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Introduction

Utilization of next-generation sequencing (NGS) to profile 
tumor sample or biopsy for genetic variations potentially 
indicative of target drugs and then prescribe matched 
agents is increasingly accepted. Such attempt may find new 
sensitivity markers for established regimens or provide 

evidence supporting the off-label use of target drugs in 
unapproved diseases, thus facilitating the expansion of drug 
indications and the implement of precision medication. The 
precision medicine clinical trials—“umbrella” and “basket” 
studies are to evaluate the feasibility of such genotype-
directed therapy (1). Two target drugs, sorafenib and 
lenvatinib, have been approved as the first-line therapy for 
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hepatocellular carcinoma (HCC) but the response rate and 
treatment effect of sorafenib are not satisfactory (2) and 
large-scale clinical application of lenvatinib is just ongoing; 
novel agents are still needed. More important, neither 
of them have been reported of specific drug sensitivity/
resistance markers. Thus, sequencing HCC to find genetic 
variations predicting drug response or suggesting the use 
of other target drugs with/without indications in HCC is 
rather promising (3).

Yet, the innate heterogeneous nature of cancer hinders 
accurate genome profiling: traditional single-site tumor 
sample or biopsy could hardly represent the full landscape 
of HCC genome due to intratumoral heterogeneity (ITH) 
and while such bias may be subtle, it could eventually lead 
to drug resistance and treatment failure (4). A thorough 
knowledge of the influence posed by ITH on genotyping 
would be helpful. Previously, we and other researchers 
have reported ITH of HCCs; nevertheless, how and to 
what extent would ITH impede precise tumor genotyping 
remain unknown. Although prospective studies involving 
multi-center and large-scale cases, such as what have 
been done in clear-cell renal cell carcinoma (5), might 
adequately interpret, it needs exquisite design and could 
be time-consuming and fund-costing. Herein, we reviewed 
recent published data on ITH of HCC and extracted the 
sequencing information to make data reanalysis in order to 
preliminarily clarify whether genetic information profiled 
from single tumor sample would be biased by ITH.

Materials and methods

Definition of actionable genes

If the protein product of a genomic aberration could be 
potentially targeted by a specific targeted drug, this mutant 
gene was claimed to be actionable. The precision medicine 
trails were used as reference to identify potential actionable 
genes in HCC. Genes reported actionable or relevant with 
target therapy response in HCC by former studies were 
also included. Candidate genes with target therapy potential 
were screened and crosschecked by two investigators 
independently.

Literature retrieval and data analysis

We used the following key items to search studies: 
intratumoral heterogeneity; intratumor heterogeneity; 
ITH; tumor heterogeneity; liver cancer; hepatocellular 

carcinoma; HCC. Clinicopathological parameters and 
sequencing data were acquired. The variations were 
classified according to our previously reported standards 
as well as the measurement of ITH extent. Spearman’s 
correlation analysis was used to evaluate the correlation 
between ITH extent and sequencing parameters. For 
each analysis, the correlation efficient r and P value 
were calculated. P<0.05 was considered to be statistically 
significant. All analyses were conducted with SPSS 18. This 
study was approved by the Institutional Review Board of 
Zhongshan Hospital, Fudan University. The authors are 
accountable for all aspects of the work in ensuring that 
questions related to the accuracy or integrity of any part of 
the work are appropriately investigated and resolved.

Results

Identification of genes relevant with target therapy

As previously reported, genetic aberrations which could 
be targeted either directly or indirectly by Food & Drug 
Administration (FDA) approved or investigational agents 
undergoing clinical trials are considered potentially 
druggable (6). Mutants leading to target therapy resistance 
are also regarded as actionable. Next we thoroughly checked 
the FDA approved target drugs for oncology as well as the 
precision medicine trials including Targeted Agent and 
Profiling Utilization Registry (TAPUR) (7) and National 
Cancer Institute (NCI) initiated Molecular Analysis for 
Therapy Choice (MATCH) and Molecular Profiling-based 
Assignment of Cancer Therapy (MPACT) (8). Recent 
trials which performed genome-driven target therapy or 
studies with large-scale genomic testing to screen actionable 
mutations were also consulted (9-17). Since we focused 
solely on the influence of ITH on genotyping, only genetic 
biomarkers were pooled as reference. Genetic signatures 
believed to be associated with the treatment response of 
sorafenib (18-24) were given special attentions. Totally, 
72 genes were identified to be associated with treatment 
response of target drugs (ABL, AKT, ALK, ATM, ATR, 
BRAF, BRCA1/2, BTK, CCND1/2/3, CDK4/6, CDKN2A, 
cKIT, CSF1R, DDR2, EGFR, EPHA2, ERCC1, FBXW7, 
FGF3/4, FGF19, FGFR1/2/3, FLT3, FYN, GNAQ, GNA11, 
HER2, HRAS, IDH2, JAK1, KRAS, LCK, MET, MEK1/2, 
MLH1, MSH2, mTOR, NBN, NF1/2, NRAS, NTRK1/2/3, 
PARP1/2, PDGFR, PIK3CA, PIGF, PTCH1, PTEN, ROS1, 
RAD51, RANKL, RET, ROS1, SLC15A2, SLC22A1, SRC, 
TSC1/2, VEGFA, VEGFR1/2/3).
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Literature search and inclusion

Literature retrieval identified five studies concerning 
the genetic ITH of HCC (25-29) (Table 1). Friemel et al. 
focused mainly on the morphological ITH of HCC by 
measuring the expression of the liver cell markers (30) and 
Buczak et al. used proteomics (31). The work by Xue et al.  
was performed in multiple intrahepatic lesions rather 
than in multiple regions within single lesion (32); thus the 
heterogeneity was intertumoral rather than intratumoral. 
Shi et al. reported the spatial and temporal heterogeneity 
of a patient with multifocal liver cancer (33), as well as 
the work by Xu et al. (34). Cases presented by Wang et al. 
were liver cancers with clinicopathological features of both 
HCC and intrahepatic cholangiocarcinoma (ICC) (35) 
while Dong et al. reported the ITH of ICC (36). Zheng 
et al. (37) and Duan et al. (38) studied heterogeneity of 
HCC at single-cell level. Li et al. reported the ITH of 
somatic mitochondrial DNA in HCC (39). These nine 
studies were excluded as well as former studies without 
genetic sequencing data (40-42). Of the included studies, 
the sequencing results were all available and we thoroughly 
reviewed the sequencing information of each tumor and 
classified the nonsynonymous genetic variations and copy 
number variations (if there were any) identified in each 
HCC as ubiquitous (present in all regions), private (present 
in single region) and heterogeneous (the left) as previously 
reported (27). Clinicopathological information of enrolled 
patients and their matched tumors in each study were also 
checked.

ITH extent and its influence on genetic variation profiling 
of HCC

Totally, 207 tumor samples from 36 HCCs were assayed 

in the above studies (Table 1). Most patients (30/36) had 
hepatitis B virus (HBV) infection history, three patients 
were hepatitis C virus (HCV) infected and there were of 
nonviral background. Whole exome sequencing (WES) 
was predominantly used for genetic profiling (84.8% of all 
tumor samples) at mean sequencing depth ranging from 
85×–211.3×. Upon classifying the genetic variations in each 
study using predefined standard, we found the ITH extent 
distributed in wide range from 5.21% to 88.27% (Figure 1A) 
and the distribution pattern was quite similar among studies 
(except the study with only one case). We then analyzed 
whether sampling strategy or sequencing condition might 
affect ITH extent. Neither the number of samples (Figure 1B;  
Spearman r=0.2642; P=0.12) nor sequencing depth  
(Figure 1C; Spearman r=–0.1571; P=0.36) had any significant 
correlations with ITH extent. Furthermore, no relations 
were found between tumor clinicopathological parameters 
[alpha-fetoprotein (AFP), gender, age, etiology, tumor-node-
metastasis (TNM) stage, tumor size] and ITH extent.

We then focused on the potential challenges posed by 
ITH on therapeutic targets profiling. The actionable genes 
in each study were mined out (Table 2). Totally, 30 therapeutic 
targets located in 18 genes were identified in 21 cases and 
58.3% samples (21/36) were identified to harbor at least 1 
therapeutic targets. Of the 30 variations, 17 were ubiquitous, 
6 were heterogeneous, and 7 were private ones (Figure 2A). 
Since heterogeneous and private variations could not always 
be detected in single-site sampling strategy, the patients 
harboring ubiquitous variations stood as the undoubted ones 
with target therapy potential, under which circumstance, 
only 38.9% HCCs (14/36) were found to be drugable. 
Interestingly, this ratio was quite similar to the rate we found 
in real-world sequencing practice (38.6%) (27). Meanwhile, 
19.4% HCCs (7/36) containing only heterogeneous and 

Table 1 Basic characteristics of included studies

Reference Case no. (etiology) Sample no.# NGS (mean depth)

Ling et al. (25) 1 (HBV) 23 WES (74.4×)

Gao et al. (26) 10 (HBV) 55 (4–9/case) WES (89×)

Huang et al. (27) 5 (HBV: 4; nonviral: 1) 32 (6–7/case) WES (211.3×)

Lin et al. (28) 11 (HBV: 10; nonviral: 1) 52 (4–5/case) WES (158×)

Zhai et al. (29) 9 (HBV: 5; HCV: 3; nonviral: 1) 45 (2–11/case)* WGS (37×): 34

WES (85×): 11
#, total tumor lesions assayed; *, lesions from recurrent tumors were not included. NGS, next-generation sequencing; HBV, hepatitis 
B virus; HCV, hepatitis C virus; WES, whole exome sequencing; WGS, whole genome sequencing.
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private variations may thus be biased by ITH.
To further evaluate the impact of ITH on genetic 

profiling, we specially analyzed the heterogeneity of 
HCC driver genes in these cases. In case of genes with 
target therapy potential as well as tumor-driver ability, 
they were categorized as drugable ones (PTEN, TSC2, 
ATM, CDKN2A, and CCND1). Studies reporting and 
systematical review of NGS results of HCC, and online 

HCC sequencing databases were thoroughly checked and 
15 highly frequently mutant genes were considered as 
candidate driver genes: TERT, TP53, CTNNB1, ARID1A, 
ARID2, AXIN1, RB1, CCNE1, KMT2D, RP6SKA3, IL6ST, 
NFE2L2, MLL4, KEAP1, APC. In total, we identified 50 
genetic variations in 9 driver genes (TP53, TERT, CTNNB1, 
ARID1A, ARID2, AXIN1, KEAP1, KMT2D, RB1) and 
91.7% (33/36) of the cases contained at least one driver 
gene (Table 2). Consistent with the fact that most HCCs in 
the studies were HBV-associated, TP53 demonstrated to 
be the most frequent driver gene (26/36) and unexpectedly, 
it was ubiquitously present in all these cases. Moreover, 
we found 86% (43/50) of the driver genes were ubiquitous 
ones, 6 (12%) were heterogeneous ones, and only one 
driver gene was privately existed (Figure 2B). This finding 
coincided with the result by Torrecilla et al. (43), which 
reported that truncal mutational events in HCC were 
ubiquitous across different regions of the same tumor in 
more than 85% cases—in other words, driver genes were 
less likely to be biased by ITH. Thus, single-site sampling 
could be enough to capture most, if not all, driver mutations 
in HCC.

Discussion

The ITH of HCC has been long recognized and 
former studies have used different strategies including 
immunohistochemistry, proteomics, DNA ploidy analysis, 
sequencing and even fluorodeoxyglucose (FDG) uptake (44)  
to measure the ITH extent of HCC. Recently, NGS-
based genomic profiling of multi-regional samples have 
been widely used to evaluate ITH. However, the limited 
case analyzed in each study made it difficult to clearly and 
thoroughly elucidate how ITH might challenge accurate 
genomic profiling of HCC. What’s more, no previous 
work had gone a step further to particularly discuss the 
potential influence of ITH in target therapy, especially in 
the current era of precision medicine. Herein, we tried to 
answer the abovementioned questions by analyzing excised 
data: we made a thorough review and datamined relevant 
publications to make re-analysis in order to clarify whether 
and how ITH might influence precise genomic profiling.

An overview of the studies found ITH differed 
significantly among HCC cases and no associations 
between ITH and clinicopathological factors were 
observed. However, this should be cautiously taken 
since cases from different cohort may lead to bias, small 
sample size failed generate any significant association, 

100

80

60

40

20

0

100

80

60

40

20

0

100

80

60

40

20

0

IT
H

 e
xt

en
t (

%
)

IT
H

 e
xt

en
t (

%
)

IT
H

 e
xt

en
t (

%
)

Lin
g 

et
 al

.

Lin
 et

 al
.

Zha
i e

t a
l.

Gao
 et

 al
.

Hua
ng

 et
 al

.

Number of samples

Sequencing depth

10 120 2 4 6 8

0 100 200 300

13 23

B

C

A
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Table 2 Potential actionable and driver genes in each study

Reference Case ID
Actionable gene Driver gene

Ubi Heter Pri Ubi Heter Pri

Ling et al. (25) – TSC1 – – TP53 – –

Gao et al. (26) 61 – – – TP53 – –

213 TSC1, CCND1 – – TP53 – –

307 – CCND1 – TP53 – –

400 FLT3 – EGFR TP53, AXIN1 – –

554 – – – TP53 – –

703 – – – TP53 – –

893 – – – TP53 – –

1026 – – AR TP53 – –

1233 PTEN, CDKN2A – DDR2 TP53 – –

1900 – – – TP53, CTNNB1 – –

Huang et al. (27) HCC-07 – – – TP53 – ARID1A

HCC-09 PTEN – PIK3CA, ATM TP53 RB1 –

HCC-10 TSC2 – – TP53, ARID2 – –

HCC-11 – – BRCA2 RB1, KMT2D – –

HCC-12 ATM, NTRK2 – – – KMT2D –

Lin et al. (28) HCC5647 ROS1 – – TERT – –

HCC6046 – – – TP53, TERT, CTNNB1 – –

HCC6690 KIT – – TP53 – –

HCC6952 – – – TP53 – –

HCC7608 ROS1 – – – – –

HCC8010 – – – – – –

HCC8031 – CDKN2A – TP53 TERT –

HCC8213 – – – KEAP1 – –

HCC8257 – – – – ARID1A –

HCC8392 – – – TP53 – –

HCC8716 PIK3CA – – TP53, KEAP1 – –

Zhai et al. (29) Patient 1 KIT – – CTNNB1 KMT2D –

Patient 2 EGFR – – TP53 RB1 –

Patient 3 – RET, BRCA2 NF1 TP53 – –

Patient 4 ATM – – TP53, TERT – –

Patient 5 – – – TP53, TERT – –

Patient 6 – – – TP53, TERT – –

Patient 7 – – – ARID1A, AXIN1 – –

Patient 8 – PIK3CA – – – –

Patient 9 – ATR – TP53, TERT – –

ubi, ubiquitous; heter, heterogeneous; pri, private; HCC, hepatocellular carcinoma.



117Journal of Gastrointestinal Oncology, Vol 11, No 1 February 2020

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2020;11(1):112-120 | http://dx.doi.org/10.21037/jgo.2019.09.13

and it’s unknown whether etiological and epidemiological 
factors could exert influence on ITH, although they 
closely interact with tumorigenesis and tumor biology. 
Intuitively, the more tumors are heterogeneous, the more 
their biological behaviors are malignant; but data shortage 
made it impossible to analyze ITH extent with tumor 
aggressiveness, such as differentiation, proliferation and 
vascular invasion. In other cancers like renal cell carcinoma 
(5,45) and non-small-cell lung cancer (46), tumor 
heterogeneity and evolution trajectories predict recurrence 
and prognosis, serving both intervention and surveillance. 
Moreover, we found that although many HCCs in the 
included datasets had TP53 as driver gene, they harboured 
different actionable genes, which may result from the 
heterogeneous tumor evolution process after tumorigenesis 
of HCC even under the same etiology (mainly HBV) and 
tumor driver gene (47). This necessitates the use of NGS or 

other assays to screen for potential therapeutic target before 
precision targeted therapy. Thus, future experimental 
studies addressing the interaction between ITH and tumor 
biology are needed and may bring new sights into the 
management of HCCs with high heterogeneity.

Although genotype-driven target therapy is widely 
advocated, few chances are provided for HCC patients. 
Neither sorafenib nor newly approved lenvatinib and 
regorafenib have clear-cut genetic indications. We thus 
referred to other cancer types to identify genes that could be 
potentially targeted in HCC. Oncogenes mediating tumor 
progression, signaling pathways interfering with target 
reagents, and genes with indications in other cancers were 
pooled. Despite by the fact that the percentage of HCCs with 
target therapy potential was similar to rate we found in clinical 
practice, nearly 20% HCCs with actionable targets might be 
left out due to ITH. However, this does not mean multi-site 
sampling should be employed to comprehensively identify 
targetable patients since the risk of repeated tumor biopsy and 
the cost-effectiveness of additional sample assays need to be 
concerned. Moreover, it has been reported that liquid biopsy 
such as circulating tumor DNA (ctDNA) could complement 
tissue biopsy to draw a full landscape of tumor genome and 
the application of ctDNA as surrogate to overcome tumor 
heterogeneity is increasingly recognized (48).

Surprisingly, we found the data re-analysis results 
coincided with the work by Torrecilla et al. (43). It’s 
generally accepted that driver/truncal mutations arise at 
early stages of cancer and are shared by nearly all malignant 
cells within the tumor. Torrecilla et al. characterized the 
early stages of hepatocarcinogenesis, namely dysplastic 
nodules and small lesions and found that mutations 
in TERT, TP53 and CTNNB1 were the most frequent and 
more than 85% of such driver mutations were also shared 
in more advanced lesions between different regions of 
the same tumor. This experimental evidence supports our 
finding that 85% driver genes were ubiquitously existed. 
Thus, single-site biopsy is capable to capture truncal events 
and under such circumstance, molecular classification 
based on truncal genes cluster could accurate reflect tumor 
biology of HCC.

Conclusions

This study systematically reviewed NGS studies concerning 
the genomic ITH of HCC and re-analyzed the sequencing 
data to thoroughly evaluate the extent of ITH and its impact 
on HCC tumor genome profiling. ITH varied among 
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Figure 2 The percentages of mutations in different categories. (A) 
Of all the mutations with target therapeutic potential from enrolled 
studies, 17 (56.7%) were ubiquitous, 6 (20%) were heterogeneous, 
and 7 (23.3%) were private ones; (B) of all the driver genes, 86% 
(43/50) were ubiquitous, 6 (12%) were heterogeneous, and only 
one was private. ubi, ubiquitous; heter, heterogeneous; pri, private.



118 Huang et al. Limited effect of ITH on HCC profiling

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2020;11(1):112-120 | http://dx.doi.org/10.21037/jgo.2019.09.13

HCCs and it indeed hinders comprehensive and precise 
genomic profiling; however, the influences of ITH on 
identification of actionable and driver mutations seems to 
be limited since most genes of these kind were ubiquitously 
present in tumors. The routinely used single-site biopsy/
sampling, when combined with targeted deep sequencing, 
may be enough for the clinical management of HCC and 
of high cost-effectiveness. Still, clinical evidence from real 
world is urgently needed to support our viewpoints on ITH 
and genome-driven target therapy of HCC.
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