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Background: Sorafenib, the first approved targeted therapy for advanced hepatocellular carcinoma (HCC), 
is often reported to comprised survival-benefit due to resistance. An underlying mechanism of resistance was 
proposed using bioinformatics analysis based on differentially expressed genes (DEGs) from microarrays. 
However, most DEGs were invalidated at both the expression level, and the role in causing resistance. 
Therefore, we conducted a bioinformatics analysis based on experimentally determined sorafenib-resistance-
related genes (SRRGs) to elucidate the mechanism of sorafenib resistance. 
Methods: The SRRGs, which have been experimentally determined to promote or inhibit resistance, were 
collected from published studies. The Database for Annotation, Visualization and Integrated Discovery 
(DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were used to perform Gene Ontology 
(GO) and pathway enrichment analysis, respectively. A corresponding protein-protein interaction network 
(PPI) was created using the Cytoscape software program, and network hub genes were proposed. 
Results: A total of 145 SRRGs, with 117 promoting and 28 inhibiting resistance, were identified. Cell 
proliferation, migration, development, response to oxygen levels, epithelial-to-mesenchymal transition 
(EMT), cell skeleton, protein function, and autophagy were all proposed as crucial gene functions related to 
resistance. The pathways related to cell proliferation or apoptosis, immune function, endocrine metabolism, 
stem cell function, and differentiation were identified as key resistance-related pathways. A total of 81 hub 
genes were proposed, including the following top 10 genes: TP53, AKT1, EGFR, STAT3, VEGFA, JUN, 
MAPK1, IL6, PTEN, and CTNNB1. 
Conclusions: In conclusion, this study gathered experimentally validated genes that determine sorafenib 
resistance in HCC, provided an overview of the underlying mechanisms of resistance, and further validated 
sorafenib resistance in HCC.
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Introduction

The multi-targeted tyrosine kinase inhibitors (TKIs) 
including sorafenib, lenvatinib and donafenib showed 
important roles in the first-line treatment of patients with 
unresectable hepatocellular carcinoma (HCC). In 2007, 
sorafenib became the first small-molecule TKI approved for 
first-line treatment of advanced hepatocellular carcinoma 
(HCC) (1). Sorafenib is a multi-kinase inhibitor with anti-
angiogenic, pro-apoptotic, and anti-proliferative effects 
that targets vascular endothelial growth factor receptor 
(VEGFR)-1, VEGFR-2, VEGFR-3, platelet-derived 
growth factor receptor (PDGFR)-b, c-KIT, FMS-like 
tyrosine kinase 3 (FLT-3), and RET (1). However, the 
effects of sorafenib can be compromised (1-4); it has been 
shown to significantly extend the median survival time of 
treated patients, but only by 3–5 months. This has largely 
been attributed to the development of resistance within 
6 months (3-6). Combination of sorafenib and cytotoxic 
chemotherapeutic agents, or molecular targeted agents, 
or immunotherapeutic drugs were studied to overcome 
sorafenib resistance in HCC (7).

Resistance to sorafenib is related to multiple cellular 
phenomena, including hypoxic microenvironment, 
epithelial-mesenchymal transition (EMT), apoptosis 
resistance and dysregulation of cell-cycle control, cancer 
stem cells (CSCs), autophagy, the PI3K/Akt and JAK-
STAT pathways, endothelial growth factor receptor 
(EGFR) activation, c-Jun activation, and AKT activation 
(8-10). Therefore, it is difficult to comprehensively explain 
sorafenib resistance in HCC in terms of a single molecule 
or pathway.

Most recently, bioinformatics analysis has been viewed 
as a crucial tool in the study of complex mechanisms (11).  
It has also been used to sketch the landscape of the 
molecular mechanisms involved in sorafenib resistance 
(12,13). Several functions and pathways, such as negative 
regulation of endopeptidase activity, cholesterol homeostasis, 
DNA replication and repair, coagulation cascades, insulin 
resistance, RNA transport, cell cycle, adhesion, coagulation, 

vasculature development, steroid metabolic process, and 
lipid homeostasis have been found to relate to resistance by 
bioinformatics analyses based on differentially expressed 
genes (DEGs) identified using microarrays. In addition, hub 
genes, including kininogen 1 (KNG1), vascular cell adhesion 
molecule 1 (VCAM-1), apolipoprotein C3 (APOC3), alpha 
2-HS glycoprotein (AHSG), erb-b2 receptor tyrosine kinase 
2 (CD340), secreted protein acidic and cysteine rich (SPARC), 
vitronectin, and vimentin were also identified (12,13). 

Bioinformatics analyses have generally been conducted 
based on hundreds and thousands of DEGs identified from 
microarrays or RNA sequencing (12). The power of the 
bioinformatics analysis was determined by the quality and 
quantity of DEGs involved in the analysis. However, the 
expression levels of the identified DEGs generally need 
to be validated by quantitative real-time polymerase chain 
reaction (qPCR) (14,15), and their role in promoting or 
inhibiting resistance must be investigated using in vitro 
or in vivo studies. Due to the limitations of practical 
capacity, it is difficult to validate the massive number of 
DEGs identified. Therefore, bioinformatics analysis based 
on validated resistance driver genes should be conducted. 
A bioinformatic analysis-based validation of DEGs has 
not yet been reported. Thus, in the present study, we 
collected experimentally determined sorafenib-related 
resistance genes (SRRGs) from publications and performed 
a SRRG-based bioinformatics analysis to investigate their 
participation in sorafenib resistance in HCC. We present 
the following article in accordance with the STREGA 
reporting checklist (available at https://dx.doi.org/10.21037/
jgo-21-377).

Methods

Search strategy, study selection, and SRRGs collection

Data from Medline and Embase were retrieved using an 
advanced strategy combining keywords of hepatocellular 
(hepatic, hepatocellular, or liver), sorafenib, and resistance 
(resistance or resistant). The search was conducted on 19 
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November 2018. Studies that focused on resistance-related 
molecules, both in vivo and in vitro, were eligible. All 
publications were independently reviewed and evaluated 
by 2 investigators (LW Zhang and L Fang) according 
to the abstracts and full texts, if necessary. Genes were 
investigated with respect to their ability to promote 
or inhibit the behavior of resistance to sorafenib, and 
were identified as SRRGs upon validation by genetic or 
pharmacologic interventions to alter expression levels of 
genes or proteins in cell lines or animal models of HCC. 
Disagreements between the investigators were resolved by 
consensus.

Gene ontology and pathway enrichment analysis of SRRGs

To annotate the SRRGs at the functional level, Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway (http://www.genome.jp/) 
enrichment analysis was performed using the Database 
for Annotation, Visualization and Integrated Discovery 
(DAVID) online tool (https://david.ncifcrf.gov/). Statistical 
significance was set at P<0.05.

Protein-protein interaction (PPI) network and hub genes

Interactive relationships among SRRGs were evaluated 
by PPI analysis. The SRRGs were mapped to the Search 
Tool for the Retrieval of Interacting Genes (STRING) 
database to construct interactions among genes, and only 
experimentally validated interactions with a combined 
score >0.4 were deemed significant. Then, PPI networks 
were built using the Cytoscape software package (version 
3.6.1, National Institute of General Medical Sciences, 
Bethesda, MD, USA) according to the Molecular Complex 
Detection (MCODE) (16) and in terms of the function 
and localization similarity of proteins within predicted 
complexes with the 2 of degree cutoff, 2 of K-core, 0.2 of 
node score cutoff, and 100 of maximum depth from seed.

Statistical analysis

A P value less than 0.05 is statistically significant.

Results

Identification of SRRGs

The search strategy described above generated a list of 833 
publications (Figure 1). Of these, 688 studies were excluded 
based on the following criteria: non-basic research (n=55), 
other drugs (n=138), non-hepatocellular cancer (n=61), 
duplicate studies (n=52), irrelevant to resistance (n=237), 
inaccessible information (n=18), no validated relation to the 
promotion or inhibition of resistance (n=116), and focused 
on long non-coding (lnc)RNAs or micro (mi)RNAs (n=11). 
A total of 145 articles were found to be relevant. Only 11 
and 1 of the papers reported 2 and 3 molecules, respectively, 
while the other papers focused on a single gene. A total of 
145 genes, with 117 resistance-promoting genes and 28 
resistance-inhibiting genes, were included. A total of 23 
(15.86%), 2 (1.38%), 2 (1.38%), 1 (0.69%), and 1 (0.69%) 
genes were reported in 2, 3, 4, 6, and 14 publications, 
respectively. Of these, AKT1, TGFB1, EGFR, MAPK14, 
ERK, and SCD1 were the most frequently reported genes in 
14, 6, 4, 4, 3, and 3 studies, respectively. 

N=833

N=145

N=688
Irrelevant to resistance (237)
Other drugs (138)
Non-focused mechansim of resistance (116)
Non-hepatocellular cancer (61)
Non-basic research (55)
Duplicate studies (52)
Inaccessible information (18)
Focused on miRNA or LncRNA (11)

Publication

Genes

Promoting resistance (117)

Inhibiting resistance (28)

n=51
Duplicate genes (51)

N=196

N=145

Figure 1 Flow-chart describing publication selection. miRNA, 
microRNA; lncRNA, long non-coding RNA.

http://www.genome.jp/)
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GO of SRRGs

A total of 1,721, 1,474, and 202 GO terms were enriched 
based on total SRRGs, resistance-promoting genes, and 
resistance-inhibiting genes, respectively. The positive 
regulation of cell migration (P=3.63E-19), regulation of 
epithelial cell proliferation (P=9.28E-19), response to 
oxygen levels (P=3.31E-18), positive regulation of epithelial 
cell proliferation (P=1.08E-17), epithelial cell proliferation 
(P=1.89E-17), response to hypoxia (P=1.23E-16), response 
to decreased oxygen levels (P=1.95E-16), regulation of 
DNA binding transcription factor activity (P=3.78E-16), 
gland development (P=7.55E-16), and positive regulation of 
neurogenesis (P=7.55E-16), were significantly enriched.

Pathway enrichment analysis of SRRGs

There was a total of 113 pathways identified as being 
enriched using the KEGG database. The top 10 pathways 
were: prostate cancer (P=6.16E-16), proteoglycans in cancer 
(P=2.37E-15), PI3K-Akt signaling pathway (P=1.45E-14), 
melanoma (P=1.23E-13), EGFR tyrosine kinase inhibitor 
resistance (P=4.33E-13), breast cancer (P=5.22E-13), 
MAPK signaling pathway (P=3.58E-12), gastric cancer 
(P=9.56E-12), HIF-1 signaling pathway (P=9.93E-12), and 
AGE-RAGE signaling pathway in diabetic complications 
(P=9.93E-12) (Figure 2). The pathway of cancer was the 
pathway involving the highest number of genes (Figure 3).

Moreover, pathways related to cell proliferation or 
apoptosis (Ras, Rap1, JAK-STAT, AMPK, VEGF, ErbB, 
mTOR, FoxO, apoptosis), immune function (Th17 cell 
differentiation, Th1 and Th2 cell differentiation, interleukin 
(IL)-17, T cell receptor, nuclear factor (NF)-kappa B, Toll-
like receptor, B cell receptor, tumor necrosis factor (TNF), 
c-type lectin receptor, Fc epsilon RI, RIG-I-like receptor, 
NOD-like receptor), endocrine metabolism (prolactin, 
thyroid hormone, adipocytokine, GnRH, apelin, insulin), 
and stem cell and differentiation (regulating pluripotency of 
stem cells, focal adhesion, adherens junction, regulation of 
actin cytoskeleton) were significantly related to upregulated 
genes. Central carbon metabolism in cancer, transforming 
growth factor (TGF)-beta signaling pathway, miRNAs in 
cancer, cellular senescence, human T-cell leukemia virus 
1 infection, p53, and adherens junction proteins were 
significantly related to downregulated genes.

PPI network and hub genes

When the cutoff value of degrees was set to 10, a total of 
81 genes were identified as hub genes. The top 25 hub 
nodes [value of degree], included: TP53 [87], AKT1 [82], 
EGFR [69], STAT3 [67], VEGFA [63], JUN [62], MAPK1 
[59], IL6 [59], PTEN [58], CTNNB1 [53], KRAS [52], 
FGF2 [50], MTOR [46], CD44 [43], HGF [42], HIF1A 
[39], CXCR4 [38], HDAC1 [38], PTGS2 [36], RELA 

KEGGBP
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Figure 2 Top 20 categories of biological processes and KEGG pathways enriched by SRRGs. SRRGs, sorafenib-resistance-related genes; 
KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes.
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[35], MAPK14 [35], PIK3CA [35], IGF1R [34], CDKN1A 
[34], and MET [33], Table 1. Among these genes, 44 were 
involved in 3 clusters (Figure 4). The 3 clusters included 
32, 3, and 9 genes with HIF1A, CCNE1, and CD24 as seed 
nodes, respectively.

Discussion

The underlying mechanism of sorafenib resistance has been 
proposed using bioinformatics analysis based on hundreds, 
or even thousands of DEGs, from high-throughput 
methods, such as microarray and RNA sequencing (12,13). 
However, most of the DEGs were not validated in terms of 
expression levels or their actual role in resistance. Therefore, 
in the present study, a comprehensive bioinformatics analysis 

was conducted based on a collection of experimentally 
validated resistance-related genes in HCC. 

A total of 145 SRRGs were collected from 145 studies 
and used for bioinformatics analysis. More than 4/5 of 
the genes were upregulated in the resistance-related 
samples, and promoted resistance. Approximately 80% 
and 16% of the included genes were reported in only 1 or  
2 publications, respectively, despite 6 genes being reported 
by 14 (AKT1), 6 (TGFB1), 4 (EGFR and MAPK14), and 
3 (ERK and SCD1) studies. Although the size of the gene 
collection seems moderate, in comparison with previously 
published bioinformatics analysis of HCC, which included 
256 (17), 541 (13), 602 (18), 1,167 (19), 1,230 (20), and 
1,319 (12) DEGs, the statistical power was significant and 
included 1,721 related functions, 113 pathways, 81 hub 

Table 1 Clusters proposed by protein-protein interaction

Cluster Parameters Node IDs

1 Score =25.87; Nodes =32; Edges =401 CD44, POU5F1, HGF, TWIST1, MET, GSK3B, AKT1, TP53, MTOR, PPARG, 
CDKN1A, EDN1, PTGS2, CXCR4, RELA, IGF1R, DNMT1, TGFB1, ABCG2, 
MAPK14, MAPK1, JUN, HIF1A, VEGFA, PTEN, IL6, STAT3, EGFR, KRAS,  
PIK3CA, CTNNB1, FGF2

2 Score =3.00; Nodes =3; Edges =3 CCNE1, CDK5, PPP2R4

3 Score =2.75; Nodes =9; Edges =11 FGFR1, HDAC1, HMGB1, CD24, NANOG, ERBB3, PLAU, VEGFC, ETS1

Figure 4 Identification and enrichment analysis of the text mining genes by PPI, protein-protein interaction (PPI). (A) significant module 
with total genes; (B) module 1, the most significant module with 30 nodes; (C) module 2; (D) module 3

A B

C

D
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genes, and 3 clusters. 
Biological functions including cell proliferation, cell 

migration, development, response to oxygen levels, EMT, 
cell skeleton, protein function, and autophagy were proposed 
as crucial functions related to resistance in this study. 
This is consistent with the findings of previous studies. 
Sorafenib acts as an anti-angiogenic agent by reducing 
microvessel density, promoting intra-tumoral hypoxia, and 
upregulating hypoxia-inducible factors (HIFs). A hypoxic 
microenvironment favors resistant cells (8). In addition to 
anti-angiogenesis, anti-clonogenesis and cytotoxic effects 
are crucial in the antitumor effects elicited by sorafenib (21).  
Autophagy has been reported as a controversial role of 
sorafenib in HCC treatment, where it has been shown 
to improve the power of sorafenib against HCC cells, or 
conversely, serve as a protective factor against HCC cells 
from sorafenib (22). The EMT caused drug resistance across 
various solid tumors, and was also found to be the main 
source of sorafenib resistance by reprogramming cancer cells 
and generating CSCs after sorafenib treatment (23,24).

Pathways related to cell proliferation, apoptosis, 
immune function, endocrine metabolism, stem cell 
function, and differentiation were enriched, based on 
SRRGs. Most recently, many studies have focused on 
the role of immunosuppression in sorafenib resistance. 
Immunosuppression-related resistance to sorafenib has been 
attributed to hypoxia, demonstrated by the upregulated 
expression of immune checkpoint inhibitor programmed 
death ligand-1 (PD-L1) (25) and increased infiltration of 
Gr1+ myeloid-derived suppressive cells, regulatory T cells, 
M2 macrophages (26), and tumor-associated neutrophils (27), 
which may be associated with increased SDF1α, CXCR4, 
CCL2/CCR2, and CCL17 expression levels in tumors 
(25-29). Modulation of immune responses by combining 
a CCR2 antagonist with a CXCR4 inhibitor and an anti-
PD-1 antibody synergized sorafenib effects through elevated 
intratumoral infiltration of CD8+ T cells, and increased 
expression levels of IL-2, TNF-α, and interferon gamma 
(IFN-γ) (25,26,28,30).

A total of 81 hub genes were identified, among which 
2, 12, and 25 were involved in more than 80, 50, and 30 
degrees, respectively. The top 3 hub genes, TP53, AKT1, 
and EGFR, contributed 87, 82, and 69 edges, respectively. 
Although TP53, a coded tumor-suppressor protein p53, 
was validated as an SRRG in only 1 study, the sensitivity of 
sorafenib can be abrogated by p53 knockdown in HepG2 
cells and recovered by p53 overexpression in Hep3 B 
cells (31), and it was identified as the top hub gene. As a 

transcription factor, p53 is a master regulator of cell cycle 
arrest, DNA repair, apoptosis, senescence, angiogenesis, 
autophagy, metabolism, development, stem cell function, 
and chemoresistance in HCC (32-34). The other 2 top 
hub genes, EGFR and AKT, have frequently been reported 
as key molecules causing sorafenib resistance (10). The 
PI3K/AKT signaling pathway (35,36) and HGF/c-Met/
AKT signaling (37,38) are 2 well-known tumor survival 
mechanisms that play crucial roles in the development and 
progression of HCC by overcoming sorafenib-induced cell 
apoptosis and autophagic death (37,38). Blocking AKT 
increases the sensitivity of HCC cells to sorafenib. 

The findings described herein are consistent with 
previously published reviews (8-10,21-23,39,40), but 
inconsistent with the bioinformatics analysis based on 
DEGs conducted by Huang et al. (12). In a previous study, 
the function of DNA damage and repair, the extracellular 
matrix, and others (negative regulation of endopeptidase 
activity, cholesterol homeostasis, fibrinolysis, and platelet 
degranulation) were addressed (12). The pathways related 
to complement, lysosome, insulin resistance, metabolic 
pathways,  fat digestion and absorption, ribosome 
biogenesis in eukaryotes, RNA transport, fanconi anemia 
pathway, taste transduction, and cell cycle were proposed 
to be crucial in sorafenib resistance (12). In addition, 8 hub 
genes (KNG1, VCAM1, APOC3, AHSG, ERBB2, SPARC, 
VTN, and VIM) were selected in Huang et al.’s study using 
the same cutoff criterion (>10) (12), and no genes were 
shared between the two collections of hub genes identified. 
Compared with our study, a narrow mechanism contributed 
to sorafenib resistance in Huang’s paper was reported. The 
clear reasons contributing to this inconsistency are not 
clear, and may be due in part to individual characteristics of 
HuH-7 cell.

A comprehensive bioinformatics analysis,  based 
on validated genes, has not yet been published. It was 
interesting to test a validated molecule-based analysis. 
As a preliminary result, it seems to have higher statistical 
power in comparison to an analysis based on DEGs. Some 
limitations of this study should be addressed. First, the 
genes were collected from individual studies, which had 
been validated by different methods, such as genetic or 
pharmaceutical intervention, based on various cell lines 
or animal models. The heterogeneity of each study was 
considered. Moreover, the reported genes tended to 
focus on ‘popular’ molecules, which had been frequently 
investigated and reported. Although a comprehensive 
analysis of the mechanism was provided, this approach 
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does not provide an efficient method to explore novel 
mechanisms of resistance, as it only includes experimentally 
validated SRRGs.

In conclusion, the present study identified experimentally 
validated SRRGs from publications and illustrated the 
underlying mechanism of sorafenib resistance using 
bioinformatics analysis based on the SRRGs. Our findings 
further revealed the mechanisms of sorafenib resistance 
in HCC and provided potential biomarkers for outcome 
prediction and novel treatment targets.
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