was associated 
w ith signi f icant reduction of E-cadherin ex pression 
level and induction of the expression of Snail and matrix 
metalloproteinase-2. W hen incubated in the absence of 
TGF-β, these cells restored epithelial-like appearance and 
the expression of E-cadherin. These results suggest that SP 
cells from PC possess superior potentials of phenotypic 
switch, i.e., EMT and mesenchymal-epithelial transition 
(MET) (44). 

Reversal of EMT phenotype has been shown to restore 
drug sensitiv ity (5,46). A rumugam et al. (5) reported 
an inverse correlation between E-cadherin and Zeb-1, a 
transcriptional suppressor of E-cadherin, correlated closely 
with resistance to gemcitabine, 5-fluorouracil, and cisplatin. 
Silencing Zeb-1 in the mesenchymal PC lines not only 
increased the expression of E-cadherin but also restored 
drug sensitivity. They suggested that Zeb-1 and other 
regulators of EMT may maintain drug resistance in human 
PC cells (5). In another study, Li et al. (46) reported that 
the expression of several microRNAs (miRNA) including 
miR-200 were significantly down-regulated in gemcitabine-
resistant PC cells. Emerging evidence has demonstrated the 
critical role of miRNA in various biological and pathological 
processes including EMT.  These cel ls showed EMT 
characteristics such as elongated fibroblastoid morphology, 
lower expression of E-cadherin, and higher expression 
of v imentin and Zeb-1. By restoring the expression of 
miR-200, the expression of Zeb-1, Slug, and vimentin was 
down-regulated in the drug-resistant cells. These cells also 
showed reversal of EMT phenotype leading to epithelial 
morphology and had increased sensitivity to gemcitabine 
(46). 

In summary, the current available treatment for cancer 
may select for drug resistant CSCs. Pancreatic CSCs could 
acquire drug resistance through EMT. Strategies target 
CSCs and/or EMT could potentially overcome the drug 
resistance problem during chemotherapy.

EMT and PC progression

As mentioned previously (9,10), the presence of EMT in 
PC is often associated with undifferentiated phenotype and 
overall poor survival compared to the tumors without EMT. 
EMT may not only induce drug resistance in CSCs but also 
increase tumorigenicity both in vitro and in vivo, migratory 
ability and invasiveness of PC cells (4,12-14,39,44,45). 
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MUC1, a transmembrane mucin glycoprotein, has been 
shown to be associated with the most invasive forms of PC 
(47). Roy et al. (47) reported that overexpression of MUC1 
in PC cells triggered the molecular process of EMT, which 
translated to increased invasiveness and metastasis. MUC1+ 
cells gained mesenchymal markers such as Slug, Snail and 
vimentin and lost E-cadherin expression. Furthermore, 
genes associated with metastasis and angiogenesis such 
as vascular endothelial growth factor (V EGF), matrix 
metalloproteinase (MMP)-2, 3, and 9 were significantly 
increased in MUC1+ cells (47). MMPs have been implicated 
in facilitating the invasion and metastasis of PC (48). Bone 
morphogenetic proteins (BMPs) was reported to be able 
to induce EMT in PC cells, which resulted in an increase 
in invasiveness of the cells, in part through increased 
expression and activity of MMP-2 (49). In another study, 
overexpression of Slug significantly increased invasion and 
metastasis of PC cells through upregulation and activation 
of MMP-9 (50). 

EMT is a dynamic process and is triggered by stimuli 
coming from extracel lular matri x microenv ironment 
and many secreted soluble factors. A mong the many 
signaling pathways involved in this process, Wnt, TGF-β, 
Hedgehog , Notch, a nd nuclea r fac tor- κ B (N F- κ B) 
signaling pathways are critical for EMT induction (51). 
Gordon et al (52) reported that loss of type III TGF-β 
receptor expression increased motility and invasiveness 
associated with EMT during PC progression. Wang et 
al. (45) reported that Notch-2 and its ligand, Jagged-1, 
were highly upregulated in gemcitabine-resistant PC 
cells. The finding is consistent with the role of the Notch 
signaling pathway in the acquisition of EMT phenotype. 
Down-regulation of Notch signaling pathway not only 
decreased invasive behavior of the drug-resistant cells 
but also led to partial reversal of the EMT phenotype, 
re s u lt i ng i n  t he M ET, w h ic h w a s a s soc i ate d w it h 
decreased expression of v imentin, Zeb-1, Slug, Snail, 
and N F-κ B (45). T heir f indings therefore prov ide a 
direct ev idence of the association between EMT and 
PC invasiveness. In a recent study, Haque et a l . (53) 
repor ted t hat Cy r61/CCN1 sig na l i ng is cr it ica l for 
EMT and promotes pancreatic carcinogenesis. Cyr61 
(cysteine-rich 61) is a member of the CCN family of 
g row t h factors t hat i ncludes CTGF, NOV, W ISP-1, 
WISP-2 and WISP-3. Cyr61 is known to link cell surface 
and extracellular matrix and plays important roles on 
cell adhesion, proliferation, migration, differentiation, 
and angiogenesis dur ing normal developmental and 
pat holog ica l processes (5 4). Cy r61 e x pression was 
detec ted i n t he ea rly PC prec u rsor les ion s a nd it s 
expression intensif ied with disease progression. Upon 

Cyr61 si lencing, the aggressive behaviors of PC were 
reduced by obl iterat i ng i nterl i n k i ng events such as 
reversing EMT, block ing the expression of stem-cell-
like traits and inhibiting migration. In contrast, addition 
of Cy r61 aug mented EMT and stemness features in 
relatively less aggressive PC cells (53).

Ta ken toget her, PC w it h EMT feat ures has more 
aggressive behaviors and is associated with poor patient 
survival. Multiple proteins and signaling pathways are 
involved in this process. Reversal of EMT phenotype could 
potentially reduce PC invasiveness and hence prevent 
metastasis.

Conclusion

Accumulating evidences suggest that EMT plays important 
roles i n PC prog res s ion t h roug h se vera l  pl au sible 
mechanisms. PC cells may acquire stemness properties and 
become drug resistant during undergoing EMT. PC with 
EMT features is more aggressive and is associated with poor 
patient survival. Future strategies that specifically target 
against EMT phenotype could potentially reduce tumoral 
drug resistance and invasiveness and hence prolong the 
survival of patients with PC.
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