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Introduction

Colorectal cancer (CRC) is the third leading cause of 
cancer-related mortality worldwide, ranking third in men 
and second in women among the most common cancers. 
Recent research shows that in the United States, about 
53,200 people die of CRC each year, accounting for about 
8% of all cancer-related mortality (1). Surgery is the most 
effective treatment for early CRC, while chemotherapy 

drugs commonly used include oxaliplatin, fluorouracil, 
and irinotecan (2). In addition, tumor targeted therapy, 
which is based on the gene mutation of tumor cells for 
precise targeting is an emerging treatment (3). However, 
the efficacy of conventional therapies is limited. Although 
the incidence of CRC has decreased in recent years, a high 
mortality rate remains. On the one hand, most patients 
are already at an advanced stage when they are diagnosed 
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with CRC, and the effect of treatment is much worse 
than that at early stage. On the other hand, there is a lack 
of personalized prognostic guidance to achieve a better 
precision treatment. So it is necessary to find new, effective, 
and reliable biomarkers for improving risk assessment and 
guiding individualized treatment for the disease. 

A growing number of recent studies have shown that in 
addition to genetic mutation, epigenetic variations including 
DNA methylation, histone modification (acetylation 
and methylation), and non-coding RNA-mediated 
transcriptional regulation play an important role in the 
occurrence and development of CRC (4,5). Especially for 
methylation, they can inhibit a variety of tumor suppressor 
factors by hypermethylation their promoter regions, which 
ultimately leads to the occurrence of tumors (6,7). Abnormal 
DNA methylation influences CRC through the regulation 
and control of the expression of cancer-related genes (8,9). 
Some researchers suggest that as DNA methylation usually 
occurs in early cancer, it can provide biomarkers for early-
stage cancer detection. Recently, hypermethylated tumor-
suppressing genes and hypomethylated tumor-promoting 
genes have been found to be related to the positive 
transcriptional regulation of oncogenes in multiple cell 
processes (10,11), and numerous studies have found them in 
CRC. Some drugs targeting DNA methylation been used in 
the treatment of CRC such as 5-azacitidine, decitabine and 
zebularine, and achieved a great therapeutic effect (12).

However, as far as we know, no previous studies have 
focused on the function of methylated-differentially 

expressed genes (MDEGs) in predicting the prognosis of 
CRC genome-wide. To establish a new predictive model 
based on MDEGs, we used R to conduct an overall analysis 
of the data derived from a research cohort from the Gene 
Expression Omnibus (GEO). The results may help predict 
prognosis in patients with CRC and benefit personalized 
treatment for the disease. We present the following article 
in accordance with the TRIPOD checklist (available at 
https://dx.doi.org/10.21037/jgo-21-376).

Methods

Data processing

As shown in Table 1, all the data sets and clinical information 
were derived from GEO (https://www.ncbi.nlm.nih.gov/) 
and TCGA (https://cancergenome.nih.gov/). From these, 
GSE24514 and GSE21510 were utilized to select the 
differentially expressed genes (DEGs), GSE25062 and 
GSE17648 were utilized to select differentially methylated 
genes (DMGs), and the methylation differential expression 
genes (MDEGs) were obtained by overlapping of the two. 
Furthermore, genes related to the prognosis of CRC were 
selected in GSE39582, which is referred to as the training 
set. Further, we also created our prediction model based 
on this. The CRC data of TCGA served as a validation set 
to verify the efficacy of the prognosis model. GSE24514 
contains 34 cases of normal tissues and 15 cases of CRC 
tissues, while GSE21510 consists of 25 cases of normal 
tissues and 123 cases of CRC tissues and GSE39582 contains 

Table 1 Summary of data sets used 

Datasets Normal (n) Tumor (n) Platform

Methylation dataset

GSE25062 29 125 Illumina HM27

GSE17648 22 22 Illumina HM27

Expression dataset

GSE24514 34 15 Affymetrix U133 Plus 2

GSE21510 25 123 Affymetrix U133 Plus 2

Training dataset

GSE39582 556 Affymetrix U133 Plus 2

Validation dataset

TCGA 469 Illumina HiSeqV2

TCGA, The Cancer Genome Atlas.

https://dx.doi.org/10.21037/jgo-21-376
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556 cases of CRC patients. The GPL570 platform (Affymetrix 
Human Genome U133 plus 2.0 Array) was used to analyze 
gene expression profiles, and a robust multi-array averaging 
algorithm was used to preprocess the raw data generated by 
the Affymetrix platform. GSE25062 possesses 29 cases of 
normal tissue and 125 cases of CRC tissue, while GSE17648 
consists of 22 pairs of CRC and adjacent normal tissue. The 
expression profiles of methylation were analyzed by GPL8490 
(Illumina Human Methylation27BeadChip) platform, and 
the gene expression level of TCGA was determined by 
Illumina HiSeqV2 sequencing with standardized counting. 
The numerical value of gene expression of all sequencing 
platforms was transformed by Log2 for subsequent analysis. 
The study was conducted in accordance with the Declaration 
of Helsinki (as revised in 2013).

Identification of MDEGs

DEGs and DMGs were selected by means of Student’s 
t-test as described above. The false discovery rate (FDR) 
correction of P value was performed by Benjamini-
Hochberg method to reduce the high false positive rate 
caused by multiple comparisons and the screening criteria 
were FDR <0.05 (13). DMEGs refer to differential 
expression in tissues as well as differentially methylated 
genes. The hypomethylated and up-regulated genes were 
obtained by means of overlapping high expression gene sets 
and hypomethylated gene sets, and hypermethylated and 
down-regulated genes were obtained by the same method.

Function annotation of MDEGs

The Gene Ontology (GO) enrichment and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enr ichment  analys i s  of  MDEGs were  performed 
using the Database for Annotation, Visualization and 
Integrated Discovery (DAVID) to explore their biological 
functions. The biological functions, biochemical process, 
and subcellular localization of MDEGs were roughly 
explored by GO enrichment analysis, and KEGG pathway 
enrichment was used to determine which pathways of 
MDEGs were principally enriched. The standard of 
significant enrichment was P<0.05.

Establishing a prognostic prediction model based on 
MDEGs

The prognostic model was constructed in the training set. 

Multivariate Cox hazard analysis was used to preliminarily 
select genes that highly correlated with the overall survival 
time of CRC, and LASSO (least absolute shrinkage and 
selection operator) regression was used to filter variables 
and reduce the complexity of the model. While variable 
screening involves placing all variables into the model, we 
chose to place limited variables for fitting to obtain a better 
performance parameter. LASSO is based on the penalty 
method to select variables and compresses the original 
coefficients, while the originally small coefficients are 
directly compressed to 0, so that the variables corresponding 
to these coefficients are regarded as invalid variables. The 
complexity of the linear model is directly related to the 
number of variables, so controlling it can avoid overfitting. 
By multiplying the expression value of each selected gene 
and its corresponding risk coefficient and adding these 
together, we established a risk prediction model. This 
formula was then executed in the training set to calculate 
the risk score of each person suffering from CRC. The 
median of the risk score was used as the segmentation point, 
which saw patients with scores higher than the median 
regarded as high-risk groups, and those with scores lower 
than the median regarded as low-risk groups.

Statistical methods

All analyses were carried out in R (Version 3.6.1). After 
adjusting for gender, age and stage, multivariate cox 
regression analysis was used to explore the predictive effect of 
the risk prognostic model on CRC, and the risk ratios (HRs) 
and 95% confidence intervals (95% CIs) were also executed. 
Kaplan-Meier method was employed to draw the survival 
curve, and the log-rank test was performed to calculate the P 
value, which was statistically significant at P<0.05. 

Results

Screening of MDEGs

The screening conditions for each step of MDEGs were 
FDR <0.05, and the detailed process for screening is 
illustrated in Figure 1. Firstly, 5,555 and 18,756 genes 
differentially expressed in tumor tissues were screened from 
GSE24514 and GSE21510, respectively; 4,967 DEGs were 
obtained by overlapping the results of these two datasets 
while filtering genes with inconsistent expression directions. 
Thereinto, 2,515 genes were highly expressed while 2,452 
genes were lowly expressed in CRC tissues. Secondly, 
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5,441 and 5,473 methylation differentially expressed 
genes were screened from GSE25062 and GSE17648, 
respectively; 3,457 DMGs were obtained by overlapping 
the results of these two datasets while filtering genes with 
inconsistent expression directions similarly, there were 
2,053 hypermethylated genes and 1,404 hypomethylated 
genes among them. Finally, by associating RNA expression 
with DNA methylation, we identified 384 MDEGs, 
including 252 hypomethylated-highly expressed genes and 

132 hypermethylated-lowly expressed genes (Figure 2). In 
order to test whether the FDR value was reasonable and 
to further visualize it, we constructed two representative 
volcanos based on the expression spectra of GSE24514 and 
GSE21510 (Figure 2). 

Function prediction of MDEGs

The biological functions of MDEGs were annotated by 

GSE24514 GSE25062 GSE17648GSE21510

DEGs DMGs

384 MDEGs genes

Multivariate cox analysis

LASSO analysis

Prognostic model

Figure 1 Flow chart of constructing our prognostic risk model. DEGs, differentially expressed genes; DMGs, differentially methylated 
genes; MDEGs, methylation-differential expression genes.
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Figure 2 Venn diagram of the expression datasets and the methylation datasets. Volcano of the two expression datasets. Blue represents 
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bioinformatics methods including KEGG enrichment 
analysis and GO enrichment analysis, the latter which is 
composed of three parts primarily: Molecular Function, 
Biological Process, and Cellular Component. The data 
of enrichment analysis were derived from the DAVID 
database, and as shown in Figure 3, the enrichment 
results were visualized by bubble plot. The biological 
processes  of  MDEGs were primari ly enriched in 
“chemical synaptic transmission”, “signal transduction”, 
and “positive regulation of transcription from RNA 

polymerase II promoter”. As for the cellular component, 
MDEGs enriched most in “plasma membrane”, followed 
by “extracellular space”. In terms of molecular function, 
most MDEGs were enriched in “protein binding”, 
indicating that MDEGs may play critical biological roles 
by regulating the transcription of CRC. Furthermore, 
KEGG enrichment analysis speculated that MDEGs 
were mainly enriched in “cAMP signaling pathway”, 
“neuroactive ligand-receptor interaction”, and “pathways 
in cancer”.
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Establishment of CRC prognosis model

The variable selection and final establishment of our 
prognosis model were performed in the training set, and 
multivariate Cox regression analysis and LASSO regression 
analysis were utilized in turn to analyze the prognosis 
efficacy of 384 MDEGs. Firstly, after adjusting gender, age, 
and staging, multivariate Cox regression analysis explored 
the correlation between MDEGs and the overall survival 
time of CRC. With P value less than or equal to 0.05 as the 
standard, 27 genes were preliminary screened to relation to 
the prognosis of CRC. Subsequently, by using R for LASSO 
regression analysis to control the number of variables in 
the model, we further identified key genes for predicting 
prognosis. After multiple cross-validation, we determined 
that when the number of variables was 10, the parameter 
λ of the model was optimal. Thus, combined with the 
best regression coefficient under λ, a prognosis predictive 
model for CRC consisting of 10 genes was established, and 
the calculation formula for our risk score is listed below: 
risk score = (0.033 × SPP1 + 0.048 × CLDN1 + 0.052 × 
COLEC12 + 0.062 × PTPRZ1 + 0.083 × SCARA3 + 0.108 
× EDAR + 0.136 × SOCS3 + 0.185 × SYNGR1 + 0.453 × 
ARMCX4 + 0.478 × MMP16).

Prognostic analysis of the prognostic risk model in the 
training set 

The risk scores for each patient in the training set were 
calculated using our prognosis predicting model. Patients 
were arranged in descending order according to the risk 
score value, and those whose risk score was higher than 
the median were placed as a high-risk group, and those 
whose score was lower than the median were placed as a 
low-risk group. Multivariate Cox regression analysis was 
used to explore the relationship between different risk 
groups and overall survival of CRC, and included gender, 

age, and grading as covariates. The results showed that the 
prognostic risk model had an independent predictive effect 
on the prognosis of CRC (HR =2.27, 95% CI, 1.69–3.13, 
P=8.15×10−8) (Table 2). Furthermore, we utilized log rank 
test to detect whether the overall survival of CRC between 
the two risk groups was statistically different, and Kaplan-
Meier method was used to draw the survival curve. As shown 
in Figure 4A, the prognosis of patients in the high-risk 
group was worse than that in the low-risk group (P<0.0001). 
Moreover, people in the high-risk group had a higher 
mortality rate compared to those in the low-risk group, 
which was 45.33% and 21.72%, respectively (Figure 4B).  
Figure 4C displays the risk score distribution, survival status 
distribution, and heatmap of 10 gene expression profiles of 
each patient in the training set.

Verification in the validation set

The efficacy verification of the prognosis model was 
carried out in the TCGA database, which contained the 
gene transcription and prognosis information of 469 CRC 
patients. Based on the calculation formula of our risk 
model, we calculated the risk score of each patient in the 
validation set, and divided patients into different risk groups 
considering the median of the risk score. Multivariate 
cox regression analysis in the validation set confirmed 
that the risk group was an independent predictor of the 
overall survival of CRC (HR =1.75, 95% CI, 1.15–2.70, 
P=9.32×10-3) (Table 2). The survival curve indicated that 
there was a large distinction in the prognosis between 
the different risk groups, and the overall survival time of 
the high-risk group was shorter (P=0.0013) (Figure 5A). 
In addition, the mortality rate of the low-risk group was 
18. 48%, while that of the high-risk group was 28.91% 
(Figure 5B). The risk score distribution of each person in 
the validation set is displayed as well as the distribution of 
survival status to distinguish mortality changes in different 

Table 2 Multivariate COX regression analysis of the prognostic model in the training set and validation set

Variables
GSE39582 TCGA

HR 95% CI P HR 95% CI P

Age (>65 vs. ≤65) 1.75 1.29–2.37 3.32×10−4 3.08 1.91–4.98 4.20×10−6

Risk (high-risk vs. low-risk) 2.27 1.69–3.13 8.15×10−8 1.75 1.15–2.70 9.32×10−3

Gender (male vs. female) 1.50 1.12–2.01 5.07×10−3 1.00 0.66–1.53 9.92×10−1

Stage 1.96 1.60–2.39 6.69×10−11 2.04 1.59–2.63 3.20×10−8
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risk groups intuitively. The expression of the corresponding 
10 genes of our model is exhibited by the heat map, which 
shows the prognosis model can effectively classify patients 
in the validation set into a high-risk group and low-risk 
group (Figure 5C).

Discussion

DNA methylation is a common epigenetic modification 
regulating gene expression (14). Methylation is an 
unattractive small modification on the C-site of DNA 
sequence, which sees a methyl group added to the 5th 
carbon atom of the cytosine ring. This can cause the 
development of, metastasis, and deterioration of tumors in 
various ways (15): (I) the high frequency of deamination 
of cytosine in methylated CpG island dinucleotides 

to thymine, resulting in gene mutations; (II) tumor 
suppressor genes and DNA repair genes are silenced due 
to hypermethylation; (III) oncogenes are activated due to 
lower methylation levels; (IV) the decrease in the overall 
methylation level of the genome causes the activation of 
transposons and repetitive sequences, resulting in a decrease 
in chromosome stability (16). The importance of gene 
methylation in genetics, including carcinogenesis, has been 
researched in a variety of cancers including that of the lung, 
breast, liver and CRC. While DNA methylation patterns 
could potentially provide a reference for treatment options 
and serve as prognostic biomarkers for cancers (17), there 
has been no exploration of the prognostic value of MDEGs 
for CRC patients in the clinical setting. This study is the 
first to establish a risk prognosis model based on MDEGs 
in CRC genome-wide.
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We used the gene expression and methylation expression 
data set in GEO to screen out 252 hypomethylated and 
highly-expressed genes and 132 hypermethylated and 
lowly-expressed genes in CRC tissue, totaling 384 MDEGs. 
We also conducted a bioinformatics analysis of MDEGs 
to predict their possible biological functions and found 
“chemical synaptic transmission”, “signal transduction”, and 
“positive regulation of transcription from RNA polymerase 
II promoter” were the primary biological process in which 
MDEGs were most enriched in. A study in the journal of 
Nature in 2019 showed that brain metastasis from breast 
cancer were caused by interfering with synaptic conduction, 
thereby accelerating its growth and lethal rate (18).  
Dysregulation of physiological signal transduction is the 
basis of tumorigenesis, and multiple signal transductions 
(19,20) play a crit ical  role in the occurrence and 
development of CRC. In recent years, Drugs targeting 

signal transduction such as curcumin, bortezomib have 
already made great contributions to the treatment of CRC 
(21,22). The reduction of differentiation ability and the 
enhancement of proliferation ability are characteristic of 
tumor cells, and a study on acute leukemia by researchers 
at Yale University found that excessive cell proliferation 
could directly lead to cancer (23). As MDEGs in cellular 
components are mainly enriched in the cytoplasm, there 
is speculation that they may regulate tumor progression 
by participating in the post-transcriptional modification 
of coding genes. The most enriched molecular biological 
function of MDEGs is protein binding, and a variety 
of proteins can bind to specific genes to regulate gene 
expression, including BAHCC1 protein, which can 
mediate gene silencing and tumorigenesis by binding to 
H3K27me3 (24). The cAMP signaling pathway is one 
of the five intracellular communication pathways. After 
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receiving extracellular signals, the G protein-coupled 
receptor conducts the signal to change the level of the 
second messenger cAMP and transmit extracellular signals 
to intracellular, and previous studies have confirmed its 
relationship with CRC. Activating the cAMP pathway in 
CRC can also inhibit tumor angiogenesis and inhibit tumor 
growth (25).

Following the prognostic analysis of 384 genes, we 
screened 10 MDEGs including SPP1, CLDN1, COLEC12, 
PTPRZ1, SCARA3, EDAR, SOCS3, SYNGR1, ARMCX4, 
and MMP16 to construct a prognostic risk model. It 
is worth mentioning that specific pathological type of 
colorectal cancer is lacking in GEO. We did not perform 
stratified analysis in colorectal cancer base on it, so we 
cannot sure this study have high prognostic value for all 
pathological types of colorectal cancer. Previous studies 
have reported that almost all of the above-mentioned genes 
play a potential regulatory role in the process of tumor 
carcinogenesis, including SPP1, which is up-regulated 
in CRC and is associated with its poor prognosis. SPPI 
can also promote the metastasis of CRC by promoting 
epithelial-mesenchymal transition (26,27). Research using 
50 pairs of CRC tissues revealed that the rs17501976 
polymorphism on CLDN1 could decrease the risk of CRC 
in a Chinese population (28). The expression of PTPRZ1 is 
closely related to the KRAS mutation in CTC, which plays 
a vital role and exists widely in its occurrence (29). EDAR, 
which is up-regulated in CRC and has been confirmed to 
be a component of the Wnt/β-catenin signaling pathway, 
can also stimulate the proliferation of CRC in vitro (30).  
In vivo experiments have indicated SOCS3 is poorly expressed 
in CRC tissues, and its lower expression is likely to indicate 
lymph node metastasis and a worse clinical prognosis. 
Furthermore, overexpression of SOCS3 in CRC cells could 
inhibit cell proliferation, migration, and invasion (31). 
Genome-wide association studies have found that the G 
allele mutation of single nucleotide mutation site rs6509 
can down-regulate the expression of SYNGR1 and reduce 
the risk of ovarian cancer (32). Silencing the expression of 
MMP16 can restrain the migration and invasion of colon 
cells, and the up regulation of MMP16 is highly correlated 
with aggressive behavior in patients and poor survival in 
CRC (33). The aforementioned studies provide a theoretical 
basis for the prediction of the risk model constructed by 
us on the prognosis of CRC. Our findings provide new 
insights into the treatment of CRC and have the potential 
to be transformed into clinical drugs for the treatment of 
colorectal cancer.

Conclusions

Our research combined gene mRNA expression and DNA 
methylation modification to screen out MDEGs. We 
further established a CRC prognostic risk model consisting 
of 10 key genes, which could effectively divide patients with 
CRC into high-risk and low-risk groups. Our prognostic 
model plays a role in assessing the prognosis of CRC, and 
may provide a principle for individualized clinical treatment.
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