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Background: Many studies have indicated that autophagy plays an important role in multiple cancers, 
including hepatocellular carcinoma (HCC). This study aimed to establish a prognostic signature for HCC 
based on autophagy-related genes (ARGs) to predict the prognosis of patients.
Methods: The list of ARGs was derived from screening National Center for Biotechnology Information 
(NCBI)-Gene and Molecular Signatures Database (MSigDB) datasets. Differential analysis was conducted 
via the R limma package in HCC patients based on The Cancer Genome Atlas (TCGA) database. Univariate 
and multivariate Cox regression analysis were conducted to identify key prognostic ARGs via the survival 
package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were 
performed by clusterProfiler package. The Estimation of Stromal and Immune cells in MAlignant Tumor 
tissues using Expression data (ESTIMATE) algorithm was used to conduct immune analysis. Finally, the 
correlation between the prognostic model and clinical characteristics was also assessed, including age, tumor-
node-metastasis (TNM) stages, and tumor grades.
Results: Firstly, 106 differential ARGs were identified and 10 candidates were further confirmed via Cox 
regression analysis, including BAMBI, HIF1A, SERPINE1, EZH2, SLC9A3R1, IGFBP3, HSPB8, DAB2, 
CXCL1 and PRNP. The receiver operating characteristic (ROC) curve analysis revealed that the ARGs 
risk model had a well diagnostic positive rate with 1-year area under the curve (AUC) =0.688 and 3-year 
AUC =0.674. Correlation analysis indicated that only advanced tumor stages were positively associated with 
high ARGs scores with P=0.0227. There were also significant differences in tumor purity (P=6.71e-05), 
infiltrating cell analysis (P=7.77e-05), immune analysis (P=7.9e-05), and stromal cells analysis (P=0.0015) in 
high- and low-risk ARGs samples. The genes HIF1A, IGFBP3, and DAB2 were found to have high frequent 
missense mutations in samples with high-risk ARGs scores. Lastly, we also established a nomogram to 
predict overall survival (OS) of HCC by integrating ARGs scores and other clinical parameters.
Conclusions: Our study established an autophagy-related signature for predicting the prognosis of HCC 
patients, providing a thorough understanding of the underlying mechanisms of autophagy in HCC.
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Introduction

Liver cancer is the fifth leading cause of all malignant 
tumors and the third leading cause of cancer-related 
mortality (1,2). According to the latest statistics, it has 
been estimated that new cases may reach 42,230 in 2021, 
with nearly 30,230 deaths in the United States (3). The 
incidence and mortality of liver cancer are increasing yearly. 
Hepatocellular carcinoma (HCC) accounts for 85% of 
all liver cancers, which is a highly heterogeneous tumor 
(4,5). As previously reported, HCC is highly associated 
with chronic hepatitis B virus (HBV) or HCV infection, 
exposure to aflatoxins, nonalcoholic fatty liver disease 
(NAFLD), as well as alcohol abuse (6,7). Although intensive 
efforts have been made to treat HCC, including surgical 
resection, liver transplantation, vascular intervention, or 
radiofrequency ablation, the overall survival (OS) of HCC 
has remained unsatisfactory and the 5-year survival rate is 
approximately 18% in the United States (8-10). As a result, 
there is an urgent need to construct a useful prognostic 
model to classify patients at high risk of recurrence or distal 
metastasis. As previously reported, conventional models 
have been established by integrating tumor-node-metastasis 
(TNM) stages, tumor grades, age, clinical pathological 
stages, or vascular invasion to predict the prognosis 
of HCC (11-13). Nevertheless, the overall predictive 
efficiency of constructed models is still limited, owing to 
the remarkable heterogeneity of HCC (14,15). Therefore, 
it is of great significance to elucidate the underlying 
molecular mechanisms of HCC progression and identify 
novel biomarkers to improve the outcomes and prognosis 
prediction of HCC patients.

Autophagy is a well-known metabolic crosstalk that 
maintains the intra-cellular homeostasis via a lysosomal 
degradation pathway (16-18). Previous knowledge has 
indicated that autophagy is indispensable for cell survival, 
differentiation, and development (19). Autophagy could 
suppress tumorigenesis in the early stages via eliminating 
damaged proteins and organelles to attenuate chromosomal 
instability (20,21). However, autophagy can also enhance 
tumor progression through supplying nutritional contents 
for tumor survival under some stresses, like hypoxia, 
ischemia, or cell starvation (18,22). We thus intended to 
identify abnormal autophagy-associated genes to construct 
nomogram in HCC. Mutations of autophagy-related genes 
(ARGs), like ATG2B, ATG4, ATG5, and ATG12, were found 
to be associated with multiple cancers, like familial myeloid 
malignancies, gastric, and colorectal cancers (23,24). 

Previous study reported that the expression of long non-
coding (lnc)-HOTAIR and ATG-7 are significant to predict 
the development and prognostic outcomes of HCC patients 
with HCV-4 infection (25). Besides, Yu et al. also indicated 
that miR-155-5p could reverse adriamycin resistance in 
HCC by targeting ATG5 (26). These ATGs might be 
modulated by several levels of crosstalk and in turn regulate 
multiple signaling pathways, which could be targetable with 
useful drugs. As a result, how to identify ARGs associated 
with HCC prognosis and progression is meaningful for 
further management of HCC.

In the current study, owing to the availability and 
development of high-throughput sequencing data, it was 
feasible for us to systematically assess the associations 
between ARGs and the survival prognosis of HCC patients 
based on these public datasets. We intended to identify 
and verify an ARGs signature that could predict prognosis 
and provide therapeutic vulnerabilities in HCC. Different 
from previous studies, we also illustrated the overall gene 
expression profiles and discussed the relationships between 
ARGs and immune infiltrations. We further provided a 
novel nomogram model for HCC patients with remarkable 
clinical significance. We present the following article in 
accordance with the TRIPOD reporting checklist (available 
at https://dx.doi.org/10.21037/jgo-21-664).

Methods

Identification of differentially expressed genes (DEGs)

The raw gene expression levels of resistance to sorafenib 
in HCC were downloaded from GSE94550 database. The 
limma package in R (https://bioconductor.org/packages/
release/bioc/html/limma.html) was used to obtain the 
DEGs with more than a 1.5-fold difference in expression 
(adj.P<0.01). Moreover, we obtained the genes involving 
in autophagy processes from the Molecular Signatures 
Database (MSigDB) and National Center for Biotechnology 
Information (NCBI)-Gene website by using the keyword 
“autophagy”. The candidate genes were used to further 
analyze intersection with DEGs and ARGs. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Functional enrichment analysis

Functional enrichment analysis of autophagy-related 
DEGs was performed by c lusterProfi ler  R package 
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(https://bioconductor.org/packages/release/bioc/html/
clusterProfiler.html) to identify Gene Ontology (GO) 
categories and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways with P<0.05 were used as the cut-off. 
The visualization was performed using ggplot2 package in R 
software (https://cran.r-project.org/web/packages/ggplot2/
index.html).

Establishment of experimental model

Univariate Cox analysis was used to initially identify 
potential prognostic candidate genes (27). Least absolute 
shrinkage and selection operator (LASSO) penalty Cox 
regression analysis was used for confirmation (28). Based 
on the optimal lambda value that was selected through 
1,000 cross-validations, a panel of prognostic candidate 
genes was determined. The regression coefficient of 
the Cox regression model was used to calculate the risk 
scores by using The Cancer Genome Atlas (TCGA)-Liver 
Hepatocellular Carcinoma (LIHC) database. Risk score = 
(Coefficientmgene_1 × gene_1 expression) + (Coefficientmgene_2 
× gene_2 expression) + … + (Coefficientgene_n × gene_n 
expression) (29). With the median risk score as cutoff, all 
participants in the training data were split into a high-risk 
group and a low-risk group. International Cancer Genome 
Consortium (ICGC) data were used as testing data for 
validation. The survival curve with high-risk and low-risk 
was analyzed by Kaplan-Meier survival analysis and the log-
rank test. Nomogram-based clinical modeling has been 
one of the most widely used statistic methods in clinical 
investigations. A receiver operating characteristic (ROC) 
curve was used for the sensitivity and specificity of the 
nomogram.

Immune score determination for the microenvironment

The gene expression amounts of prognostic autophagy-
related DEGs were normalized using the limma package. 
Then, immune score stromal scores were calculated 
by applying the Estimation of Stromal and Immune 
cells in MAlignant Tumor tissues using Expression 
data (ESTIMATE) algorithm to the normalized matrix  
data (30). The scores were used to predict the infiltration of 
non-tumor cells, by analyzing the specific gene expression 
signature of immune and stromal cells (30).

Single nucleotide polymorphism (SNP) analysis

TCGA SNP data were downloaded from the Genome Data 
Commons Data Portal (https://portal.gdc.cancer.gov). The 
maftools R package (https://bioconductor.org/packages/
release/bioc/html/maftools.html) provided a multitude of 
analysis modules to perform the visualization process (31).

Statistical analysis

The survival package was used to perform the Cox 
regression model. The normalization and differentially 
expressed analysis were conducted using the limma package. 
All statistical analysis was implemented based on the R 
software (R 4.1.0; https://cran.r-project.org/bin/windows/
base/). A P value <0.05 was considered as significant.

Results

Identification of ARGs

Firstly, we searched the ARGs via key word of autophagy 
from NCBI-Gene and MSigDB datasets. The list of ARGs 
was downloaded with the keyword of autophagy from 
the NCBI-Gene. Besides, we also accessed the MSigDB 
dataset via the identity email to obtain the ARGs. The final 
ARGs derived from the two datasets were overlapped for 
the following study, and are summarized in https://cdn.
amegroups.cn/static/public/jgo-21-664-1.xlsx.

Screening of differentially expressed ARGs (DE-ARGs)

To identify the DE-ARGs in HCC, we conducted the 
differential analysis based on the limma package. We 
obtained the transcriptome matrix data from the GSE94550 
dataset, including 6 HCC samples and 3 normal control 
samples. The expression data of ARGs was extracted 
and differential analysis was performed then with the 
threshold of adj.P.Val <0.05 and |logFC| >1.0. As shown in  
Figure 1A, 856 sorafenib resistance-related DEGs were 
identified in the volcano plot. Subsequently, integration 
analysis was conducted with the DE-ARGs to finally find 
the 106 differential SRGs, of which 61 genes were up-
regulated and 45 were down-regulated. The results were 
further illustrated in Venn diagram and heatmap via 
ggplot2 package (Figure 1B,1C). In order to further analyze 

https://bioconductor.org/packages/release/bioc/html/clusterProfiler.htm
https://bioconductor.org/packages/release/bioc/html/clusterProfiler.htm
https://cran.r-project.org/web/packages/ggplot2/index.html
https://cran.r-project.org/web/packages/ggplot2/index.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://bioconductor.org/packages/release/bioc/html/maftools.html
https://cran.r-project.org/bin/windows/base/
https://cran.r-project.org/bin/windows/base/
https://cdn.amegroups.cn/static/public/jgo-21-664-1.xlsx
https://cdn.amegroups.cn/static/public/jgo-21-664-1.xlsx
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the relationships between ARGs and HCC survival, 28 
genes with significant differences were identified based 
on the univariate Cox regression analysis with P<0.05  
(Figure 1D). In addition, Kaplan-Meier analysis was 
performed to identify 13 ARGs that correlated with the OS 
of HCC. We thus integrated the results from the univariate 
Cox regression analysis and Kaplan-Meier analysis to 
overlap the final 10 candidates (Figure 1E).

GO and KEGG analysis based on DE-ARGs

To analyze and ascertain the functional and biological 

significance of altered ARGs in HCC, we utilized the 
clusterProfiler package to conduct GO and KEGG analysis, 
which were visualized in chord diagrams via ggplot2. The 
results indicated that dysregulated DE-ARGs were mainly 
involved in regulation of autophagy of mitochondrion, Wnt 
signaling pathway, cell population proliferation, and cell 
migration biological items (Figure 2A). The significantly 
enr iched pathways  mainly  conta ined autophagy, 
transcriptional misregulation in cancer, transforming 
growth factor-β (TGF-β), tumor necrosis factor (TNF), 
chemokine signaling pathway, and complement and 
coagulation cascades crosstalk (Figure 2B).

Figure 1 Identification of dysregulated ARGs in sorafenib-resistant HCC. (A) Volcano plot exhibiting the 856 DE-ARGs in HCC, where 
up-regulated genes are noted in red, blue genes are noted in blue, and not significant genes are noted in grey. (B) Venn diagram revealing the 
overlapped genes between ARGs and DEGs. (C) Heatmap plot exhibiting the specific ARGs in HCC, as indicated. (D) Exhibition of results 
from the univariate Cox regression analysis. (E) Venn graph indicating the overlapped genes between significant genes from Cox regression 
analysis and those from Kaplan-Meier analysis. ARGs, autophagy-related genes; HCC, hepatocellular carcinoma; DE-ARGs, differentially 
expressed ARGs; DEGs, differentially expressed genes.
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Assessment of predictive efficiency of ARGs model

Based on the results from the Cox regression and Kaplan-
Meier analyses, we constructed the predictive model using 
the 10 candidates and calculated the corresponding risk 
scores. The risk formula was calculated as the following: 
risk scores = expression of gene1 × (coefficient of gene1) 
+ the expression of gene2 × (coefficient of gene2) + … 
+ expression of gene10 × (coefficient of gene10), where 
Coefficient meant the coefficient of the gene within the 
prognostic model. Kaplan Meier analysis then indicated that 
HCC patients with high-risk scores had a lower survival 
rate (log-rank test P=1.435e-07; Figure 3A). As shown in 
Figure 3B, the heatmap revealed the expression data of 
genes in the risk model. As indicated in Figure 3C, the 
scatter plot of the risk scores and survival time across the 
samples were illustrated. The ROC curve analysis revealed 
that the ARGs risk model had a well diagnostic positive rate 
[1-year area under the curve (AUC) =0.688; Figure 3D], and 
the 3- and 5-year AUCs were 0.674 and 0.66, respectively 
(Figure 3E,3F).

Validation of ARGs predictive model in the external HCC 
datasets

To further verify the predictive accuracy of established 
model, we utilized the ICGC-HCC cohort as the external 
dataset to perform the validations. The median risk score 
was used as the cutoff to classify the samples into high- 
and low-risk groups. Additionally, Kaplan-Meier analysis 
also suggested that samples with high-risk scores had lower 
survival rates relative to those with low-risk scores (log-rank 
test P<0.0001; Figure 4A). Lastly, the 1- and 3-year AUC 
for predicting false positive diagnostic effects were 0.624 
and 0.635, respectively (Figure 4B,4C).

Differential analysis of ARGs scores across the clinical 
characteristics of HCC

To further discuss the differences of ARGs in clinical 
factors, we collected the clinical information of HCC 
samples and merged them with ARGs scores into one 
matrix. Subsequently, correlation analysis indicated that 

Figure 2 GO and KEGG enrichment analysis based on the dysregulated ARGs in HCC. (A) Top 10 genes from the GO analysis. (B) Chord 
Diagram visualizing the results from the KEGG analysis. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; ARGs, 
autophagy-related genes; HCC, hepatocellular carcinoma.

A B
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Figure 3 Assessment of predictive efficiency for the established risk scores. (A) Analysis of OS for high- and low-risks. (B) Heatmap 
revealing the expression data of indicated ARGs and risk scores. (C) The scatter plot revealing the associations between samples and risk 
scores. (D-F) ROC curves revealing the predictive efficiency of risk scores. OS, overall survival; ARGs, autophagy-related genes; ROC, 
receiver operating characteristic.

only advanced tumor stages was positively associated with 
high ARGs scores with P=0.0227 (Figure 5A-5E). However, 
no significant associations were found between ARGs with 
other clinical parameters, including age (P=0.9306), gender 
(P=0.4325), HBV infection (P=0.3573), and HCV infection 
(P=0.1243).

Assessment of ImmuneScore, StromalScore, and tumor 
purity in high- and low-risk HCC samples

We utilized the ESTIMATE algorithm to analyze the 
differences of ImmuneScore, StromalScore, and tumor 
purity in high- and low-risk samples. In the HCC tumor 
microenvironment (TME), immune cells and stromal cells 
are the two main types of cells. The ESTIMATE algorithm 
was carried out based on the transcriptome data to calculate 

the ImmuneScore and StromalScore for each sample, 
thereby inferring the proportions of the two types of cells. 
Samples with high infiltrating levels of immune cells and 
stromal cells often have low levels of tumor purity (32,33). 
As shown in Figure 6, there were significant differences 
of tumor purity (P=6.71e-05), infiltrating cell analysis 
(P=7.77e-05), immune analysis (P=7.9e-05), and stromal 
cells analysis (P=0.0015). We thus speculated that high-risk 
samples may have disorders of immune regulations.

Differential mutation profiles of ARGs in high- and low-
risk HCC samples

To analyze the mutation information of ARGs in high- 
and low-risk groups, we downloaded the maf profiles of 
TCGA-LIHC and used the maftool package to evaluate 
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Figure 4 Validation of the risk model in the ICGC-HCC cohort. (A) OS analysis between high- and low- risk samples. (B) ROC analysis 
revealing the 1-year AUC. (C) ROC analysis revealing the 3-year AUC. ICGC, International Cancer Genome Consortium; HCC, 
hepatocellular carcinoma; OS, overall survival; ROC, receiver operating characteristic; AUC, area under the curve.

Figure 5 Differential analysis of ARGs risk scores in several clinical characteristics, including age (A), gender (B), tumor stage (C), HCV 
infection (D) and HBV infection (E). ARGs, autophagy-related genes; HCV, hepatitis C virus; HBV, hepatitis B virus.
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the SNP information. Among the genes within the ARGs 
risk model, we found that 6 genes had notable mutation 
information, in which HIF1A, IGFBP3, and DAB2 had 
high frequent missense mutations (Figure 7A). Besides, the 
results of variant allele frequency indicated that CXCL1 
had the highest variant frequency (Figure 7B). Lastly, we 
utilized the lollipopPlot (https://www.rdocumentation.org/
packages/maftools/versions/0.99.30/topics/lollipopPlot) 
to visualize the SNP information of each gene, including 
CXCL1, HIF1A, IGFBP3, DAB2, SERPINE1, and EZH2  
(Figure 7C-7H).

Independent prognostic analysis of ARGs in HCC

To analyze the relationships between ARGs scores with 
clinical characteristics in HCC, univariate Cox regression 
analysis was conducted to evaluate the regression 
associations between clinical factors and OS of HCC. 
Univariate Cox regression results indicated that HBV 
infection (HR =0.673; P=0.009), tumor stage (HR =0.583; 
P=0.009), and clinical factors and ARGs risk scores (HR 
=0.318; P=0.044) were all significantly related to OS of 
HCC (Figure 8A). The ROC analysis indicated that ARGs 
risk scores had the highest predictive efficiency with AUC 

Figure 6 Immune infiltrating inference and differential analysis of tumor purity in high- and low-risk groups. (A) ImmuneScore, 
StromalScore, and tumor purity analysis based on the transcriptome data via ESTIMATE algorithm. (B) Boxplot exhibiting the immune 
infiltration analysis. (C) Estimated ImmuneScore based on the transcriptome data via ESTIMATE algorithm. (D) Estimated StromalScore 
based on the transcriptome data via ESTIMATE algorithm. ESTIMATE, the Estimation of Stromal and Immune cells in MAlignant Tumor 
tissues using Expression data.
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=1.0, followed by HBV infection with AUC =0.513, and 
tumor stage with AUC =0.443 (Figure 8B). Lastly, we 
also established the nomogram to predict OS of HCC by 
integrating ARGs scores and clinical parameters, where the 
points in the first arrow represented the score references 
for each variable. We thus calculated the predictive scores 
of each variable for each participant and summed them to 
obtain the overall scores. The sum of scores were mapped 

into the total points to obtain the 1-, 3-, and 5-year of 
predictive OS probabilities (Figure 8C).

Discussion

As a highly aggressive cancer, HCC is prone to recurrence 
and to having worse outcomes (34-36). Therefore, 
diagnostic and therapeutic biomarkers with high predictive 

Figure 7 Differential mutation profiles of ARGs in high- and low-risk HCC samples. (A) SNPs analysis in high- and low-risk groups. 
(B) Boxplot indicating the mutation frequency. (C) Mutation types and mutation rates of COL15A1 gene, as indicated. (D) Analysis of the 
distribution of indicated genes across the chromosomes. (E-H) The lollipopPlot visualizing the SNP information of each gene, including 
IGFBP3 (E), DAB2 (F), SERPINE1 (G), and EZH2 (H). ARGs, autophagy-related genes; HCC, hepatocellular carcinoma; SNPs, single 
nucleotide polymorphisms.
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accuracy are urgently warranted. Some researchers 
have observed that autophagy is highly related to distal 
metastasis, drug resistance, and progression of HCC 
(4,37,38). However, intensive studies have mainly given 
attention to the impacts of ARGs in tumorigenesis and 
drug development, whereas few studies have addressed 
the prognostic significance of ARGs in cancer. In recent 

years, many studies have utilized the m6A-related genes, 
glycolysis-related genes, hypoxia-related genes, or 
ferroptosis-related genes to establish prognostic signatures, 
respectively, to predict the prognosis of HCC (39,40). 
Lin et al. previously constructed a novel nomogram that 
predicts OS in HCC patients (41). However, this study 
did not further discuss the differential mutation profiles of 

Figure 8 Independent prognostic analysis of ARGs risk scores. (A) Associations between OS and clinical characteristics. (B) ROC curve 
showing the predictive efficacy of risk scores of clinical characteristic factors. (C) Nomogram revealing the 1-, 3-, and 5-year of predictive 
OS probabilities. ARGs, autophagy-related genes; OS, overall survival; ROC, receiver operating characteristic; AUC, area under the curve; 
HCV, hepatitis C virus; HBV, hepatitis B virus.
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ARGs and immune infiltration patterns in high- and low-
risk ARGs groups. Besides, owing to different screening 
procedures, the DE-ARGs and results in the two studies are 
also distinct.

Here, we downloaded the expression data of ARGs 
of HCC patients from TCGA dataset. First of all, we 
conducted differential analysis between the tumor samples 
and normal tissues to identify a total of 106 DEGs. 
Functional enrichment analysis suggested that these DEGs 
were mainly enriched in autophagy of mitochondrion, 
Wnt signaling pathway, cell population proliferation, and 
cell migration biological items. Afterwards, the ARGs risk 
scores were calculated based on Cox regression analysis 
by integrating the 10 genes into the following formula: 
risk scores = expression of gene1 × (coefficient of gene1) 
+ the expression of gene2 × (coefficient of gene2) + … + 
expression of gene10 × (coefficient of gene10). To further 
validate the predictive accuracy of established model, we 
utilized the ICGC-HCC cohort as the external dataset to 
perform the validations. We also utilized the ESTIMATE 
algorithm to analyze the differences of ImmuneScore, 
StromalScore, and tumor purity in high- and low-risk 
samples. Among the genes within the ARGs risk model, 
we found that 6 genes had notable mutation information, 
among which HIF1A, IGFBP3, and DAB2 had high frequent 
missense mutations. Lastly, we also established a nomogram 
to predict OS of HCC by integrating ARGs scores and 
clinical parameters, which has great clinical significance. 
Compared with other nomograms that were established 
based on other molecular signature, we further discussed 
the underlying relationships between ARGs and immune 
infiltrating cells and mutation profiles. We thus speculated 
that our established nomogram might have the capacity to 
predict the immunological responses and drug efficiency in 
HCC patients, which was interesting and meaningful in the 
following studies.

In this study, we used the ESTIMATE algorithm to 
find the differences of ImmuneScore, StromalScore, 
and tumor purity in high- and low-risk samples (42-44). 
We found that samples with high-risk ARGs have high 
infiltrations of immune cells and low levels of tumor purity. 
As previously reported, autophagy has been reported 
to participate in immune regulations, including tumor-
associated macrophages, dendritic cells (DCs), and T or 
B lymphocytes (45,46). Besides, the release of cytokines 
from tumor or immune cells were also tightly influenced by 
autophagy (47). Mutually, some cytokines or immune cells 
also have effects on the function of autophagy, including 

interleukin (IL)-12, TGF-β, and interferon (IFN)-γ (48,49). 
Considering that immunotherapy has become an effective 
strategy to inhibit HCC, there is an urgent need to deeply 
determine the underlying associations between autophagy 
activation and efficacy of immune checkpoint inhibitors. 
Cen et al. revealed that autophagy deficiency could promote 
triple-negative breast cancer resistance to T cell-mediated 
cytotoxicity via blocking tenascin-C degradation (50). Also, 
autophagy inhibition upregulates CD4+ tumor infiltrating 
lymphocyte expression via miR-155 regulation and TRAIL  
a c t i v a t i o n  ( 5 1 ) .  T h e s e  r e s u l t s  i n d i c a t e  t h a t 
autophagy inhibition could prevent tumor associated 
immunosuppression and promote immune cell infiltration 
in TME, therefore providing a potential therapeutic 
strategy to inhibit progression and metastasis of tumors. 
We also found that HIF1A, IGFBP3, and DAB2 have high 
frequent missense mutations in high-risk ARGs groups. 
Previous study indicated that HIF1A and NFAT5 could 
coordinate Na+-boosted antibacterial defense via enhanced 
autophagy and autolysosomal targeting (52). Hypoxia-
induced autophagy could also enhance colorectal cancer 
initiation and progression by activating the PRKC/PKC-
EZR (ezrin) pathway (53). However, no relative studies 
have clearly elucidated the relationship between HIF1A 
mutations and HCC progression.

However, this study involved several limitations that 
require further improvement. First of all, due to the limited 
cases in the study, we should collect more samples to 
validate the efficacy and robustness of the established ARGs 
signature model. Besides, the overall predictive efficiency 
of the nomogram is still limited. How to integrate clinical 
parameters and ARGs scores in HCC is meaningful to 
ultimately optimizing the model. Lastly, experimental 
assays are also needed to clarify the underlying associations 
between selected ARGs and HCC progression.

Taken together,  our study established a robust 
autophagy-related risk score model to predict the prognosis 
of HCC, providing therapeutic targets. Meanwhile, we also 
discussed the differential immune infiltrations and mutation 
profiles between high- and low-risk ARGs samples. Last 
of all, we constructed a novel prognostic nomogram 
incorporating both the ARGs and clinical factors for 
providing individualized survival prediction.
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