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ABSTRACT

KEY WORDS  

Pancreas cancer has a grave prognosis and treatment options remain limited despite advancement in anti-cancer chemo-
therapeutics. This review provides an overview of the emerging therapies for pancreas cancer, focusing on novel signal 
transduction inhibitors (insulin-like growth factor receptor, hedgehog/Smo, PI3k/Akt/mTOR) and cytotoxics (nab-
paclitaxel) that are currently in clinical development. Despite the impact molecularly targeted agents have on other 
tumor types, their application without cytotoxics in pancreas cancer remains limited. In addition, recent report of the 
superiority of an intensive cytotoxic regimen using fluorouracil, irinotecan and oxaliplatin (FOLFIRINOX) over gemcit-
abine reminded us of the importance of cytotoxics in this disease. As such, the future of pancreas cancer therapy may be 
combination regimens consisting of cytotoxics and molecularly targeted agents.
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Introduction

Pancreas cancer is a lethal disease with mortality closely 
mirroring the incidence. Approximately 43,410 new cases 
will be diagnosed in the United States and 36,800 will die 
from the disease in 2010 (1). The mortality rate has not 
improved since the 1970s. A number of genetic mutations, 
such as KRAS, p16/CDKN2A, TP53, and SMAD4/DPC4, 
have been linked to aberrant cell proliferation, signaling, 
and reduced apoptosis in the disease (2). Recent genome-
wide analysis showed that the genetic makeup of pancreas 
cancer is highly complex, with each tumor harboring more 
than 60 mutations (3). These aberrancies may be broadly 
categorized into 12 core cell-signaling pathways involved 
in the initiation and maintenance of malignant phenotype 
in pancreas tumors. These inter-related pathways function 
as intracellular ‘highways’, transmitting signals between 
extracellular events and the nucleus, and are amendable to 
therapeutic interventions (4). 

Advancement in molecular biology has increased our 
understanding of these anomalies and identified a large 
number of molecular targets, against which a large number 
of anti-cancer agents had been evaluated during clinical 
trials. Despite this, erlotinib, a tyrosine kinase inhibitor 
(TKI) against epidermal growth factor receptor, is the only 
drug after gemcitabine approved by US Food and Drug 
Administration for the treatment of advanced pancreas 
cancer (5). Approaches to target angiogenesis using agents 
such as bevacizumab and sorafenib have failed to achieve 
improvement (6-9). Reasons for the fai lure are l ikely 
multifactorial, including the wrong target, problems in drug 
delivery, the existence of resistance or redundant molecular 
pathways and failure to identify the susceptible molecular 
phenotype. In this review, we will focus primarily on the 
classes of targets and corresponding drugs currently in 
clinical evaluation that may have potential impact on the 
life of pancreas cancer patients in the near future (Table 1). 
Agents targeting epidermal growth factor receptor (EGFR) 
and vascular endothelial growth factor receptor (VEGFR) 
pathways have been reviewed in detail by other authors and 
we will discuss them briefly here (Figure 1).

Human epidermal growth factor pathway 

The human epidermal growth factor receptor pathway 
family includes EGFR (ErbB-1), HER 2/neu (ErbB-2), 
HER3 (ErbB-3) and Her4 (ErbB-4). EGFR is an attractive 
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target in pancreas cancer due to its frequency, higher grade 
and that increased expression associated with a worse 
prognosis (10,11). In a randomized trial of erlotinib plus 
gemcitabine versus gemcitabine alone, patients receiving 
the combination has a statistically significant improvement 
in overall survival (0.82 HR, 6.24 months vs 5.91 months) 
(5). However, the improvement is marginal and many 
oncologists consider the 2 weeks survival improvement 
unsatisfactory. The inhibitor is being evaluated in the 
adjuvant setting, and in combination with other targeted 
agents such as insulin-like growth factor (IGF) pathway 
targeting drugs.

Cetuximab is a monoclonal antibody (MoAb) against 
the l igand-binding domain of the EGFR evaluated in 
combination with gemcitabine in a randomized phase 
III trial. However, the study failed to demonstrate the 
superiorit y of the combination over the gemcitabine 
control arm (12). Subset analysis showed that tumor 
E G F R e x pre s s ion do e s  not  pre d ic t  be ne f i t  to  t he 
cetu x imab-containing regimen. A phase II tr ia l with 
cetuximab +/- gemcitabine and cisplatin showed similar 
negative results (13). The objective response rate was 
17.5% for the combination arm versus 12.2% in control, 

and median progression-free and overall survivals were 
4.2 months vs 3.4 months, and 7.8 months vs 7.5 months 
respectively.

Anti-angiogenesis 

Pancreas cancer was thought to thrive on neovascularization 
and dependent on a rich blood supply as the tumors grow 
(14). The importance of vascular endothelial growth factor 
(VEGF) pathway was shown in preclinical pancreas cancer 
studies (15). Though the exact mechanism in patients is 
unclear, anti-angiogenic therapies are thought to interrupt 
tumor neovascularization and normalize existing inefficient 
tumor vasculature, thereby enhancing drug delivery and 
synergize the effects of cytotoxic agents. 

Bevacizumab, a MoAb to VEGF ligand was studied 
in multiple trials. Recently published CA LGB 80303 
(gemcitabine +/- bevacizumab) treated 535 patients 
and overal l response rates, median OS and PFS were 
13%, 5.8 months, and 3.8 months for the gemcitabine/
bevacizumab arm and 10%, 5.9 months, and 2.9 months 
for the gemcitabine/placebo arm, respect ively (16). 
W hen bevac i zu mab wa s eva luated i n combi nat ion 

Table 1 Emerging novel therapies in pancreas cancer
Drugs Class/Target Trial stage
Insulin-like growth factor pathway inhibitors

AMG-479 MoAb/IGF-1R Phase I/II (28)
IMC-A12 (cixutumumab) MoAb/IGF-1R Phase I/II (29)
MK-0646 (dalotuzumab) MoAb/IGF-1R Phase I/II (32)
OSI-906 TKI inhibitor/ IGF-1R/IR Phase I (36)

Hedgehog signaling pathway/Smo inhibitors
GDC-0449 (Vismodegib) Hedgehog inhibitor/Smo Phase I/II (42)
XL-139 (BMS-833923) Hedgehog inhibitor/Smo Phase I (43)
LDE-225 Hedgehog inhibitor/Smo Phase I (44)

PI3K/AKT/mTOR
Temsirolimus (Torisel) mTOR inhibitor Phase II (55,68)
Everolimus (Affinitor) mTOR inhibitor Phase II (68)
MK-2206 Akt1/2/3 inhibitor Phase I (69-71)
RX-0201 Akt1 olgionucleotide Phase II (72,73)

XL-765 (SAR245409)
PI3K (class 1 isoform) and TORC1 
and TORC2

Phase I (78)

BKM-120 Pan class I PI3K inhibitor Phase 1 (77)
NVP-BEZ235 PI3K/ mTORC1/2 inhibitor Phase I

Cytotoxic chemotherapy
nab-paclitaxel (Abraxane®) Microtubule inhibitor Phase III (in combination with gemcitabine)(89,90)
FOLFIRINOX Combination chemotherapy Phase III (83)



Journal of Gastrointestinal Oncology, Vol 2, No 2, June 2011 95

w it h gemcitabi ne a nd erlot i n ib, t he phase I I I t r ia l 
failed to demonstrate signif icant improvement by the 
bevacizu mab-conta i n i ng a r m compa red to cont rol 
(median OS 7.1 months vs 6.2 months respectively) (8). 
Bevacizumab failed to improve survival when evaluated in 
combination with gemcitabine and capecitabine in a phase 
II trial (6). Despite the intial excitement, bevacizumab 
failed to improve survival in advanced pancreas cancer 
patients when evaluated in combination with standard of 
care. 

A number of small molecular tyrosine kinase inhibitors 
against V EGFR 2, including sorafenib, sunit inib and 
vatalatinib, have being evaluated in the disease but none 
showed positive efficacy signal so far (6-9). Combination 
therapies targeting VEGFRs and other signaling pathways 

are under investigation.

Insulin-like growth factor pathway 

The IGF axis comprises multiple circulating ligands, such 
as IGF-1, IGF-II and insulin, interacting with membrane 
bound receptors, such as type I IGF receptor (IGF-1R). 
The PI3k-Akt pathway is one main downstream mediator 
of IGF-1R signaling and plays a potentially important 
role in anticancer drug resistance (17). IGF-1R has been 
shown in preclinical studies to mediate resistance to EGFR 
inhibition, and co-targeting of both receptors enhances 
the abrogation of PI3k-Akt activity and reduces survivin 
expression (18,19). Transgeneic mouse models of pancreas 
cancer expressing high levels of IGF-1R showed increased 

Figure 1 Signaling pathways implicated in pancreas carcinogenesis. Agents against these pathways are under clinical 
investigation.
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invasive carcinomas and lymph node metastases (20). 
Targeting of IGF-1R expression by siR NA s achieved 
growth inhibition in many gastrointestinal malignancies, 
suggesting potential importance of the pathway in pancreas 
cancer (21-24). In concert, changing IGF-1R copy number 
by cDNA plasmid augmented mitogenic response in mouse 
embryo. Treatments with MoAb seemed to lead to IGF-1R 
internalization and degradation, and enhanced cytotoxic 
chemotherapy effects (25). DNA repair pathways are other 
downstream effectors of IGF-1R axis and provide the 
rationale for combining IGF-1R inhibitors with cytotoxics 
(30,31).

A number of agents targeting IGF-1R, both MoAbs and 
TKIs, are been evaluated clinically and we are just starting 
to understand their clinical role and potential mechanisms 
of resistance to this class of drugs (26). 

Anti-IGF-1R monoclonal antibodies 
A MG-479 is a fully humanized MoAb that blocks the 
binding of IGF-I and IGF-II to IGF-1R (IC50 < 0.6 nmol/
L), and does not cross-react with the insulin receptor 
(I R) (27).  A MG - 479 completely i n h ibited l iga nd-
induced dimerization and activation of IGF-1R/IGF-
1R and IGF-1R/IR in two pancreas cancer cell lines. The 
antibody reduced IGF-1R-mediated downstream A kt 
phosphorylation with pro-apoptotic and anti-proliferative 
effects in the cancer cell lines. The agent demonstrated 
additive effects with gemcitabine in preclinical studies (27). 
In a randomized phase II trial, AMG-479 in combination 
with gemcitabine demonstrated a trend to improvement in 
median survival when compared to the placebo/gemcitabine 
control arm (8.7m vs 5.9m; HR 0.67, P=0.12) in previously 
untreated metastatic pancreas cancer patients. The median 
PFS was 5.1 months and 2.1 months respectively (HR 0.65, 
P=0.07). The investigators conclude that there was sufficient 
efficacy signal to warrant further evaluation in a phase III 
trial.

I M C - A 1 2  (c i x u t u m u m a b)  (2 9)  a n d  M K- 0 6 4 6 
(dalotuzumab) are other anti-IGF-1R MoAb that are 
being evaluated in untreated metastatic pancreas cancer 
pat ients .  M K- 0 6 4 6 en ha nced gemcitabi ne i nduced 
apoptosis in preclinical studies and is being evaluated 
clinically. This phase I/II trial is enrolling patients to 
3 treatment arms; A: gemcitabine 1000mg/m2 weekly 
× 3 with MK-0646 weekly × 4, A rm B: gemcitabine + 
MK-0646 + erlotinib 100mg daily, Arm C: gemcitabine 
10 0 0 m g /m 2 w e e k l y  × 3  + e r lot i n i b  10 0 m g d a i l y. 
MK-0646 achieved 6 partial responses (PR), 1 hepatic 
complete response (CR) and 8 stable disease (SD) out of 
22 patients (32). Grade 3 or dose-limiting toxicities were 
rare and included hypergylcemia, hepatic transaminitis, 

and febrile neutropenia. The demonstrated responses 
confirm the hypothesis of cross-talk between EGFR and 
IGF axis signaling and the importance of adding cytotoxic 
therapy. 

Small molecule IGF-1R/IR kinase inhibitors
Compensator y act ivat ion of I R sig na l i ng fol low i ng 
i n h ibit ion of  IG F -1R i s  emer g i ng a s  a  pat hw ay of 
resistance to IGF-1R MoAbs. TK Is against IGF a x is 
thus have a theoretical advantage over MoAbs given the 
IR cross reactivity (33). OSI-906 is a potent and highly 
select ive inhibitor of IGF-1R , w ith 14 t imes greater 
selectiv it y for IGF-1R over IR .34 OSI-906 alone did 
not show signif icant ef f icacy in pancreas cancer cel l 
l ines and was further evaluated in other tumor ty pes 
preclinically (35). IGF-1R pathway has been reported 
as potential resistance mechanism to EGFR inhibition 
and it seems logical to expect increased eff icacy when 
an IGF-1R inhibitor is combined with gemcitabine and 
erol it inib in pancreas cancer patients. Clinical tr ia ls 
eva luat ing OSI-906 w it h gemcitabine and erlot in ib 
combi nat ion have yet to be i n it iated. However, t he 
dosing regimen and toxicity profile of the combination of 
OSI-906 and erlotinib were reported at 2010 American 
Society of Clinical Oncology Annual Meeting: OSI-906, 
administered daily at 50mg and 100mg, combined with 
erlotinib 100mg daily yielded stable disease in 4 out of 
7 (57%) patients, including adrenocortical carcinoma, 
Ew i ngs sa rcoma, chordoma a nd adenoca rci noma of 
unknown primary (36). Toxicities included fatigue (31%) 
gastrointestinal side effects diarrhea (31%) nausea (15%); 
grade ≥3 hyperglycemia. 

Hedgehog/smoothened pathway 

Smoothened (Smo) is a transmembrane receptor with seven 
domains, and the activity is repressed by Patched (Ptch). 
The repression is relieved when ligands bind to Ptch or when 
there is activating mutations in Ptch, leading to increased 
transcription and up-regulation of Gli-1 to 3, thereby 
modulating cell cycle and adhesion, angiogenesis, and 
apoptosis. In a comprehensive genomic analysis of pancreas 
cancers, mutations in at least one Hedgehog (Hh) signaling 
component has been reported in all samples analyzed, 
indicating the importance of Hh pathway in pancreas 
tumorgenesis (3). In addition, Hh signaling may be an 
important modulator of tumor-stromal interaction in the 
disease (37,38). Preclinically, Olive et al. evaluated IP-926, 
a Smo inhibitor, with gemcitabine which the combination 
improved survival of tumor-bearing mice and reduced 
metastasis in a transgenic model (39). The anti-cancer 
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effect seems to be related to a decrease in tumor-associated 
stromal tissue and improve drug delivery by stimulating 
VEGF-independent angiogenesis. In this study, the tumor-
bearing mice eventually adapted to chronic Smo inhibition 
and became resistant to the treatment, thus raising the 
importance in identifying potential resistant mechanisms.

Hh signaling is also implicated as an important mediator 
of cancer stem cell (CSC) phenotype in pancreas cancer. 
Several groups have reported on the cellular markers of 
CSCs in pancreas cancer and the CSCs may be identified 
by the co-expression of CS133/CXCR4, or CD44/CD24/
ESA . Extractions enriched in cancer cel ls expressing 
these markers is highly tumorigenic in in vitro and in vivo 
experiments and re-capitulate the characteristics of parent 
tumors (40,41). Analysis of the CSCs found increased 
activation of Hh signaling and other self-renewal signaling 
pathways. Mueller et al reported anti-CSC effects when 
pancreas tumors were treated w ith a combination of 
cyclopamine or CUR199691 (Smo inhibitors), rapamycin 
(mTOR inhibitor) and gemcitabine, and treated tumor-
bearing mice survived longer than control (40). This was 
associated with elimination of CD133-expressing CSCs. 
As such, approaches targeting CSC signaling pathways are 
worth exploring clinically.

GDC- 04 49 (Vismodegib), X L139 (BMS-833923), 
and LDE225 are oral agents with anti-Smo activities in 
low nanomolar range, and skin Gli-2 expression has been 
used a potential pharmacodynamic markers for this class 
of agents. Known side effects of Hh inhibitors include 
dysguesia, nausea, muscle spasms, rhabdomyolysis, and 
a lterat ion in cholesterol biosy nthesis . GDC- 04 49 is 
furthest in development and clinical trials evaluating 
the efficacy in combination with gemcitabine and nab-
paclitaxel or gemcitabine with and without erlotinib in 
previously untreated advanced pancreas cancer patients 
are star t ing soon (42). T he cl inica l ef f icac y of Smo 
inhibitors in pancreas cancer remains unclear from the 
single-agent phase I trials conducted so far (43,44). The 
abi l it y of Hh inhibitors to reduce stromal t issue and 
enhances the delivery of cytotoxic drugs in preclinical 
studies may be exploited to enhance the response rate in 
pancreas cancer patients. Such treatment has the potential 
of benefiting patients with locally advanced or borderline 
resectable disease (45). 

Potential mechanism of resistance to Smo inhibitors can 
be learnt from medulloblastoma models, which has been 
linked to alteration in the binding site of Smo by GDC-0449 
(46). For LDE225, resistance may be related to a number 
of factors including Gli2 chromosomal amplif ication 
(a  do w n s t re a m e f f e c t or  of  S mo),  upre g u l at ion of 
compensatory pathways including PI3K/AKT/mTOR, IGF, 

and EGFR and, more rarely, point mutations in Smo that 
led to reactivated Hh signaling and restored tumor growth 
(47). The resistance may be reversed by co-treatment with 
agents targeting the PI3K/AKT/mTOR, IGF-axis, or EGFR 
pathways. 

PI3K/AKT/mTOR pathway 

The phosphoinositide 3’-kinase (PI3k)/Akt/mammalian 
target of rapamycin (mTOR) pathway acts as a cellular 
sensor for nutrients and growth factors, and integrates 
signals from multiple receptor kinases to regulate cellular 
growth and metabolism (4). The pathway is regulated by 
a number of upstream proteins including K Ras, which 
activating mutations are found in the majority of pancreas 
cancer (48). In addit ion, A kt2 activation, associated 
w ith the development of human cancers, is detected 
i n about ha l f of t he t u mors (49). PI 3K /A k t/mTOR 
activation was associated with early carcinogenesis and 
interruption of the pathway achieved anti-proliferation, 
-survival, -angiogenic and pro-apoptotic effects (50-58). 
Other activating events include PTEN loss and A KT 
amplif ication (59-61). Activation of this pathway was 
associated w it h poor prog nosis a nd cont r ibuted to 
chemoresistance in many cancers (62-66). Thus, the PI3k/
Akt/mTOR pathway is an attractive pathway to target in 
pancreas cancer. 

mTOR inhibitors 
Everolimus 10mg daily was evaluated in 33 metastatic 
gemcitabine-refractory pancreas cancer patients (67). 
No object ive responses (complete and par t ia l) were 
reported and 21% had stable disease at the time of first 
surveillance CT scan. Median PFS and OS were 1.8 and 
4.5 months respectively. In two smaller clinical trials, 4 
gemcitabine-refractory patients received temsirolimus 
(CCI-779) and 16 received a combination of everolimus 
(30mg once weekly) and erlotinib (150 mg daily) (68). 
The former study w ith temsirol imus was halted due 
to toxicities and no objective response was obser ved, 
and the median PFS was 19 days and survival 44 days. 
The everolimus and erlotinib combination was better 
tolerated, but no response was observed and median PFS 
and survival was 49 days and 87 days respectively. These 
trials demonstrate that mTOR inhibition as a single agent 
is ineffective and combining inhibitors of multiple steps 
and the role for these inhibitors may lie in combination 
regimens. 

Akt inhibitors 
Akt inhibitors are another class of agents that abrogate Akt/
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mTOR signaling. MK-2206, an allosteric Akt1-3 inhibitor, 
was evaluated in a phase I trial of 70 patients with advanced 
cancers (69). Interestingly, tumor shrinkage (23%) was 
obser ved in a pat ient w ith PTEN-negat ive pancreas 
cancer and was associated with a 60% decrease in CA19-9. 
MK-2206 is being evaluated as weekly (300mg) and every 
other day (75mg and 90mg) dosing schedules. MK-2206 is 
also being evaluated in combination with cytotoxic chemo-
agents and inhibitors of c-Met and EGFR (70,71).

R X-0201 is an antisense oligonucleotide against Akt1 
mRNA, thereby interrupting the pathway’s activation. The 
anti-sense oligonucleotide demonstrated activity against 
pancreas cancer cell lines in low nanomolar range, reducing 
the expression of Akt1 mRNA and protein. In in vivo studies, 
RX-0201 treatment led to complete response in 2 out of 3 
pancreas tumor-bearing mice (72). As such, R X-0201 in 
combination with gemcitabine is currently being evaluated 
in a phase II trial for metastatic pancreas cancer patients 
(73). Given the short half-life typical of anti-sense agents, 
RX-0201 is being administered by continuous infusion for 
14 days of a 21-day cycle and presents a potential obstacle to 
patient accural. Liposomal formulations are in development 
(74).

PI3K inhibitors
XL147 and BKM120 are oral class I PI3k inhibitors that are 
being evaluated in phase I trials, alone and in combination 
therapies (75-77). These tr ials have focused on lung, 
colorectal and breast cancers given the higher frequency of 
pathway aberrations in these tumor types. XL765 is a novel 
selective inhibitor that interrupts the pathway at various 
nodes: PI3K, TORC1 and TORC2. The efficacy of such 
agents in pancreas cancer is to be evaluated (78).

Cytotoxics

Gemcitabine has been the chemotherapy backbone for 
the treatment of newly diagnosed advanced pancreas 
cancer (79,80). Various other cytotoxic drugs had been 
tested i n combi nat ion w it h gemcitabi ne, i nclud i ng 
f luoropyrimidines, platinum derivatives, and taxanes 
(80-84). Meta-analysis of various cytotoxic trials over the 
last one-and-a-half decades suggest improved survival with 
doublet or triplet gemcitabine-based therapy among patients 
with good performance status, who can, supposedly, better 
withstand the toxicities (85). 

F i n a l  r e s u l t s  f r o m  t h e  i n t e r i m  a n a l y s i s  o f  t h e 
PRODIDGE 4/ACCORD 11 trial were presented at 2010 
European Society for Medical Oncology annual meeting, 
which randomized 342 patients with previously untreated 
metastatic pancreas cancer to receiving FOLFIR INOX 

(oxaliplatin 85 mg/m2 Day 1 + irinotecan 180 mg/m2 Day 
1 + leucovorin 400 mg/m2 Day 1 followed by 5-flurouracil 
4 0 0 mg/m 2 bolus Day 1 and 2 ,4 0 0 mg/m 2 4 6 hours 
continuous infusion biweekly) or gemcitabine alone. The 
study was stopped on recommendation by the independent 
monitoring committee during preplanned interim analysis 
when FOLFIR INIOX was determined to be superior 
to gemcitabine a lone, mak ing the f luoropy rimidine-
based regimen first non-gemcitabine based regimen to 
show signif icant improvement in overall survival. The 
objective response rate for FOLFIR INOX, compared 
to gemcitabine alone, was 31.6% vs 9.4% (P=0.0001), 
median PFS 6.4 vs 3.3 months (P<0.0001) and median 
survival 11.1 vs 6.8 months (HR=0.57, 95% CI =0.45-0.73; 
P<0.001) respectively. However, there were significantly 
more grade 3 and above toxicities in the FOLFIRINOX 
arm, including diarrhea, nausea, vomiting, neuropathy, 
neutropenia, neutropenic fever. Given the higher frequency 
of clinically significant toxicities, FOLFIRINOX cannot 
be accepted as the standard f irst-line treatment for all 
newly diagnosed advanced pancreas cancer patients. The 
choice of FOLFIR INOX in advanced patients needs to 
be personalized according to factors such as performance 
status, treatment aim, physiological reserve and patient 
preference, and the role in adjuvant sett ing is being 
evaluated.

Nab-paclitaxel (Abraxane®; Abraxis) is a nano-particle 
preparation in which pacl ita xel is bound to a lbumin 
as compared to sb-pacl ita xel (Ta xol®, Bristol Meyers 
Squibb), which is dissolved in polox yethylated castor 
oil (Cremaphor EL®) and ethanol. The absence of castor 
oil renders nab-paclitaxel clinically advantageous since 
this avoids the infusion and hypersensitiv ity reaction 
characteristics of sb-paclitaxel. In the initial phase I clinical 
tr ia l of nab-pacl ita xel, there was no hy persensit iv it y 
reaction typical of sb-paclitaxel and was well tolerated up 
to 300mg/m2 administered as a 30-minute infusion (86). 
The recommended dosing for nab-paclitaxel is 260mg/
m2 compared to 175 mg/m2 for sb-paclitaxel (87). In a 
crossover pharmacokinetic study to limit patient variability, 
nab-pacliataxel had higher peak plasma and unbound 
concentrations (88). Greater unbound fraction of paclitaxel 
has been hypothesized to lead to greater efficacy seen in 
many clinical trials.

One possible mechanism of efficacy by the albumin-
bound agent may be related to enhanced tumor uptake 
through interaction with the SPARC (secreted protein 
acid rich in cysteine) molecule. The SPARC gene, highly 
conserved among vertebrates, regulates the assembly, 
organization, and turnover of the extracellular matrix 
by binding and modulating the deposition of multiple 
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structural components and attenuating the activity of 
extracellular proteases. SPARC is expressed in cancer-
associated stroma and in malignant cells of some types, 
a f fect ing t umor development, invasion, metastases, 
a n g io ge ne s i s  a nd i n f l a m m at ion .  S PA RC -i nduc e d 
changes in the tumor microenvironment can suppress 
or promote progression of different cancers depending 
on the tissue and cell type. SPARC expression is related 
to tumor aggressiveness though the exact mechanism is 
unclear. The molecule regulates the effects of bFGF and 
VEGF on M APK signaling and increased expression of 
SPA RC in pancreas tumors has been related to poorer 
sur v ival (91,92). Infante et a l . characterized SPA RC 
ex pression i n per it u mora l f ibroblasts a nd pa ncreas 
cells from 299 patients with resectable pancreas cancer. 
Median sur v ival was halved in patients’ tumors that 
expressed SPARC (15 months vs 30 months) and when 
cases were controlled for other prognostic factors (tumor 
size, positive lymph nodes, margin status, tumor grade, 
and age) the hazard ratio (HR) was significant (HR 1.89; 
95% CI, 1.31 to 2.74). 

Therapies combining nab-paclitaxel with gemcitabine 
are under investigation in pancreas cancer given the high 
expression of SPARC in pancreas cancer. Several studies 
are underway and preliminary result showed impressive 
responsive rate and encouraging survival outcome. In a 
phase I/II trial, 63 previously untreated metastatic patients 
were treated with nab-paclitaxel and gemcitabine and 
among the 49 evaluable patients, 1 achieved CR (2%), 12 
PRs (24%) and 20 SD (41%) (clinical benefit rate 67%). The 
response rate and PFS correlated with SPARC expression 
by immunohistochemistr y (89). A single inst itut ion 
retrospective review of this combination in neoadjuvant 
setting for borderline and unresectable patients confirmed 
the high response rate (69% PR and 23% SD). About 23% 
of patients in the study went on to surgical resection with 
curative intent (90). This regimen is being evaluated in a 
phase III randomized trial among patients with untreated 
metastatic pancreas cancer. 

Conclusion 

Despite advancement in anti-cancer therapeutics, treatment 
options remain limited and prognosis poor for patients 
with pancreas cancer. The molecularly targeted agents held 
significant promise in pancreas cancer for several reasons, 
including the better-tolerated toxicity profiles and they 
target known molecular aberrancies. However, strategies 
to target angiogenesis and EGFR pathways had, in general, 
not being successful and the underlying reasons remain 

unclear. Other exciting molecular targets that can be 
interrupted by clinical grade drugs include the IGF, Hh and 
PI3k/Akt/mTOR pathways. As these agents complete early 
phase evaluation, their role in the treatment of pancreas 
cancer will be evaluated either alone or in combination 
therapies. Importantly, in-depth correlative studies using 
patient blood and tumor samples should be incorporated 
to better select the patient population most likely to benefit 
from these agents and also, to understand the mechanism of 
efficacy (or futility).

An important recent development is the demonstration 
o f  t h e  s u p e r i o r i t y  o f  i n t e n s e  c y t o t o x i c  r e g i m e n 
(FOLFIR INOX) over gemcitabine alone in previously 
untreated pancreas cancer patients. Though the regimen 
can hardly be accepted as the standard for advanced disease 
due to its significant side effect profile, the trial points to 
the continual importance of cytotoxic agents in treating 
the disease. As such, one eagerly awaits the result from the 
phase III trial of nab-paclitaxel plus gemcitabine versus 
gemcitabine alone in metastatic pancreas cancer patients 
given the encouraging result so far.
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