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Introduction

In the past, due to the disease characteristics of colorectal 
cancer (CRC), it was rarely diagnosed and treated in a 
timely manner. Currently, CRC accounts for approximately 
10% of annually diagnosed cancers and cancer-related 
deaths globally. The incidence rate of CRC is second only 
to breast cancer in women and prostate cancer in men, and 

it is the fourth most deadly disease worldwide (1,2). Most 
CRCs originate from colorectal polyps (3). As the use of 
endoscopes has become more popular, colorectal polyps 
have been found to be highly prevalent in adults (4). In 
fact, most polyps are benign, and only a very small number 
of polyps eventually progress into CRC. The appropriate 
detection, evaluation, and resection of colorectal polyps can 
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prevent the occurrence and development of CRC. However, 
the results of existing detection methods are inaccurate, and 
additional time and professional knowledge in identifying 
the pathologies of CRC are required. Moreover, the general 
method for polypectomy is inefficient and increases the total 
cost. Therefore, it is important to determine the incidence 
of polyps in CRC for more accurate screening. With the 
progression of precancerous colorectal adenoma to CRC, 
whether via a classic adenoma-carcinoma sequence or 
serrated polyp pathway, defective DNA repair, chromosomal 
instability, and DNA methylation changes are often used in 
clinical applications (5,6). However, as polyp size is directly 
associated with important histological features such as high-
grade dysplasia and invasive cancer, it is likely to represent a 
more clinically effective and cost-effective strategy (7,8).

Polyp size is used as a simple but representative marker 
to measure the occurrence and development of CRC and, 
more importantly, to explore its molecular pathogenesis 
and underlying mechanisms. Dynamic network analysis, a 
method that has emerged in recent years, can analyze and 
infer the multifactorial changes of cancer at different stages 
and recreate a dynamic monitoring network to establish 
connections (9). Dynamic network analysis is a useful 
method for understanding the potential mechanisms of 
cancer development and has been used to investigate the 
occurrence and development of cancers, including pancreatic 
ductal carcinoma and breast cancer, to provide references 
for diagnosing disease progression (10). A recently reported 
article on the progression of colorectal cancer used 
transcriptome sequencing and dynamic networks to greatly 
enrich the concept of classic adenoma-carcinoma sequences. 
The article analyzes the transcriptomic characteristics of 
primary CRC, adenoma and normal colonic epithelial 
tissues to determine six specific dynamic expression patterns 
during tumor formation, and from this screened the poor 
prognostic marker TPD52L1 for colorectal cancer. Has 
great enlightenment for this experiment (11).

Driven by time- and background-dependent changes in 
multiple genes, cancer is a complex process of interaction 
between genes and internal and external factors and an 
accumulation of mutations in key genes of somatic cells. 
By determining the role of gene mutations in this process, 
cancer occurrence can be curbed through timely blocking 
of the change process. Dynamic network analysis can 
be used to integrate information concerning the genetic 
changes of polyps at different stages, providing useful data 
for disease management. This study uses the new Cytoscape 
application DyNetViewer to construct, analyze and 

visualize the dynamic network, and describe the dynamic 
development process from colorectal polyps to colorectal 
cancer. Compared with adenomas with a higher degree 
of malignancy, this study used 20 mm as the dividing line 
to provide preliminary results of early polyps and found 
representative biomarkers.

We present the following article in accordance with the 
STREGA reporting checklist (available at https://dx.doi.
org/10.21037/jgo-21-674).

Methods

Gene chip screening and data merging 

The colorectal adenoma (GSE8671) (12) and colorectal 
cancer (GSE32323) (13) gene chip data collections used in 
this experiment were obtained from the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo). The 2 chips contained 49 normal samples,  
32 colorectal adenoma samples, and 17 CRC samples 
(Table 1), The grouping reference is based on the European 
Society of Gastrointestinal Endoscopy (ESGE) guidelines 
(2020), which proposes that when the size of polyps is 
less than 20 mm, cohort studies based on the risk of CRC 
rather than the risk of metachronous advanced tumors 
usually reduce diversity and impact. When the polyp size is  
≥20 mm, it is closely related to the long-term CRC 
incidence/increased risk of death after polypectomy. 
Therefore, we use 2cm as the grouping standard (14). 
The affy (15) package in R language software was used 
to read the CEL file corresponding to the samples, the 
robust multichip average algorithm was utilized to process 
and generate the probe expression profile a, and the 
“removeBatchEffect” function of the R package limma (16)  
was used to eliminate potential batch processing effect 
and to obtain the probe expression profile b (17). The R 
packages FactoMineR and factoextra were used to perform 
principal component analysis and visualize the 2-probe 
expression data of a and b, respectively. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Screening and processing of differential genes

The samples in the 2 chips were divided into 4 groups 
representing the 4 stages of the progression from colorectal 
adenoma to CRC: normal, polyp size ≤2 cm, polyp size  
>2 cm, and tumor. We then used the limma package and c 
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file in R to screen the 3 groups for genes that differed from 
the normal group. The critical standard |log2 fold change 
(FC)| was >2, and false discovery rate (FDR) was <0.01. The 
UpSetR package in R was then used to intersect the up- and 
downregulated differential genes. The 3 sets of differential 
genes were combined, and the gene expression of the union 
genes corresponding to the samples in the 4 groups was 
averaged. The gene expression matrix was further filtered to 
include the average difference of the top 75% most variable 
genes to obtain the combined differential gene data matrix 
of expression changes in the development of CRC.

Time course protein interaction network processing 

The union differential gene in the previous step was 
retrieved from the Search Tool for the Retrieval of 

Interacting Genes (STRING) database (https://string-
db.org), and the corresponding static protein-protein 
interaction (PPI) network tab-separated value (TSV) file was 
exported. The TSV file was imported into Cytoscape 3.6.1 
software for visualization. The DyNetViewer (18) plugin for 
visualizing dynamic networks in Cytoscape 3.0 was used to 
construct the time course protein interaction network (TC-
PIN). The TC-PIN algorithm constructed a subnetwork, 
and the threshold was set to the quartile point of the data in 
the just change data matrix: 5.6959891525. In the dynamic 
node analysis option, all nodes were selected, and all node 
attribute change values were output. Seventy-seven dynamic 
network characteristic genes were then screened out for 
each stage of the entire disease development process and 
attribute change diagrams were drawn.

The time-sequenced network-based protein complex 
discovery algorithm and modularity attribute was selected 
to analyze dynamic network clusters. A total of 25 network 
modules were obtained, of which 19 modules were 
characteristic of various stages.

Feature network module enrichment analysis 

The R package Pi was used to perform a weighted ranking 
of the average expression of each node at each stage based 
on the random walk with restart algorithm. Subsequently, 
the xPierGSEA function was used to perform gene 
analysis in combination with ranking gene set enrichment 
analysis. The parameter setting random number seed 
was 1,234, and the number of iterations was 5,000. The 
enrichment background was set to “MsigdbC5BP” and 
“MsigdbC2KEGG” from the Molecular Signatures 
Database (MSigDB), and the correlation with CRC was 
obtained. The distribution trend in the gene table helped to 
more accurately identify protein complexes.

Weighted Gene Co-Expression Network Analysis 
(WGCNA)

Use the pickSoftThreshold (19) function to construct a 
scale-free co-expression network with the expression data 
profiles of the 5,047 genes that were screened. Then, 
network construction and module detection are performed 
by the one-step function “blockwiseModules” (20). The 
R function of blockwiseModules has many parameters; in 
our research, the parameters are implemented as follows: 
power =8, maxBlockSize =5047, minModuleSize =30 and 
networkType = “unsigned”.

Table 1 Colorectal adenoma (GSE8671) and colorectal cancer 
(GSE32323) gene chip data set characteristics

Type Number

Tissue

Normal 49

Polyp 32

Cancer 17

Polyp size

≤2 cm 23

>2 cm 9

Cancer stage

Stage I 4

Stage IIa 6

Stage IIb 8

Stage IIIb 6

Stage IIIc 4

Stage IV 6

Location

Transversum colon 2

Ascending colon 8

Descending colon 8

Sigmoid colon 32

Rectum 14

NA 17
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Statistical analysis

The statistical analysis of DEG is done in R software. 
The cumulative survival time was calculated by Kaplan-
Meier method and analyzed by log-rank test. Pearson χ2 
test and Student’s t test are used for comparison between 
groups. Probability (P) values less than 0.05 are considered 
statistically significant (*P<0.05; **P<0.01; **P<0.001).

Results

Combining gene chip data sets to eliminate batch effects 

The colorectal adenoma (GSE8671) and colorectal cancer 
(GSE32323) gene chip data collections were obtained from 
the GEO database. Considering the different backgrounds 
of the 2 chips, there was a strong batch effect, which was also 
confirmed when the principal component analysis chart was 
generated (Figure 1A); thus, we removed the batch effect and 
obtained a more accurate analysis chart (Figure 1A,1B).

Identification and expression pattern analysis of 
differentially expressed genes at different stages of colon 
cancer 

The differentially expressed genes (DEGs) that were 
significantly dysregulated at different stages of CRC (normal, 

polyp size ≤2 cm, polyp size >2 cm, tumor) were screened 
out based on R package analysis. Compared with normal 
tissue, polyp size ≤2 cm, polyp size >2 cm, and the DEGs 
that were significantly upregulated and downregulated at 
each stage were selected as the intersection of different stages  
(Figure 2A). The top 10 upregulated and downregulated 
DEGs were clustered and displayed in a hierarchical heat 
map at each stage (Figure 2B). The 20 highest DEGs could 
clearly distinguish the various stages of CRC in normal 
colorectal tissue. Changes in related genes were observed.

Construction of PPI network 

The online database STRING was used to construct a PPI 
network for CRC and DEGs of normal colorectal tissue at 
different stages. The union of each DEG established a PPI 
network. As shown in Figure 3, the network consisted of 
214 nodes interacting with 746 edges.

Data clustering analysis of dynamic network 

DyNetViewer is a Cytoscape application for dynamic 
network construction, analysis, and visualization. To 
analyze the dynamic clustering properties of progressing 
CRC, we input the 4-stage network into DyNetViewer 
for visualization and used the construct dynamic network 
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and after merging. (A) Principal component analysis diagram of the merged expression profile chip. (B) The principal component analysis 
diagram after the expression profile chip was merged and the batch effect was removed.
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Figure 2 Differentially expressed genes (DEGs) for different colorectal cancer (CRC) stages were identified, and the expression pattern 
of DEGs was analyzed. (A) At different points in polyp to colorectal cancer progression, the expression of significantly dysregulated genes 
(DEGs) from the normal group is presented in an intersection graph. (B) Visualized heat maps of the top 10 up- and downregulated genes 
(DEGs) with significant dysregulation of expression relative to the normal group at different stages in the progression of polyps to colorectal 
cancer.
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Figure 3 The protein interaction network diagram formed by the combination of differentially expressed genes at different stages in the 
process from normal to the development of polyps and finally to colorectal cancer.
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function of the DyNetViewer plugin to construct a 
dynamic protein interaction network. The TC-PIN 
algorithm constructed subnetworks, showing clusters of 
highly interconnected regions at each stage, and these 
subnetworks were analyzed as key regulators of network 
development (Figure 4). A total of 25 feature cluster 
modules were identified in the 4 CRC stages. In the first 
stage, 7 groups were typical contributions to the network. 
These 7 gene sets were involved in: alcohol metabolism; 
amino acid metabolism; cell cycle regulation; blood 
pressure and electrolyte homeostasis; protein processing 
and assembly; chemotactic activity of inflammatory cells; 
intestinal contraction; blood sugar balance; vasodilation, 
and; hematopoietic coagulation. In addition, we found 
that the key genes ADH1C, ADH1B, and UGT2A3 were 
involved in up to 4 pathways, respectively, in the first stage 
(Figure 5A). We found that the second stage of the network 
involved 3 clusters. Pathway enrichment showed that these 
clusters were mainly enriched in: intestinal contraction; 
fibronectin activity; cartilage and bone formation; cell 
adhesion and interaction; angiogenesis; collagen production, 
and; stem cell differentiation. MYC, AXIN2, and SPARCL1 
had 4 or more pathways (Figure 5B). In the third stage of the 
network, 3 gene sets were identified as the key modules of 
the protein interaction network (Figure 5C). These clusters 
were related to: intestinal contraction; Helicobacter pylori 
infection; fibronectin activity; cartilage and bone formation; 
cell adhesion and interaction; angiogenesis; collagen 
production, and; stem cell differentiation. Two key genes, 
CXCL8 and CXCL11, and SPARCL1 were shared by up to 
4 pathways. Finally, a total of 6 clusters participated in the 
fourth stage of the network (Figure 5D). These clusters were 
mainly enriched in: cell canceration; intestinal contraction; 
fibronectin activity; cartilage and bone formation; cell 
adhesion and interaction; angiogenesis; vasoconstriction; 
collagen production, and; stem cell differentiation. Two key 
genes, CXCL8 and CXCL1, CCL5, and COL11A1 were 
shared by up to 4 pathways.

Analysis of node centrality of dynamic network 

To screen out key genes involved in the dynamic network, 
dynamic node analysis in the DyNetViewer plugin was used, 
and the key nodes of each CRC stage were calculated using 
a degree centrality (DC) measurement. In our research, 
we identified 77 key genes that might be involved in the 
development of dynamic networks (Figure 6A-6G). Five 
genes were specifically found in the normal stage, including 

CXCL8, MMP7, MMP3, MMP1, and LGR5, with the 
highest DC. VCAM1 and NR3C1 were the characteristic 
nodes for a polyp size ≤2 cm. The characteristic nodes of 
the third stage included SBSPON, CXCL11, and CXCL11, 
which was the key to maintaining network stability during 
this stage. At the tumor stage, PPBP, CCL5, SNAI2, 
CCL21, and SST were the characteristic nodes, and PPBP 
was the key gene for this node. Five nodes, including 
CXCL8, MMP3, LGR5, MMP7, and MMP1, were 
potentially key genes that promoted the occurrence of CRC.

Pathway enrichment of DEGs at different stages 

We then predicted the similarity of the gene function of 
the feature module at each stage to support the possibility 
of functional level as a module (Figure 7A-7C). To better 
analyze the module function at each stage and prove our 
modularity, we used Pi package analysis. Subsequently, 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis showed that the upregulation of DEGs 
at different CRC stages was usually concentrated in 4 key 
pathways. However, at different stages, each had its own 
unique characteristic pathway, which was the focus of our 
attention (Figure 7D-7H).

Dynamic expression patterns associated with pathological 
phenotype in the adenoma-carcinoma sequence

We constructed an adjacency matrix and constructed 
a topological overlap matrix. Finally, 11 modules were 
determined based on average hierarchical clustering 
and mergeCutHeight =0.25 (Figure 8A). The blue and 
black modules are highly related to pathological grading; 
therefore, this module was selected as a clinically important 
module for further analysis (Figure 8B-8D).

Discussion

Current research has shown that most cases of CRC are 
sporadic, often originating from polyps in abnormal crypts, 
and only about 10% of such polyps will develop into early 
adenomas, then advanced adenomas, and finally CRC. This 
progression is broadly classified as the traditional tubular 
adenoma pathway or the serrated polyp pathway. Later, 
because Fearon and Vogelstein proposed their multiple 
genetic models of colorectal cancer (21), the gradually 
accumulated insights such as chromosomal instability 
(CIN), microsatellite instability (MSI) and methylation 
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A

B

C

D

Figure 4 Diagram of protein-protein interaction subnetworks at different stages. (A) Dynamic network diagram of protein-protein 
interaction at the normal stage. (B) Dynamic network diagram of protein-protein interaction at the polyp size ≤2 cm stage. (C) Dynamic 
network diagram of protein-protein interaction at the polyp size >2 cm stage. (D) Dynamic network diagram of protein-protein interaction 
at the tumor stage.
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phenotype have made us think about the role of glands. A 
deeper understanding of the multiple genetic and epigenetic 
changes underlying tumor-carcinoma sequence occurrence 
and development has provided some information about its 
pathogenesis. The emergence and development of omics 
technology has further revealed off the characteristics of 
gene expression at the molecular level (22,23). Earlier 
and more practicable screening can provide a reliable 
preliminary basis for the prevention and treatment of CRC. 
The dynamic molecular mechanism of CRC progression 
from polyps is still unclear; therefore, in this study, we 
analyzed microarrays from the GEO database and identified 
the DEGs of normal tissue, polyps of different sizes, and 
CRCs. We then used the plugin DyNetViewer to construct 
a dynamic molecular interaction network and determined 
functional modules and characteristic nodes of each stage, 
that is, genes that might be related to CRC progression.

The genetic changes in CRC at different stages are 
dynamic and complex. Dynamic network analysis described 
the differential gene changes at various stages, from normal 

tissue to polyps to cancer. During these stages, MMP1, 
MMP3, and MMP7, which are all matrix metalloproteinases 
(MMPs), increased steadily. MMPs are zinc-dependent 
endopeptidases. The family consists of 25 members (including 
collagenase, gelatinase, and matrix metalloproteinases) and 
plays a role in cancer invasion and metastasis. A key role of 
MMP is being involved in the remodeling of extracellular 
matrix, which is strongly associated with poor prognosis 
in cancer (24-26). Previous studies on CRC have also 
pointed out that the content of MMPs in CRC tissue is 
significantly upregulated, which is related to metastasis and 
proliferation in CRC (27,28). In our study, we observed 
that MMP1, MMP3, and MMP7 were upregulated to the 
greatest extent during the initial stage, from normal tissue 
to polyp size ≤2 cm, and also increased slightly in the later 
stages. Related literature has reported that MMP3 promoted 
the development of serrated polyps, although this requires 
further research. Several studies have observed that MMPs 
were potential biomarkers (29-31). 

Similarly, CXCL8 and CXCL7 (PPBP) changed from 
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the initial stage to the tumor stage. However, the increase 
in CXCL8 was observed during the period from normal 
tissue to polyp size ≤2 cm, while the increase in CXCL7 was 
observed at polyp size >2 cm. Several previous studies have 
proposed the use of these two genes as potential cancer 
biomarkers at the tumor stage, although they were not 
subdivided more specifically. Differences between the two 
genes could be further subdivided to provide a reference for 
more accurate screening (32-34). The chemokines CCL19 
and CXCL13 exhibited results opposite to CXCL8 and 
CXCL7, with both showing a rapid decline in cancerous 
tissue. Further results supporting CCL19’s anti-CRC 

angiogenesis have also been reported (35,36). However, 
studies reporting on CXCL13 had differing results, which 
is worthy of discussion (37,38). Finally, the expression of 
GCG in CRC tissue was significantly downregulated, and 
GCG is a preproprotein that can be cleaved into 4 different 
mature peptides (39,40). One of them, glucagon, is a ligand 
for specific G protein-linked receptors, and its signaling 
pathway controls cell proliferation. Therefore, we inferred 
that GCG might have played a major role in inhibiting the 
occurrence of CRC.

KEGG pathway enrichment analysis showed that the 
DEGs of polyps and cancer were mainly enriched in  
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22 pathways, including the bladder cancer pathway, 
epithelial cell signaling in Helicobacter pylori infection, 
NOD-like receptor signaling pathway, small cell lung 
cancer pathway, and CRC pathway (Figure 7D-7H). 
The interaction pathways between factors and cytokine 
receptors play an important role in the maintenance of the 
pathological environment of CRC. These pathways share 
CXCL8, CXCL1, FN1, MMP1, MYC, and other genes 
and have been reported to be associated with the occurrence 
and development of CRC. Distinct pathways were also 
observed at specific stages. For example, when polyp size 
>2 cm, leukocyte migration across the endothelium and 
the appearance of Toll-like receptor signaling pathways 
indicated that inflammation was an important hallmark 
in the early stage of CRC (41,42). The few reports on 
endothelial migration and CRC in leukocytes have found 
that they serve as a signaling pathway for inflammation 
and immunomodulation. Immunomodulation has been 
observed when polyps are >2 cm, and they are high-risk 
factors for CRC. During the tumor period, cell adhesion 
molecules (CAMs), which participate in the proliferation 
and migration of cancer cells, are observed (43). Genes such 
as VCAM1 and COL11A1 are involved in proliferation and 
migration. As a classic cancer pathway, their appearance 
is a high-risk indicator used for screening, while several 
related therapies are also emerging (44-46). In addition, 
the mitogen-activated protein kinase signaling pathway 
and hematopoietic cell lineage are not observed at the 
cancer stage, which might be associated with abnormal 
angiogenesis in cancer (47-49).

In this study, we focused on dividing the various 
stages from polyps to cancer and described the DEGs of 
each stage to provide references for more accurate early 
screening. However, the limited number of samples and 
lack of clinical samples in our study limit their use. During 
follow-up, samples from clinical trials should be collected to 
better support our hypothesis.

Conclusions

We screened the DEGs of different CRC stages and 
constructed a dynamic molecular interaction network to 
illustrate the underlying mechanisms of CRC progression. 
The matrix metalloprotein family and chemokines were 
identified as key regulatory genes driving CRC progression. 
In addition, the related nodes and pathways at various 
stages may be potential mechanisms for promoting the 

dynamic CRC progression. Our research provides a 
better understanding of the dynamic pattern of molecular 
interaction networks during the progression of polyps to 
CRC and provides potential opportunities for therapeutic 
interventions.
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