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Introduction

The microbiome refers to a population of microbes that 
colonize the skin, nasopharynx, oral cavity, gastrointestinal 
tract, and urogenital tract in a ratio of at least one microbe 
cell to one human cell. Though the above estimate 
accounts for only bacterial cells, it should be noted that 
the microbiome includes archaea, fungi, viruses, and 
phages (1). More important than the actual number of 
cells or even the number of species inhabiting these 

microenvironments is the additional genetic diversity, 
which by some estimates, are orders of magnitude larger 
than the human genome (2). Though interactions amongst 
commensal microbiota and between microbiota and the 
host are complex, the underlying mechanisms are beginning 
to be elucidated and even manipulated. A healthy gut 
microbiome confers in humans the ability to digest complex 
dietary polysaccharides, synthesize essential amino acids, 
and absorb vitamins, metabolize certain drugs, develop the 
immune system, and to defend against pathobionts (3-7).  
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Dysregulation of the microbiome, or dysbiosis, has 
been linked to a growing list of pathologies including 
nonalcoholic fatty liver disease, cardiovascular disease, 
obesity, diabetes, depression, Parkinson’s disease, autism, 
and various cancers (8-12) (Table 1).

Once regarded as the “forgotten organ”, the gut 
microbiome is now the subject of renewed fervor. In 
fact, more than 80% of all microbiome publications were 
published after 2012 (17,18). Given the dizzying pace of 
discovery in this field, it may be difficult for clinicians to 
keep up with the latest insights on gut microbiomes and the 
implications of dysbiosis in gastrointestinal malignancies. 

We will briefly discuss perturbations in the gastrointestinal 
microflora or gut “dysbiosis” focusing on the development 
and structure of gut microbiota, their reputed role in the 
protection against cancer, and the proposed mechanisms by 
which gut dysbiosis may contribute to some types of cancer 
such as esophageal and gastric cancers.

Recently, the International Cancer Microbiome 
Consortium released a consensus statement describing four 
key features of a healthy gut microbiome: (I) synergizing 
with the host for immune function; (II) metabolic 
mutualism; (III) resilience to temporary disturbances and 
adaptation; and (IV) tumor-suppression (14). The first 

Table 1 Glossary of terms

Term Definition Reference

Commensalism A relationship between two organisms in which one organism benefits, whereas the 
other is not harmed or helped

(13)

Dysbiosis An abnormality—in composition and/or function—of the host symbiotic microbial 
ecosystem that exceeds its restitutive capacity and has negative effects on the host

(14)

Enterotypes Distinct microbiome configurations depending on composition or metabolic profile of 
component microbial organisms

(15)

Esotypes Functionally distinct community types found in the esophageal microbiome depending 
on the relative abundances of microbial organisms

(13)

Genetic diversity The variation in a DNA sequence between distinct individuals of a given species (or 
population)

–

Genetic variability Genotype differences in a given population –

Genome The genetic product of an organism –

Human Microbiome Project A National Institutes of Health project to characterize the human microbial flora launched 
in 2007

(16)

Microbiome The complex ecosystem of microbial cells including bacteria, archaea, eukaryotes, and 
viruses, that colonize the human body. The microbiome has the capability of encoding 
genetic products that affect health and disease in the human host

–

Microenvironment The immediately local habitat of a microbial cell, usually referring to distinct space within 
an organ in the host

–

Mutualism A relationship between two organisms in which both organisms benefit (14)

Pathobiont  Normally innocuous microorganisms that can behave like pathogens if their abundance 
increases and/or their environmental conditions change

(13)

Pathogen A microorganism that can cause disease (14)

Phylum A taxonomic classification that ranks in between kingdom and class –

Taxon A group of organisms –

Taxonomic level A relative level of a group of organisms –

Virulence genes or virulence 
factors

Molecules expressed by pathogenic microorganisms that help them to gain a growth 
advantage in a specific ecosystem. These molecules are often responsible for disease 
manifestation in the host

(13)
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two of these features is covered in the next section. The 
remaining two features are covered in the following section.

The development and structure of the gut 
microbiome

The prenatal intestinal tract was once thought to be sterile, 
though this notion has recently been challenged. Molecular 
surveys on infants have shown micro-organism colonization 
may occur in utero, suggesting that our microbiomes are 
older than we are (19). Neonatal gut associated lymphoid 
tissue along with the rest of the immune system is not fully 
developed upon birth. Mucosal secretion of mucin, IgA, and 
antimicrobial peptides has not been established. Infants are 
inoculated with microbes during birth, and the composition 
of the early microbiome is affected by gestational age and 
mode of delivery (Figure 1). For example, preterm infants 
and infants delivered via c-section were found to have 
reduced diversity and a delayed colonization by commensals 
as compared to term infants or vaginal deliveries (20). 
Breastfeeding then provides the infant gut with a 
“continuous inoculum” of microbes along with human 
milk oligosaccharides and secretory IgA (21). Breastfed 
infants have a microbiota composed predominantly of 
Bifidobacteria spp. and Lactobacilli spp. which consume human 
milk oligosaccharides and produce short chain fatty acids 

(SCFAs) (i.e., acetate, propionate, and butyrate). SCFAs are 
substrates for energy production, downregulate pathogen 
virulence genes, and promote immunotolerance (21). The 
microbiome of formula-fed infants is more diverse. This 
discrepancy of SCFA production in infants has implications 
in allergic airway inflammation, arthritis, ulcerative colitis, 
and colic (22-25). Introduction of solid foods at around 
6 months of age promotes a shift towards Bacteroides 
spp. which have are better able to metabolize complex 
carbohydrates. Diversification of the microbiome increases 
and adapts to the diet of the child. By age 3, gut microbiota 
approaches adult-level diversity (26,27).

The adult gut microbiome is composed of intestinal 
colonization niches in which bacterial microbiota are 
generally consistent at higher taxonomic levels (18). 
Firmicutes and Bacteroidetes are the major phyla within the 
intestinal tract. Stratifying the gut microbiome by just 
the relative abundance of organisms provides an overly 
simplistic view because significant variability occurs 
at lower taxonomic levels. The Human Microbiome 
Project examined 4,788 specimens from 242 screened 
and phenotyped healthy adult men and women in the 
US to characterize the microbial composition of 18 body 
habitats. The results revealed that microbial compositions 
were unique to each individual and remained stable over 
time. Interestingly, no taxa were observed to be universally 

Figure 1 Development of the gut microbiome and influencing factors that lead to homeostasis or dysbiosis. Starting from gestation, 
maternal microbiota influence the developing fetus’s future microbiome. Passage through the vaginal canal confers exposure to mucosal 
IgA, inoculating the newborns microbiome. At 6 months, the microbiome starts to transition towards adult-like microbiome with the 
consumption of solid foods. There are many factors present early in life that can tip the scale towards homeostasis vs. dysbiosis.
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present among the body habitats or individuals (16). An 
analysis of monozygotic and dizygotic twins demonstrated 
that significant gut microbial variability exists even between 
identical twins (28). Thus, over 80% of individuals can be 
reliably identified by their “microbial fingerprint” for up to 
a year after collecting a stool sample (29).

Metabolic pathways of microbiota, however, remained 
stable with respect to the individual and the overall 
population, regardless of the taxonomic variance and 
geography, suggesting that a “core microbiome” is organized 
around the functional gene level and not just at the organismal 
level (16,28-30). Indeed, clustering models accounting for 
frequencies of both microbial genes and populations indicate 
reproducible patterns of variation driven by subsets of three 
taxa (Prevotella, Bacteroides and Ruminococcaceae) which appear 
to be mutually negatively correlated (15). These clusters, or 
“enterotypes”, suggest that the core metagenomic functions 
and structure of gut microbiomes are conserved. Therefore, 
it follows that the gut microbiome has the capacity to achieve 

homeostasis between the host, the gut microbiome, the 
component microbiota, the host’s environment, the host’s 
disease state, and pharmacology.

The gut microbiome in homeostasis, dysbiosis, 
and tumor suppression

The homeostatic drive of the gut microbiome can be 
illustrated through its protective role against pathogen 
colonization (Figure 2). Given that approximately 15% of 
all cancers have been attributed to infectious agents, the 
gut microbiome is a crucial shield against infection and 
the subsequent carcinogenic sequela (31,32). Commensals 
competitively inhibit pathogenic growth by consuming 
nutrients and residual oxygen, depleting the resources 
available to pathobionts. Commensal microbes produce 
bacteriocins and SCFAs which downregulate virulence 
gene expression and alter pH. Commensals fortify the 
intestinal epithelial barrier function by upregulating mucin 

Figure 2 Commensal microbiota inhibit colonization of exogenous pathogens and pathobionts through upregulation of host-immunity 
mediated resistance such as activating plasma B cells, macrophages, T-helper cells, and innate lymphoid cells. Commensal microbiota 
also competitively inhibit pathogens and pathobionts by uptake of nutrients, suppressing virulence factors, and consuming O2 needed for 
pathogen and pathobiont survival.
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production, inducing antimicrobial peptides (RegIIIβ), 
and promoting IgA secretion. Commensal microbiota 
enhance innate host immunity via the MyD88 pathway by 
upregulating intestinal macrophage production of pro-
IL-1β, which is activated to rapidly recruit neutrophils 
in enteric infections. Additionally, resident commensals 
facil itate differentiation of TH17 cells and innate 
lymphoid cells which release IL-22 and through a MyD88 
independent mechanism (18).

When the gut microbiome is unable to return to 
homeostasis, it exists in a state referred to as dysbiosis. It is 
tempting to define dysbiosis as an anomalous composition 
of resident microbes (i.e., bloom of pathobionts, loss of 
commensals, and loss of diversity) (33). Experts, however, 
define dysbiosis an “abnormality—in composition and/or 
function—of the host symbiotic microbial ecosystem that 
exceeds its restitutive capacity and has negative effects on 
the host” (14). Compositional and functional abnormalities 
probably coexist and propagate each other. Dysbiosis is not 
applicable beyond the context of the individual host and 
specific pathology. A sustained state of dysbiosis may lead 
to carcinogenesis (14). In fact, dysbiosis could promote 
carcinogenesis by several potential mechanisms. For 
example, studies on the vaginal microbiome have found 
that the human papillomavirus inserts its DNA into the 
host DNA in a strategy known as genomic integration. In 
genotoxicity, pathogens or their metabolites damage host 
DNA structure causing cell death, promoting oncogenes, 
or disabling tumor suppressor genes. Chronic inflammation 
by microbial virulence factors can affect host intracellular 
signaling pathways inducing cellular proliferation and 
deregulating apoptosis. Pathogens may weaken cancer 
immunosurveillance by targeting host immune cells. Even 
commensal metabolism can be manipulated to produce 
reactive metabolites or convert pro-carcinogens into 
carcinogens.

Esophageal cancer

The esophagus is relatively sterile when compared to the 
rest of the GI tract, harboring less than one trillionth 
of the bacterial population in the colon (17). Pei et al. 
demonstrated that approximately 100 species are endemic 
to the normal esophagus within six phyla: Firmicutes (e.g., 
Streptococcus), Bacteroides (e.g., Prevotella), Actinobacteria (e.g., 
Rothia), Proteobacteria (e.g., Haemophilus), Fusobacteria (e.g., 
Fusobacterium), and TM7/Saccharibacteria (34). Deshpande 
et al. later performed cluster analyses on bacteria found 

in patients with a normal esophagus and described the 
existence of three clusters or “esotypes”. Esotypes were 
characterized by dominant organisms and had distinct 
functional signatures with the first type largely comprised 
of Streptococcus spp. (enriched pentose phosphate pathway, 
fructose/mannose metabolism), the second Prevotella spp. 
[enriched lipopolysaccharide (LPS) biosynthesis], and the 
third Prevotella, Haemophilus, and Rothia (enriched glycolysis 
pathway, SCFA metabolism) (35). Notably, the authors 
found that patients with gastroesophageal reflux disease 
(GERD) or Barrett’s esophagitis (BE) had a taxonomic shift 
towards gram-negative organisms including Fusobacterium 
and Campylobacter spp. with enhanced lactic acid production 
Tan pathways. Yang et al. also concluded that patients with 
esophagitis or BE have a propensity for gram-negative 
bacterial colonization (36) (Table 2).

The shi f t s  in  the  GERD/BE microbiome may 
contribute to malignant transformation into esophageal 
adenocarcinoma (EAC). Gram-negative bacteria could 
promote expression of inflammatory signals due to 
interactions between bacterial metabolites and inflammatory 
cells resulting in chronic inflammation (37). Toll-like 
receptors (TLRs) normally mediate host-microbiota 
interactions and are key players in recognition of pathogen-
associated molecular patterns. TLR4 expression is abundant 
in normal esophageal epithelium and increases in BE/
EAC (38). Gram-negative bacteria produce LPSs that 
bind to TLR4, thereby activating the NF-κB pathway and 
potentially upregulating oncogenes like COX-2 (39). The 
enhanced expression of lactic acid producing pathways and 
dominance of lactate fermenters could indicate EAC is a 
glycolytic tumor. In these tumors, oncogenic and tumor 
suppressor mutations result in a synchronized process 
to produce lactate continuously without regulation (40). 
The heavy concentration of lactate promotes an acidic 
microenvironment, potentially inhibiting competitor 
growth while selecting for other organisms with similar 
metabolic profiles (41).

The link between dysbiosis and esophageal squamous 
cell cancer has not been investigated as well as EAC. 
Microbial diversity, especially in neighboring microbiota, 
has been inversely associated with esophageal squamous  
dysplasia (42). Patients with squamous dysplasia and 
squamous cell cancer had higher proportions of Clostridiales 
and Erysipelotrichales spp. in their gastric microbiomes 
relative to healthy patients (43). Salivary concentrations of 
Lautropia, Bulleidia, Catonella, Corynebacterium, Moryella, 
Peptococcus, and Cardiobacterium spp. were lower in esophageal 
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squamous cell carcinoma compared to healthy controls (53).  
In studies of the esophageal microbiome, patients with 
esophageal squamous cell carcinoma were more likely 
to infected with Porphyromonas gingivalis and presence of 
the microbe was correlated with severity of disease (44).  
In patients who underwent esophagectomy for ESCC, 
tissue analysis revealed that approximately 23% of 
specimens contained Fusobacterium nucleatum and presence 
was associated with shorter survival (45).

Gastric cancer

The stomach’s acidic microenvironment, release of 
antimicrobial enzymes, and its rapid intraluminal flow make 
it inhabitable to one billionth of the bacterial population 
in the colon. Taxa commonly found in the stomach include 
Streptococcus, Lactobacillus, Veillonella, Prevotella, Rothia, and 
Neisseria spp. representing a more diversified taxonomic 
profile than the esophagus (48). Fundamentally, colonizers 

Table 2 Flora alterations in gut microbiota and proposed dysbiotic mechanisms promoting tumorigenesis

Condition Associated flora Proposed mechanisms inducing pathology References

Normal esophagus Streptococcus, Prevotella, Rothia, 
Hemophilus, Fusobacterium, TM7/
Saccharibacteria

– (34,35)

Barrett’s esophagus, 
esophageal 
adenocarcinoma

↑gram-negative flora, ↓Streptococcus ↑lactic acid production → chronic inflammation; 
activation of LPS-TLR-NF-κB pathway → chronic 
inflammation

(35-41)

↑Lactobacillus ↑lactic acid production → chronic inflammation

Esophageal squamous 
cell cancer

↓microbial diversity; alterations in 
adjacent microbiota (oral, gastric corpus)

– (42-47)

↑Porphyromonas gingivalis Activation of Jak1/Akt/Stat3 pathway → 
dysregulation of apoptosis; conversion of ethanol 
to acetaldehyde → genotoxin formation

↑Fusobacterium nucleatum ↑CCL20 chemokine production → dysregulated 
immune surveillance

– Degradation of epithelial basement membrane 
via MMP release, induction of DAMPs → chronic 
inflammation

Normal stomach Streptococcus, Lactobacillus, Veillonella, 
Prevotella, Rothia, Neisseria

– (48)

Gastric carcinoma Pathogenic strains of Helicobacter pylori NF-κB pathway mediated cytokine release → 
chronic inflammation, dysregulation of apoptosis

(47-52)

– CagA oncoprotein activation of Ras-Erk mitogenic 
pathway → disruption of host cellular signaling; 
VacA oncoprotein induced host cell destruction → 
chronic inflammation

Pathobiont overgrowth promoted by 
Helicobacter pylori

Urease allows neutralization of acidic environment 
and reaction with neutrophilic metabolites → 
genotoxin formation

↑Lactobacillus, Lachnospiraceae, 
Burkholderia, Escheria, Shigella

↑N-nitroso compound metabolism → genotoxin 
formation

↑Lactobacillus, Lactococcus ↑lactic acid production → chronic inflammation

LPS-TLR-NF-κB, lipopolysaccharide-toll-like receptor-nuclear factor-kappa beta; CCL20, C-C chemokine ligand 20; DAMP, danger 
associated membrane proteins.
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of the healthy stomach must have the ability to resist acid 
degradation. Tumorigenic organisms possess the additional 
ability to incite chronic inflammation thereby inducing 
dysbiosis in susceptible hosts. The International Agency 
for Research in Cancer (IARC) has designated Helicobacter 
pylori (H. pylori) is a class I carcinogen with definite links to 
gastric cancer (54-56). Yet, only 3% of the people infected 
with H. pylori actually go on to develop gastric cancer (57).  
Furthermore, a nationwide effort to eradicate H. pylori in 
patients with chronic gastritis failed to reduce the incidence 
of gastric cancer in Japan over a 5-year period (58).  
This implies an indirect, non-causal relationship between 
H. pylori status and gastric cancer. Indeed, H. pylori 
could promote a microenvironment that leads to gastric 
carcinogenesis to varying degrees depending on virulence 
factors, bacterial and host genotypes, geography, and 
environmental factors.

H. pylori has coevolved with humans over the past 60,000 
years and has only recently disappeared from the West’s 
microbiome for reasons that are not fully understood (59). 
The bacteria’s impact on the human gut microbiome is not 
well understood and is limited by sequencing techniques, 
interindividual variability, and small sample sizes. One study 
of 23 healthy subjects found that H. pylori status had no effect 
on phylotype distribution within the stomach. Clustering 
analysis did not demonstrate distinct clusters of microbes 
between positive and negative H. pylori groups (60). A more 
recent comparison between these groups found that H. pylori 
did affect microbiome composition. Relative abundance 
of Proteobacteria (excluding H. pylori) and Acidobacteria was 
higher in H. pylori infected patients, while relative abundance 
of Actinobacteria and Firmicutes was higher in H. pylori 
negative patients. H. pylori has been shown to significantly 
reduce gastric microbiome diversity, comprising 24–97% of 
sequences found in samples (60-62). How microbial diversity 
relates to gastric cancer is unclear, though the relative paucity 
of H. pylori, and a shift towards nitrosating organisms is 
associated with carcinogenesis (49,50,63-65).

When involved in antral gastritis, H. pylori induces 
gastrin secretion and local acid production contributing 
to peptic ulcer disease but protecting against gastric 
cancer. Strains causing corpus gastritis stimulate release 
of inflammatory mediators which degrade gastric glands 
resulting in deficient acid production and a more hospitable 
environment for pathobionts (66). Interestingly, H. pylori 
prefers normal gastric mucosa and the population dwindles 
in atrophic gastritis, allowing proliferation of tumorigenic 
bacteria (49,51,61,67,68). These lesions progress to 

intestinal metaplasia followed by dysplasia, and eventually 
gastric adenocarcinoma (69).

Additionally, some strains of H. pylori employ several 
mechanisms to colonize the stomach, destroy gastric 
epithelium, upregulate inflammatory cascades, disrupt host 
signaling, alter cell permeability, and promote epigenetic 
changes. H. pylori gains access to gastric mucosa by 
producing urease, an enzyme which catalyzes urea into 
ammonia for neutralization of acid and reaction with 
neutrophilic metabolites. Carcinogenic strains contain 
the cytotoxin-associated gene A (CagA) and deliver 
the oncoprotein into epithelial cell cytoplasm via type 
IV secretion. CagA is then phosphorylated by tyrosine 
kinase, binds to SHP2 and activates the Ras-Erk pathway 
(FGFR2, KRAS, EGFR, ERBB2, and MET), dysregulating 
downstream cell signaling, promoting cell proliferation, 
destroying the epithelial barrier, and dismantling the 
cytoskeleton. Vacuole-forming factor (VacA) induces vacuole 
formation by the host cell and ultimately compromise 
cellular membrane integrity. H. pylori adheres to epithelial 
cells with outer membrane proteins; the interaction triggers 
release of IL-6, IL-8, IL1-β, TNF-α. Activation of NF-κB 
prompts cytokine release and inhibits apoptosis. H. pylori 
also has been implicated in DNA methylation, histone 
changes, and production of reactive oxygen species (ROS) 
induced dsDNA breaks (52).

Conclusions

The “germ theory of disease” or the idea that microscopic 
pathogens are responsible for disease, has served as a 
foundational concept of our understanding of the human 
body for the past two centuries. Robert Koch and Louis 
Pasteur prompted the departure from miasma theory in 
which a poisonous vapor from an unhygienic environment 
was thought to be the culprit for infection. Koch is credited 
with formalizing criteria to establish the causation of a 
disease by a microbe: the pathogen must be present in all 
diseased subjects; the pathogen should be isolated from the 
diseased subject and grown in culture; when the cultured 
pathogen is introduced to a healthy experimental host, 
disease should be observed; the pathogen should be re-
isolated from the experimental host and be identical to the 
originally isolated pathogen (13). In this model of disease, 
the single pathogen role is overemphasized, and the host 
factors are unaccounted for. Antoine Bechamp, a vocal 
rival of Pasteur, believed that “there is an independently 
living microanatomical element in the cells and fluids of 
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all living organisms” which he termed the “microzyma”. 
Bechamp posited that the disruption of the host’s inherent 
“microzymia” was a predisposition to disease (70). Though 
Bechamp’s “microzymia” was largely ignored by the 
scientific community then, it has remarkable conceptual 
similarities to what we now know as the microbiome.

The gut microbiome has been linked to gastric and 
esophageal cancers, which represent the third and sixth most 
common causes of cancer-related deaths worldwide (71,72). 
Both cancers have plausible explanations for carcinogenesis 
rooted in dysbiosis. Further clarification of these pathways 
and discovery of diagnostic or therapeutic targets could 
have broad impacts on global subpopulations (46). As 
sequencing technology becomes increasingly sophisticated 
and accessible, researchers will be empowered to elucidate 
causal, rather than just correlative relationships (47). By 
reframing the microbiome as a determinant of global health 
and tailoring its application to the individual patient, we 
have the power to usher in the era of highly personalized, 
precision medicine.
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