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Background: Xenobiotic metabolism plays an important role in the progression of colon cancer; 
however, little is known about its related biomarkers. This study sought to construct a prognostic model 
related to xenobiotic metabolism in colon cancer, and further reveal the characteristics of tumor immune 
microenvironment based on the prognostic model.
Methods: Transcriptome data of 41 normal colon tissues and 473 colon tumor tissues and the clinical 
features of 452 colon cancer patients were downloaded from The Cancer Genome Atlas (TCGA) database. 
Data on xenobiotic metabolism genes (XMGs) were obtained from the hallmark xenobiotic metabolism set 
of the Molecular Signatures Database (MSigDB) and articles. Additionally, data on differential XMGs in 
colon cancer were acquired for a functional enrichment analysis by R software. An XMG prognostic model 
was constructed by a Cox regression analysis, and evaluated using Kaplan-Meier survival curves, risk curves, 
receiver operating characteristic (ROC) curves, and an independent prognostic analysis in a training cohort 
and validation cohort. Moreover, tumor immune infiltration and negative regulatory immune genes of 
cancer-immunity cycle (CIC), including immune checkpoints and immune cytokines, were further analyzed 
between low- and high-risk groups in both the training and validation cohorts. Differences with P value 
<0.05 were interpreted as statistically significant.
Results: A total of 126 differential XMGs were distinguished in the colon cancer data set, which were 
mainly enriched in the metabolism pathways of drugs and nutrients. There were 5 optimized genes (i.e., 
CYP2W1, GSTM1, TGFB2, MPP2, and ACOX1) used to construct the prognosis model, which effectively 
predicted prognosis and had good ROC curves. Between low- and high-risk groups, there were significant 
differences in abundance for T cells CD4 memory resting and T cells regulatory (Tregs), and expression of 
PDCD1, LAG3, NOS3, TGFB1, and ICAM1 in the training cohort and validation cohort. 
Conclusions: The XMGs in the prognostic model have a good prediction effect on the prognosis of colon 
cancer patients. The T cells CD4 memory resting, and Tregs, immune checkpoints PDCD1 and LAG3, 
and CIC negative regulatory immune cytokines NOS3, TGFB1, and ICAM1 are closely associated with 
xenobiotic metabolism.
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Introduction

Cancer, including colorectal cancer (CRC), is a metabolic 
disease. In 2018, CRC was the third most common cancer 
in the world (1). To delay the progression of the disease 
and reduce its incidence and mortality, effective prevention 
and diagnosis and appropriate treatment at an early stage 
are essential. However, the methods of early diagnosis and 
treatment monitoring are not perfect. Precise biomarkers 
need to be identified urgently to improve diagnosis and 
treatment. Compared to esophageal cancer, gastric cancer, 
and hepatocellular carcinoma, the burden of CRC is higher 
in Europe and North America than the rest of the world (2).  
In addition to geographical and ethnic factors, lifestyle 
factors, especially eating habits, affect the occurrence and 
development of CRC; for example, a Mediterranean diet 
is negatively related to the incidence of CRC, while a 
Westernized diet may increase the risk of cancer (3,4). The 
intestinal tract is an important channel by which substances 
are absorbed in the human body. The colonic epithelium 
is exposed to a variety of compounds in the diet, including 
endogenous compounds and xenobiotics (5). There are 
many kinds of xenobiotics, for example, drugs, chemicals, 
pesticides, environmental pollutants, and metabolites 
of other species. The metabolism of xenobiotics in the 
human body can block or accelerate the progression of 
CRC to varying degrees (6,7). Thus, the role of xenobiotic 
metabolism in the development of CRC cannot be ignored. 
Further, xenobiotic metabolism–related biomarkers may 
prove effective in the prevention and treatment of CRC.

Xenobiotic metabolism enzymes (XMEs) are important 
bioactive molecules in the metabolism of xenobiotics . It 
has been speculated that XMEs are key regulatory factors 
in the occurrence of CRC (8). At present, XMEs can be 
divided into 3 categories: (I) cytochrome (CY) P450 (9); 
(II) glutathione S-transferase (GST) (10); and (III) uridine 
diphosphate glucuronosyltransferase (UGT) (11). Studies 
have shown that CYP450 activates proto-oncogenes through 
oxidation, then transforms them into reactive metabolites, 
which react irreversibly with macromolecules (12). This 
process leads to mutation and potential carcinogenesis; 
however, GST and UGT may inactivate or detoxify these 
active substances (10-12). Changes in metabolic binding 
pathways of xenobiotics have been shown to significantly 
affect drug-induced toxicity and cancer susceptibility. For 
example, taxane induces its own degradation by inducing 
CYP450 (13), while UGT1A weakens the cytotoxicity of 
anticancer drugs by reducing their intracellular exposure, 

and resulting in metabolic elimination in colon cancer 
cell lines (14). Thus, the expression of many XMEs in the 
tissues of normal colon and colon tumor differs, and their 
correlation with clinicopathological factors is of great 
significance to understanding the pathogenesis of CRC.

Most exogenous substances are eliminated by a variety 
of enzymes and pathways. In addition to XMEs, many 
members of transporter families also play important roles 
in xenobiotic metabolism. Common transporters include 
solute carrier transporters (e.g., organic anion transporting 
polypeptides, organic cation transporters, organic cation/
carnitine transporters, organic anion transporters, peptide 
transporters, concentrative nucleoside transporters, 
equilibrative nucleoside transporters, and multidrug and 
toxin extrusion transporters), adenosine triphosphate (ATP)-
binding cassette transporters related to drug resistance 
(e.g., multidrug resistance proteins, multidrug resistance-
associated proteins, and breast cancer resistance protein), 
and bile acid, cholesterol, aminophospholipid, and copper 
transporters (e.g., sodium taurocholate co-transporting 
polypeptide, apical sodium-dependent bile acid transporter, 
bile salt export pump, organic solute transporters, ATP-
binding cassette transporter A1, ATP-binding cassette 
subfamily G members 5 and 8, ATPase copper-transporting 
β polypeptide, and ATPase class I type 8B member 1) (15). 
It is necessary to explore the biomarkers of CRC using 
these substances.

The existence of immune microenvironment suggests 
that the role of immune system in cancer process can not 
be ignored. The occurrence of cancer can be considered 
as the accumulation of a large number of genetic 
changes. Abnormal expression of genes is easy to induce 
the production of new antigens, so as to stimulate the 
immune system and trigger the immune response. Cancer-
immunity cycle (CIC) reveals the process that immune 
cells, as members of tumor immune microenvironment, 
can identify and kill cancer cells according to a series of 
steps or procedures, which provides the target for cancer 
immunotherapy (16). Abnormally expressed genes may 
be involved in various physiological functions, including 
xenobiotic metabolism. Therefore, exploring the correlation 
between xenobiotic metabolism and CIC regulatory 
factors is helpful to provide new strategies for cancer 
immunotherapy.

In addition to hereditary factors, environmental exposure 
plays an important role in the development of the immune 
system. Xenobiotics in the environment can directly or 
indirectly activate the aryl hydrocarbon receptor (AhR), 
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which results in the transcription of additional enzymes 
involved in xenobiotic metabolism, and affects the process 
of inflammation and cancer through the cytosolic AhR 
transcriptional pathway (17). It has been suggested that AhR 
induces epigenetic changes of immune cells and regulates 
the intestinal immune reaction by the AhR signaling 
pathway (18). Further, xenobiotic metabolizing enzymes 
negatively regulate the intestinal AhR pathway based 
on the consumption of xenobiotics (19). Consequently, 
xenobiotic metabolism may also be associated with the 
immune response in CRC. It can be inferred that in the 
tumor microenvironment, if the expression level of genes 
or proteins related to xenobiotic metabolism changes, the 
degree of tumor immune infiltration may also change.

Some XME gene biomarkers in CRC have been found, 
but other biomarkers related to xenobiotic metabolism that 
may be useful in the diagnosis and prognosis of CRC are 
still not very clear. In addition, the correlation between 
xenobiotic metabolism and immune microenvironment also 
needs to be explored in depth. As the prognosis of colon 
cancer may differ to that of rectal cancer, this study was 
limited to colon cancer. We analyzed differentially expressed 
xenobiotic metabolism genes (XMGs) in colon tumor 
tissues and normal colon tissues in The Cancer Genome 
Atlas (TCGA) database. A prognostic model was then 
constructed and validated by training cohort and validation 
cohort, respectively. Additionally, the tumor immune 
infiltration landscape was explored, and negative regulatory 
immune checkpoints and immune cytokines of CIC were 
also analyzed in low- and high-risk groups, in order to 
explore the mechanism of xenobiotic metabolism affecting 
the progression of colon cancer from the perspective of 
immunity. We present the following article in accordance 
with the TRIPOD reporting checklist (available at https://
dx.doi.org/10.21037/jgo-21-655).

Methods

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). As this was a 
retrospective database study that used a public database, 
approval from the ethics committee was not required.

Online data acquisition

The original transcriptome data and clinical features of a 
colon cancer data set were downloaded from TCGA database 
(https://tcga-data.nci.nih.gov/tcga/) on 15 March 2021. 

The data comprised 452 colon cancer patients, 41 normal 
colon tissue samples, and 473 colon tumor tissue samples. 
In addition, data on 200 genes encoding proteins involved 
in the processing of drugs and other xenobiotics were 
obtained from the hallmark xenobiotic metabolism set of the 
Molecular Signatures Database (MSigDB) (http://www.gsea-
msigdb.org/gsea/msigdb/index.jsp), and eight xenobiotic 
metabolism genes (see Table S1), which may be differently 
expressed between CRC patients and healthy people, were 
extracted from the literature as supplements (20).

Identification of differentially expressed XMGs and the 
functional enrichment analysis

The differentially expressed XMGs between the normal 
samples and colon cancer samples were identified using the 
“limma” and “pheatmap” packages in R software for which 
the screening criteria was |log2 fold change (FC)| >0.5 and 
a false discovery rate (FDR) <0.05. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed by the “clusterprofler” 
package in R software to identify potential molecular 
mechanisms of the differentially expressed XMGs. The 
packages of both “ggplot2” and “enrichplot” were applied 
to visualize the GO and KEGG enrichment analysis results. 

Establishment of the XMG prognostic model

Packages of “survival”, “caret”, “glmnet”, “survminer”, 
and “survivalROC” in R software were used to establish 
prognostic model. A univariate Cox regression analysis 
was performed to analyze the XMGs associated with 
prognosis in colon cancer patients. Subsequently, an XMG 
prognostic model was constructed by multivariate Cox 
regression analysis and potential prognostic biomarkers of 
colon cancer were identified. Further, the risk score of each 
colon cancer patient was calculated using the following 
equation: risk score =expression of XMG1 × β1 + expression 
of XMG2 × β2 +…+ expression of XMGn × βn, where β was 
the coefficient calculated by a multivariate Cox regression 
model (21). Finally, colon cancer patients were divided into 
low- and high-risk groups on the basis of risk score in both 
the training and validation cohorts.

Evaluation of the XMG prognostic model

For both the training cohort and validation cohort, 
Kaplan-Meier survival curves were constructed using 

https://dx.doi.org/10.21037/jgo-21-655
https://dx.doi.org/10.21037/jgo-21-655
https://tcga-data.nci.nih.gov/tcga/
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
http://www.gsea-msigdb.org/gsea/msigdb/index.jsp
https://cdn.amegroups.cn/static/public/JGO-21-655-supplementary.pdf


2791Journal of Gastrointestinal Oncology, Vol 12, No 6 December 2021

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2021;12(6):2788-2802 | https://dx.doi.org/10.21037/jgo-21-655

the “survival” package in R to estimate differences in 
overall survival (OS) between the two risk groups. The 
risk plots were constructed through “pheatmap” in 
R software. Receiver operating characteristic (ROC) 
curves were constructed to evaluate the accuracy of the 
prognostic XMG model by the “survivalROC” package 
in R. The independent prognostic analyses, including 
the univariate and multivariate Cox regression analyses, 
were also performed using the “survival” package in R to 
determine whether the prognostic XMG signature was an 
independent predictor of OS in colon cancer patients. The 
covariates were age, gender, stage, tumor (T), node (N), 
metastasis (M), and risk score. 

Tumor immune cell infiltration analysis

The CIBERSORT algorithm (https://cibersort.stanford.
edu/) was used to calculate the relative abundances of 
infiltrated immune cells in the colon cancer tissue samples 
of the training cohort and validation cohort, and the 
barplots and boxplots were performed to describe the 
situation of immune infiltration.

Analysis of genes negatively regulating the CIC

Gene signatures related to CIC were acquired from 
website of Tracking Tumor Immunophenotype (http://
biocc.hrbmu.edu.cn/TIP/index.jsp).  The negative 
regulation genes of CIC were identified, including 
immune checkpoints and other immune regulation genes. 
The difference of gene expression between high- and low-
risk groups and the correlation between gene expression 
and risk scores were analyzed in the training cohort and 
validation cohort.

Statistical analysis

The software R 4.0.2 (https://www.r-project.org/) was used 
in all statistical analyses, including in the plots, unifactor 
and multifactor regression analyses, independent prognosis 
analysis, and correlation analysis. The R package can be 
downloaded from the Bioconductor platform (https://www.
bioconductor.org/). The survival states were accessed using 
log-rank tests. Wilcoxon tests were conducted for immune 
cell infiltration analysis. A P value <0.05 was considered 
statistically significant.

Results

Workflow and clinical features

The study flowchart is shown in Figure 1. In brief, the 
transcriptome data were downloaded from TCGA database, 
and XMGs were screened and functionally analyzed. Next, 
the clinical data of colon cancer patients were also obtained 
from TCGA. A prognostic model was then constructed 
based on the XMGs and clinical data, and the prognostic 
value and accuracy of the prediction model were evaluated 
in the training cohort and validation cohort. Additionally, 
the tumor immune cell infiltration and negative regulation 
genes of the CIC in high- and low-risk groups were 
analyzed in the two cohorts. In relation to the clinical 
characteristics of the colon cancer patients, TCGA data set 
comprised 235 males and 212 females, aged 31–90 years 
(patients were excluded if they had incomplete data).

Identification of differentially expressed XMGs

The ribonucleic acid sequencing (RNA-seq) data of 
the colon cancer data set in TCGA database were 
standardized using R software. A total of 126 differentially 
expressed XMGs, including 77 upregulated genes and 49 
downregulated genes, were identified in the 41 normal 
colon tissue samples and 473 colon tumor tissue samples 
using the following screening criteria; |log2 fold change 
(FC)| >0.5 and FDR<0.05 (see the volcano and heat maps 
in Figure 2A,2B). 

Functional annotations of differentially expressed XMGs

To further explore the biological function of differentially 
expressed XMGs in colon cancer patients, GO enrichment 
and KEGG pathway analyses were performed with R 
software. The results of the GO analysis showed that 
the XMGs were significantly enriched in the biological 
processes (BPs) involved in the metabolism of small 
molecular substances. The BPs included the cofactor 
metabolic process, small molecule catabolic process, fatty 
acid metabolic process, response to xenobiotic stimulus, 
cellular amino acid metabolic process, and so on. The 
significant cellular components (CCs) for the GO items 
contained mitochondrial matrix, peroxisome, microbody, 
secretory granule lumen, cytoplasmic vesicle lumen, and so 
on. Molecular function (MF) enrichment mainly focused on 

https://cibersort.stanford.edu/
https://cibersort.stanford.edu/
http://biocc.hrbmu.edu.cn/TIP/index.jsp
http://biocc.hrbmu.edu.cn/TIP/index.jsp
https://www.r-project.org/
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Figure 1 Flowchart of the research. TCGA, The Cancer Genome Atlas; GO, Gene Ontology; XMGs, xenobiotic metabolism genes; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; ROC, receiver operating characteristic; CIC, cancer-immunity cycle.
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Independent prognostic analysis
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Immune checkpoint analysis

Immune cytokines analysis of 
CIC negative regulatory
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Multi Cox analysis and prognostic model 
construction

Differentially expressed XMGsGO KEGG

the binding of small molecular substances, such as coenzyme 
binding, carboxylic acid binding, organic acid binding, heme 
binding, monocarboxylic acid binding, and so on (see Figure 
2C). The results of the KEGG pathway analysis showed that 
the differentially expressed XMGs were mainly enriched in 
signaling pathways related to the metabolism of nutrients 
and drugs, for example, drug metabolism-CYP450, chemical 

carcinogenesis-DNA adducts, metabolism of xenobiotics 
by cytochrome P450, drug metabolism-other enzymes, and 
retinol metabolism (see Figure 2D).

Construction and evaluation of the XMG prognostic model

The results of the univariate Cox regression analysis 
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Figure 2 Information of differentially expressed XMGs of the colon cancer data set in TCGA. (A) Volcano plots. (B) Heatmap. (C) GO 
enrichment analysis. (D) KEGG pathway analysis. XMGs, xenobiotic metabolism genes; TCGA, The Cancer Genome Atlas; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes.

showed that 9 differentially expressed XMGs were 
significantly correlated with the OS of colon cancer 
patients (see Figure 3A). The detailed expression of the 9 
genes in normal and tumor tissues is shown in Figure 3B. 
Following optimization by a multivariate Cox regression 
analysis, 5 XMGs (i.e., CYP2W1, GSTM1, TGFB2, MPP2, 
ACOX1; for the full names, see Table 1) were screened 
for inclusion in the prognostic prediction model. Among 
them, the hazard ratios (HRs) for CYP2W1, GSTM1, 
TGFB2, and MPP2 were >1, but for ACOX1, the HR was 
<1, which suggests that CYP2W1, GSTM1, TGFB2, and 
MPP2 are risk genes, while ACOX1 is a protective gene. 
However, the expression levels of CYP2W1 and TGFB2 
were upregulated in colon tumor tissues than normal 

colon tissues, while those of GSTM1, MPP2, and ACOX1 
were downregulated in TCGA data set (Figure 3B). These 
findings need to be validated in other data sets. 

The Kaplan-Meier (KM) survival curve analysis indicated 
that low-risk patients had a better prognosis than high-
risk patients in the training cohort (P<0.01; see Figure 
4A) and validation cohort (P<0.01; see Figure 4B). As the 
heatmap shows, the expression levels of CYP2W1, GSTM1, 
TGFB2, and MPP2 were higher in high-risk group, and 
the expression of ACOX1 was higher in low-risk group 
in both the training and validation cohorts (see Figure 
4C,4D) Distribution of risk scores indicated that patients 
in high-risk group had much higher risk scores than those 
in low-risk group in the training cohort (see Figure 4E), in 
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Table 1 The prognostic genes involved in XMG model based on a multivariate Cox regression analysis

Gene Full name Coefficient HR HR 95% CI (low) HR 95% CI (high)

CYP2W1 Cytochrome P450 2W1 0.0042 1.0042 0.9999 1.0084 

GSTM1 Glutathione S-transferase Mu 1 0.0913 1.0956 1.0276 1.1680 

TGFB2 Transforming growth factor beta-1 0.2130 1.2373 1.0675 1.4342 

MPP2 MAGUK p55 subfamily member 2 0.9292 2.5324 1.0626 6.0353 

ACOX1 Peroxisomal acyl-coenzyme A oxidase 1 -0.1166 0.8899 0.8165 0.9700 

XMG, xenobiotic metabolism gene; HR, hazard ratio; CI, confidence interval.

accordance with that in the validation cohort (see Figure 
4F). Distribution of survival status suggested that the high-
risk colon cancer population had a relatively higher death 
toll compared to the low-risk population in the training 
cohort (see Figure 4G), as well as that in the validation 
cohort (see Figure 4H). Besides, it was also indicated that 
mortality was higher in the high-risk group compared to 
low-risk group in the training cohort (see Figure 4I) and the 
same is true for the validation cohort (see Figure 4J). 

In the training cohort, the areas under the curve 
(AUCs) of the ROC implied that the model had good 
efficiency in the prediction of prognosis (AUC =0.724; 
see Figure 5A); the univariate Cox regression analysis 
showed that stage (P<0.001, HR =2.524, 95% CI: 1.708 to 
3.730), T (P<0.001, HR =3.224, 95% CI: 1.705 to 6.096), 
M (P<0.001, HR =5.186, 95% CI: 2.602 to 10.338), N 
(P<0.001, HR =2.239, 95% CI: 1.501 to 3.338), and risk 
score (P<0.001, HR =1.161, 95% CI: 1.102 to 1.224) were 
univariate independent prognostic factors of colon cancer 

(see Figure 5B). The multivariate Cox regression analysis 
showed that only risk score (P=0.001, HR =1.104, 95% 
CI: 1.039 to 1.174) was the multivariate independent 
prognostic factor of colon cancer (see Figure 5C); thus, 
risk score is an independent prognostic indicator of colon 
cancer. In the validation cohort, the AUCs of the ROC 
confirmed the accuracy of this prognostic model (AUC 
=0.661; see Figure 5D); the univariate Cox regression 
analysis showed that age (P<0.01, HR =1.044, 95% CI: 
1.013 to 1.076), stage (P<0.001, HR =2.064, 95% CI: 
1.422 to 2.996), T (P<0.05, HR =2.366, 95% CI: 1.227 to 
4.562), M (P<0.001, HR =4.007, 95% CI: 1.994 to 8.049), 
N (P<0.01, HR =1.820, 95% CI: 1.251 to 2.649), and risk 
score (P<0.01, HR =1.397, 95% CI: 1.128 to 1.729) were 
univariate independent prognostic factors of colon cancer 
(see Figure 5E). The multivariate Cox regression analysis 
showed that age (P<0.001, HR =1.062, 95% CI: 1.029 to 
1.096), and risk score (P<0.001, HR =1.622, 95% CI: 1.291 
to 2.040) were multivariate independent prognostic factors 
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of colon cancer (see Figure 5F); thus, age and risk score 
are independent prognostic indicators of colon cancer. In 
summary, the risk score of the XMG model can effectively 
predict the prognosis of colon cancer.

Immune infiltration landscape

Between the low- and high-risk groups of colon cancer 
patients divided by the risk score, the infiltration of 22 
kinds of tumor immune cells was analyzed using the 
CIBERSORT method. The abundance distribution of 
each immune cell in each sample in the training cohort is 
shown in Figure 6A, and the statistical results implied that 
the abundance of T cells CD4 memory resting was higher 
in low-risk group compared to high-risk group and that of 
T cells regulatory (Tregs) was higher in high-risk group 
compared to low-risk group (see Figure 6B; both P<0.01). 
In the validation cohort, the abundance distribution of each 
immune cell in each sample is shown in Figure 6C, and the 
abundance of T cells CD4 memory resting and Tregs (see 

Figure 6D; both P<0.01) was similar to that in the training 
cohort.

 Negative regulation genes of the cancer-immunity cycle

Focusing on negative regulatory genes of CIC in the 
tracking tumor immunophenotype website, differentially 
expressed immune genes between low- and high-risk groups 
were exhibited as heatmaps. There were 16 different genes 
in the training cohort, including immune checkpoints 
programmed cell death protein 1 (PDCD1), lymphocyte 
activation gene 3 protein (LAG3), hepatitis A virus cellular 
receptor 2 [HAVCR2, also named T-cell immunoglobulin 
mucin receptor 3 (TIM-3)], and cluster of differentiation 
160 (CD160) (see Figure 7A), and 13 different genes in the 
validation cohort, including immune checkpoints T-cell 
immunoreceptor with Ig and ITIM domains (TIGIT), 
PDCD1, and LAG3, respectively (see Figure 7B).

The common immune checkpoints in the training and 
validation cohorts which were differentially expressed 
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between the low- and high-risk groups were PDCD1 and 
LAG3. The PDCD1 gene was positively correlated with 
the risk score, and upregulated in high-risk colon cancer 
populations compared to low-risk in both the training 
cohort (see Figure 7C; P<0.05) and validation cohort (see 
Figure 7D; P<0.001). The correlation with risk score and 
the expression trends in low- and high-risk groups of LAG3 
were close to those of PDCD1 in the training cohort (see 
Figure 7E; P<0.05), as well as the validation cohort (see 
Figure 7F, P<0.01). 

For the differentially expressed immunomodulatory 
cytokines between low- and high-risk groups, the 
expression of nitric oxide synthase 3 (NOS3), transforming 
growth factor beta-1 proprotein (TGFB1), and intercellular 
adhesion molecule 1 (ICAM1) was higher in the high-risk 
group while that of C-C motif chemokine 28 (CCL28), 
arginase-1 (ARG1), and endothelin receptor type B 
(EDNRB) was higher in low-risk group in the training 

cohort (see Figure 7G; all P<0.05), which was similar to the 
validation cohort (see Figure 7H; all P<0.05).

Discussion

In addition to metabolizing sugars, lipids, and proteins, 
xenobiotic metabolism is an important part of the BPs 
related to metabolism in the human body. With the 
exception of drugs, most exogenous substances are harmful 
to human body. Xenobiotics usually go through four 
processes in the human body: absorption, distribution, 
metabolism, and excretion. The metabolic process is 
particularly important. Xenobiotics affect the body by 
producing pharmacological or toxicological effects; 
however, they are also metabolized by the body. Most lose 
their pharmacological or toxicological activities through 
metabolic transformation, becoming highly water soluble 
substances. In addition, some drugs need to be metabolized 
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to exert their pharmacological effects, and most toxic 
xenobiotics need to be metabolized to induce cancer. 
Thus, the metabolism process of xenobiotics is particularly 
important for human health and disease prognosis. If 
the human body is overexposed to xenobiotics, abnormal 
changes in biomolecules or the immune microenvironment 
related to the xenobiotic metabolism may result. Variations 
in the biomacromolecules and immune cells involved in the 
regulation of xenobiotic metabolism need to be monitored 
to identify biomarkers that can be used in the early 
diagnosis of diseases.

The occurrence of colon cancer is affected by many 
factors. In addition to hereditary colon cancer, sporadic 
colon cancer is closely related to environmental and 
lifestyle factors. Food is an important source of xenobiotics. 
Pesticides, environmental pollutants, and other xenobiotics 
can be indirectly absorbed by the human body through 
the enrichment of the food chain. The heterocyclic 
amines, polycyclic aromatic hydrocarbons, and N-nitroso 
compounds produced in food processing are well-known 
carcinogens (22). These carcinogens can be activated by 
XMEs, which increase the risk of CRC. Thus, the abnormal 
expression of metabolizing enzymes may indicate a risk of 
colon cancer. At present, studies have shown that XMEs are 
often dysfunctional in cancers and some XME biomarkers 
have been identified. In patients with CRC, the expression 
of CYP3A4, GSTM1, GSTA1, UGT1A8, and UGT1A10 
in tumor tissues is significantly lower than that in normal 
mucosa tissues (7). However, the metabolism of xenobiotics 
is complex. Similar to XMEs, little is known about the other 
biological functional molecules or immune cells involved 
in the xenobiotic metabolic pathways; thus, further study is 
needed.

Differentially expressed XMGs have a variety of 
functional roles, and the proteins encoded by them include 
drug transporters (e.g., canalicular multispecific organic 
anion transporter 1), XMEs (e.g., CYP450), aquaporin 
(e.g., Aquaporin-9), dimethylaniline monooxygenase [e.g., 
eimethylaniline monooxygenase (N-oxide-forming) 3]. 
The GO and KEGG enrichment analyses suggested that 
these differentially expressed XMGs are mainly associated 
with the metabolism of drugs and nutrients. The value 
and accuracy assessment of the prognostic model in 
TCGA revealed that among the prognosis-related genes, a 
combination of 5 genes can effectively predict the outcome 
of colon cancer. 

The CYP450 superfamily can be divided into 18 
families and 33 subfamilies, encoding 57 kinds of CYP 

proteins, a third of which participate in xenobiotics 
metabolism (23). As a young member, CYP2W1 belongs 
to family 2 and subfamily W of CYP450 enzymes (24). 
It has been found to overexpress in CRC (25), and is 
supposed to be an effective target of drug therapy for 
CRC (26). Meanwhile, GSTM1, which is a member of 
the GST family and involved in carcinogen metabolism, 
may be related to risk and progression of CRC through 
gene polymorphisms, gene variation, and diet (27,28). 
The transforming growth factor-β (TGFB) family plays 
an important role in the process of tumorigenesis by 
regulating epithelial-mesenchymal transition. Among 
them, TGFB2 was reported to induce the formation of lipid 
droplets to promote metastasis of colon cancer cells (29). 
In addition, TGFB2 combining with HIF1 α contributed 
to chemoresistance in hypoxic tumor microenvironment 
in CRC (30). As a kind of tumor suppressor protein, 
members of the membrane-associated guanylate kinase 
homologs (MAGUKs) family regulate the proliferation, 
intracellular junctions, and signal transduction of tumor 
cells by interacting with the cytoskeleton. The decreased 
expression of a MAGUK family member, MPP2, is thought 
to be associated with the development of cancer. It has been 
reported that MPP2 gene was downregulated in relapse 
Wilms tumors (31), and may be a biomarker of pituitary 
tumors (32). The relationship between MPP2 and colon 
cancer needs to be explored. In vivo and in vitro experiments 
showed that ACOX1 was closely related to a variety of 
cancers (33). The activation of the fatty acid oxidation 
(FAO) pathway induces metastasis in colon cancer (34),  
and ACOX1 is the rate-limiting enzyme of the FAO 
pathway, hence, enhancing or restoring the expression of 
ACOX1 prevents metastasis in colon cancer cells (35). The 
present study suggests that the cell biology pathway and 
the fatty acid metabolism pathway are also involved in the 
process of xenobiotic metabolism, and the 5 genes can be 
used as diagnostic genes.

Notably, the risk scores related to the XMGs were 
associated with T cells CD4 memory resting and Tregs, 
which confirms that xenobiotic metabolism affects the 
immune microenvironment of colon cancer to a certain 
extent. The functions of T cells CD4 memory resting and 
Tregs on CRC have been revealed by bioinformation and 
experimental studies (36,37). Therefore, immune regulation 
may be one of the mechanisms of xenobiotic metabolism 
affecting CRC process.

Negative regulation genes of CIC, including immune 
checkpoints, were also involved in the immune regulation 
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of xenobiotics metabolism. The concept of CIC was 
proposed in 2013, referring to the process of tumor 
cell releasing antigen, tumor antigen presentation, T 
cell activation, T cell migrating to tumor tissue, T cell 
infiltration in tumor tissue, T cell recognizing tumor cells, 
and clearing tumor cells (16,38). The CIC reveals the 
mechanism of immune system killing tumor cells. These 
7 processes need the synergy of corresponding positive 
and negative regulatory factors to keep the activation of 
the immune system within the normal range. Negative 
regulation genes of CIC may affect the inhibition of 
cancer by the immune system. Programmed cell death 1 
ligand 1 (PD-L1) [also named cluster of differentiation 
274 (CD274)] and PDCD1 are the first checkpoints to 
be discovered. The functions of PD-L1 and PDCD1 in 
the human body are diverse, and protective immunity is 
restricted by PDCD1 expression in response to chronic 
pathogens and cancer (39). However, not all cancer 
patients are responsive to inhibitors of PD-L1 or PDCD1, 
so other checkpoints are subsequently discovered. The 
next wave of co-inhibitory receptor targets being explored 
in clinical trials includes LAG-3, TIM-3, and TIGIT: 
LAG3 is highly expressed on CD8+ and activated CD4+ T 
cells, and a subset of natural killer (NK) cells, promoting 
exhaustion of T cells; TIM-3 is selectively expressed on 
CD8+ T cytotoxic 1 (Tc1), interferon (IFN)-γ-inducing 
CD4+ T helper 1 (Th1), Tregs, dendritic cells (DCs), 
NK cells, and monocytes, indicating dysfunctional or 
exhausted CD8+ T cells in cancer; TIGIT can be found on 
activated T cells, NK cells, memory T cells, follicular T 
helper (Tfh) cells, and a subset of Tregs, directly exerting 
function on T and NK cells, and indirectly suppressing 
immune responses (40). Further, CD160 contributes 
to NK cell activation, T cell inhibition, and mucosal 
immunity (41). In addition to immune checkpoints, 
the role of immunosuppressive cytokines in tumor 
microenvironment should not be ignored. For example, 
NOS3 can modulate immune responses and inflammatory 
processes in vivo (42); TGFB1 has been demonstrated 
to suppress NK cell activity, inhibit DC maturation, 
alter T-cell  cytotoxic properties,  and so on (43);  
as an inflammation biomarker, ICAM1 is expressed in 
most cell types of tumor microenvironment and affects 
tumorigenesis and metastasis (44). We have shown that 
the abundance for checkpoints PDCD1, LAG3, and the 
expression for immune regulation genes NOS3, TGFB1, 
and ICAM1 upregulated in the high-risk group in both the 
training and validation cohorts, which may be the reasons 

for immune escape in CRC.
In this study, we established and validated a prognostic 

model related to xenobiotic metabolism for predicting the 
outcome of colon cancer patients and explored the related 
characteristics of the tumor immune microenvironment. 
However, this study had some limitations. First, the model 
we constructed was only based on TCGA database; thus, 
the data of diverse races, regions, countries, or nations 
are needed to improve the general applicability of the 
prognostic model and the biomarkers. Second, due to 
time constraints, the latest research data could not be 
included. Third, due to the close relationship between 
xenobiotic metabolism and drugs and diet, dietary habits 
and medication history may affect the prognostic model and 
genes; however, due to a lack of information, these factors 
were not considered in this study, which may have led to 
a bias in the results. To address these issues, multicenter, 
large-scale clinical cohort studies including eating habits 
and drugs as correction factors need to be conducted to 
further validate the prognostic model and biomarkers in the 
future. This study can provide reference for the prevention 
and treatment of colon cancer from the perspective of 
xenobiotic metabolism.
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Table S1 Full names of the 8 XMGs

Gene Full name

GSTM1 Glutathione S-transferase Mu 1

GSTA1 Glutathione S-transferase A1

UGT1A8 UDP-glucuronosyltransferase 1A8

UGT1A10 Peroxisomal acyl-coenzyme A oxidase 1

CYP3A4 Cytochrome P450 3A4

CYP2C9 Cytochrome P450 2C9

GSTP1 Glutathione S-transferase P

CYP2W1 Cytochrome P450 2W1

XMG, xenobiotic metabolism gene.
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