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Background: With high incidence and mortality rates, hepatocellular carcinoma (HCC) is one of the most 
prevalent malignant tumors worldwide. Chronic hepatitis B virus (HBV) infection is a leading cause of HCC, 
especially for Asians and blacks. However, the molecular mechanisms underlying HBV-related HCC are 
unclear. This study sought to identify novel prognostic biomarkers and explore the potential pathogenesis of 
HBV-related HCC.
Methods: The gene expression profiles and corresponding clinical information of HCC from The Cancer 
Genome Atlas Liver Hepatocellular Carcinoma data set were analyzed by a weighted gene co-expression 
network analysis. Correlations between the co-expression modules and clinical traits were calculated. Next, 
key modules associated with HBV infection were identified. Gene Ontology and Kyoto Encyclopedia 
of Genes and Genomes analyses were conducted for the genes in the key modules. The hub genes were 
identified based on the protein-protein interaction (PPI) network via the Cytoscape. Finally, an overall 
survival (OS) analysis was performed.
Results: The two modules (i.e., the brown and yellow modules) most relevant to HBV infection were 
constructed. A functional enrichment analysis revealed that the genes in the two modules were mainly 
enriched in HCC-related pathways, such as the phosphatidylinositol-3-kinase and protein kinase B signaling 
pathway, focal adhesion, human papillomavirus infection, the Rap1 signaling pathway, and the cyclic 
guanosine monophosphate-dependent protein kinase (cGMP-PKG) signaling pathway. Ten hub genes [i.e., 
COL3A1, ANTXR1, COL14A1, THBS2, ADAMTS2, AEBP1, PRELP, EMILIN1, DCN and PODN] in the 
brown module, and 10 hub genes [i.e., USP34, SEC24C, ZNF770, STAG1, TSTD2, PKD1P6, CCNK, GFT2I, 
NT5C2 and SMG6] in the yellow module were identified. Among the hub genes, ANTXR1 (Anthrax-toxin 
receptor 1) was significantly correlated with HBV-related HCC patients’ OS.
Conclusions: ANTXR1 represents a potential therapeutic target for HBV-related HCC. This study offers 
novel insights into the molecular mechanisms of HBV-induced tumorigenesis, which needs to be further 
validated by basic experiments and large-scale cohort studies.
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Introduction

Liver cancer is the 6th most common type of cancer and the 
4th leading cause of cancer-related death (1). Hepatocellular 
carcinoma (HCC) is the main type of primary liver cancer. 
HCC is highly malignant, and its characteristics include 
an insidious onset, and rapid invasive growth. It has high 
recurrence and mortality rates. Except for patients in 
Taiwan and Japan, ≥60% of patients in China, Korea, 
North America, and Europe with HCC are diagnosed in 
the intermediate or advanced stages (2). These patients 
often have a poor prognosis. There is increasing evidence 
that early detection could significantly improve the overall 
survival (OS) of HCC patients (3). Thus, it is essential to 
explore novel diagnostic and therapeutic biomarkers to 
reduce the high mortality of HCC.

Hepatitis B virus (HBV) infection is one of the most 
attributable causes of HCC (4). In China, liver cancer 
is associated with HBV infection in 85% of patients (5). 
It has been estimated that approximately 291,992,000 
people are infected with HBV worldwide. Among them, 
only 29 million have been diagnosed and only 4.8 million 
have received antiviral therapy, which only appears to 
ameliorate (and not eliminate) HBV (6). Chronic carriers 
with persistent virus or subviral particles in their blood 
for >6 months develop progressive chronic liver diseases 
that eventually manifest as hepatic inflammation, fibrosis, 
cirrhosis, and even HCC (7). However, little is known about 
the precise molecular mechanism underlying HBV-related 
hepatocarcinogenesis.

With advancements in next-generation sequencing and 
genomic analysis technology, growing cancer biomarkers, 
such as oncogenes, micro ribonucleic acids (RNAs), specific 
peptides and deoxyribonucleic acid (DNA) methylation 
have been identified as having the potential to detect HCC 
early (8-11). HBV-related hepatocarcinogenesis possesses 
its own specific characteristics. Some prognostic biomarkers 
have been identified through proteogenomic analyses, 
which have greatly expanded understandings of HBV-
related HCC (12). However, the development of HCC is a 
complex process involving multiple factors. Thus, there is 
an urgent need to identify novel diagnostic and prognostic 
biomarkers for HBV-related HCC.

Weighted gene co-expression network analyses 
(WGCNAs) have been widely used to analyze correlations 
between clinical features and gene modules (13). In our 
study, we examined two key gene modules associated with 
HBV-related HCC using a WGCNA. Based on the protein-

protein interaction (PPI) network of the genes in the key 
modules, the top 10 hub genes were identified. Further, 
the survival-related hub genes were analyzed. This study 
provides further insights into the complex mechanisms 
underlying HBV-related HCC and identifies novel hub 
genes that could have potential value as diagnostic and 
therapeutic biomarkers for HBV-related HCC. We present 
the following article in accordance with the REMARK 
reporting checklist (available at https://dx.doi.org/10.21037/
jgo-21-764).

Methods

Data information

The HCC RNA-sequencing data were retrieved from 
The Cancer Genome Atlas (TCGA)-Liver Hepatocellular 
Carcinoma database (https://portal.gdc.cancer.gov/). 
This study comprised 424 HCC patients (57 of whom 
had hepatitis B Surface Antigen positive status and 127 
who did not have a HBV infection). The patients’ clinical 
information was also downloaded, including their height, 
weight, race, gender, age, tumor, node, metastasis (TNM) 
stage, pathological stage, vital status, new tumor event 
status, cancer status, and HBV status (see available online: 
https://cdn.amegroups.cn/static/public/jgo-21-764-01.
pdf). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

WGCNA

As genes with little variation in expression usually represent 
noise, the most variant genes were used for the network 
construction. The expression levels of genes were measured 
as fragments per kilobase of transcript per million (FPKM) 
mapped reads. Based on FPKM, the genes were first ranked 
from largest to smallest, and the top 5,000 genes were 
then chosen for cluster analysis using the hClust function 
in R (13). After filtering out the outliers in the data set, 
a WGCNA was conducted to build a scale-free network. 
First, a soft-thresholding power β was determined to ensure 
that the co-expression network was a “scale-free” network 
that was biologically close to reality. To determine the best 
soft threshold power, the scale independence and average 
connectivity degree of the modules with different power 
values were calculated using the gradient method. Next, 
the adjacency was transformed into a topological overlap 
matrix and the corresponding dissimilarity was calculated. 

https://dx.doi.org/10.21037/jgo-21-764
https://dx.doi.org/10.21037/jgo-21-764
https://portal.gdc.cancer.gov/
https://cdn.amegroups.cn/static/public/jgo-21-764-01.pdf
https://cdn.amegroups.cn/static/public/jgo-21-764-01.pdf
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A hierarchical clustering dendrogram of the topological 
overlap matrix was then constructed by the average distance 
with a minimum size threshold of 30, and a merge cut 
height of 0.25 to classify the similar gene expression profiles 
into different gene modules. The interaction relationships 
among different co-expression modules were visualized on a 
heat map with 400 genes randomly selected.

Identification of modules associated with clinical traits

The correlations between the module eigengenes (MEs) 
and clinical traits were calculated by a module-trait 
relationship analysis. Next, gene significance (GS) was 
defined as the log10 transformation of the P value (GS = 
lg P) in the linear regression between gene expression and 
clinical characteristics. For each module, we also defined 
a quantitative measure of module membership (MM) as 
the correlations between the MEs and the gene expression 
profiles. The correlations between GS and MM were 
visualized in a scatter plot. The most significant relevant 
modules were selected as the key modules.

Functional enrichment analysis

To explore potential the biological functions and pathways 
of genes in the modules, the clusterprofiler package in R (14) 
was used to perform the Gene ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses. The GO terms include biological 
process (BP), cellular component (CC), and molecular 
function (MF).

Construction of the PPI network and identification of hub 
genes

A PPI network of the genes in the key modules was 
constructed using Cytoscape (15). The top 10 genes with 
the highest maximal clique centrality were identified as 
hub genes using the CytoHubba plugin in Cytoscape (16). 
Further, the core subnetworks were constructed based on the 
PPI network through the MCODE plugin in Cytoscape (17).

Survival analysis

The survival package in R was used to evaluate the OS-
related genes based on the 58 HCC patients who were 
infected by HBV (18). Hazard ratios (HRs) and 95% 
confidence intervals were calculated using a Cox regression 
model.

Statistical analysis

All data were presented as mean ± SE through three 
independent experiments. Unpaired t-test and chi-square 
test were used for statistical analysis. The statistical data 
were performed by SPSS 21.0 software (IBM Corp., NY, 
USA), and diagrammed by GraphPad Prism 6.0 (GraphPad 
Software Inc., CA, USA). P<0.05 was considered to be 
indicative of statistical significance.

Results

WGCNA

The 5,000 most variant genes according to the FPKM values 
were selected for the hcluster analysis to detect outliers. As 
Figure 1A shows, 1 outlier sample was excluded. The soft-
thresholding power parameter β is an important parameter 
for the scale-free topology. Thus, we performed a network 
topology analysis for thresholding powers from 1 to 20 and 
identified relatively balanced scale independence and mean 
connectivity (see Figure 1B). When β=5 was selected as the 
soft threshold power, scale free R2=0.88 (Figure 1C,1D). 
The co-expression network exhibits a scale-free topology. 
Further, the merge cut height was set as 0.25 to merge 
similar modules. Finally, 10 modules were identified through 
the cluster dendrogram (see Figure 2A). Each module was 
assigned a unique color as an identifier. The number of 
genes in the modules ranged from 59 to 1,070 (see Table 1).  
After randomly selecting 400 of the 5,000 genes, the 
relationships between the 10 modules were analyzed, and the 
network heatmap was plotted (see Figure 2B). The results 
showed that the modules were independent of each other; 
that is, there was a high degree of independence among the 
modules and the gene expression in each module was relative 
independent.

Identification of clinical trait-related modules

To explore the clinical trait significance of each module, 
correlations between MEs and clinical traits, including 
height, weight, race, gender, age, TNM stage, pathologic 
stage, vital status, new tumor event status, cancer status, and 
HBV status were analyzed. A P value <0.05 was considered 
statistically significantly. In the modules, the yellow and 
brown modules were significantly associated with both 
HBV and race. Further, the yellow module was correlated 
with weight (see Figure 3A). We then plotted a scatter plot 
of GS versus MM for the selected modules. The yellow 



3082 Si et al. ANTXR1 as a biomarker for HBV-related HCC

© Journal of Gastrointestinal Oncology. All rights reserved.   J Gastrointest Oncol 2021;12(6):3079-3092 | https://dx.doi.org/10.21037/jgo-21-764

module (cor =0.39, P=1.4e−20) and the brown module (cor 
=0.43, P=1.9e−36) were identified as the modules to the 
virus infection status of HBV. Figure 3B and Figure 3C show 
the correlations between MM and GS in the yellow and 
brown modules, respectively.

Functional enrichment analysis

To examine the functions of genes in the yellow and 
brown modules, the genes in the two modules were 
analyzed by clusterProfile in R for the GO and KEGG 
pathway enrichment analyses. As Figure 4A shows, the GO 

enrichment analysis results revealed that the yellow module 
was significantly related to the cell-cell junction (CC), 
laminin binding, and extracellular matrix binding (MF). 
However, no KEGG pathway was significantly enriched. 
The GO enrichment analysis results also showed that the 
genes in the brown module were mainly enriched in BP (e.g., 
extracellular matrix organization and extracellular structure 
organization), the CC (e.g., the collagen-containing 
extracellular matrix), and MF (e.g., the extracellular matrix 
structural constituent and glycosaminoglycan binding) (see 
Figure 4B). According to the KEGG enrichment analysis 
results, 10 pathways were significantly enriched, including 
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the phosphatidylinositol-3-kinase and protein kinase b 
(PI3K-Akt) signaling pathway, focal adhesion, human 
papillomavirus infection, the Rap1 signaling pathway, 
extracellular matrix-receptor interaction, the cGMP-
PKG signaling pathway, protein digestion and absorption, 
the relaxin signaling pathway, vascular smooth muscle 
contraction, and the AGE-RAGE signaling pathway (see 
Figure 4C). Most of these pathways have been confirmed to 
be closely related with HCC.

Construction of PPI network and identification of hub 
genes

In this study, an interaction score ≥0.25 and 0.15 was set 
as the cut-off criterion for the brown module and the 
yellow module, respectively. The results were visualized 
using Cytoscape. There were 428 PPI pairs in the PPI 
network of the brown module (see Figure 5A), and  
527 interaction pairs in the yellow module (see Figure 5B). 
We identified hub genes in the two modules according to 
Mathew correlation coefficient (MCC) using the cytohubba 
plugin in Cytoscape. 10 hub genes [i.e., Collagen Type 
III Alpha 1 Chain (COL3A1), Anthrax-toxin receptor 1 
(ANTXR1), Collagen Type XIV Alpha 1 Chain (COL14A1), 
Thrombospondin 2 (THBS2), ADAM Metallopeptidase 
With Thrombospondin Type 1 Motif 2 (ADAMTS2), 
AE Binding Protein 1 (AEBP1), Proline And Arginine 
Rich End Leucine Rich Repeat Protein (PRELP), Elastin 
Microfibril Interfacer 1 (EMILIN1), Decorin (DCN), and 
Podocan (PODN)] were identified in the brown module 
(see Figure 6A), and 10 hub genes [i.e., Ubiquitin Specific 

Peptidase 34 (USP34), SEC24 Homolog C, COPII Coat 
Complex Component (SEC24C), Zinc Finger Protein 
770 (ZNF770), Stromal Antigen 1 (STAG1), Thiosulfate 
Sulfurtransferase Like Domain Containing 2 (TSTD2), 
Polycystin 1, Transient Receptor Potential Channel 
Interacting Pseudogene 6 (PKD1P6), Cyclin K (CCNK), 
General Transcription Factor IIi (GTF2I), 5'-Nucleotidase, 
Cytosolic II (NT5C2), and SMG6 Nonsense Mediated 
MRNA Decay Factor (SMG6)] were identified in the 
yellow module (see Figure 6B). We also constructed core 
subnetworks for the brown and yellow modules using the 
MCDOE plugin in Cytoscape. As expected, the above-
mentioned hub genes were all in the 2 core subnetworks (see 
Figure 7A,7B).

Identification of the survival-related hub genes

A survival analysis was performed to evaluate the effect of all 
genes on OS based on the 58 HBV infection-related HCC 
patients. The patients were divided into two groups based 
on the median value of each gene. The results showed that 
469 genes were significantly associated with the prognosis 
of HBV-related HCC patients (see available online: https://
cdn.amegroups.cn/static/public/jgo-21-764-02.pdf). Among 
them, there were 90 genes in the brown module and  
30 genes in the yellow module. Further, 1 hub gene (i.e., 
ANTXR1) was significantly associated with HBV-related 
HCC patients’ OS [see Figure 8; HR =0.303 (0.125–0.738), 
P=0.00778].

Discussion

For decades, researchers have sought to find better and 
valuable prognostic or predictive biomarkers for HCC 
patients. The WGCNA possesses many outstanding 
advantages over other methods, which makes the analysis 
results more reliable and more biologically significant. 
Some biomarkers associated with HBV-related HCC 
have been identified by WGCNAs in previous studies; for 
example, Protein Regulator of Cytokinesis 1 (PRC1) and 
DNA Topoisomerase II Alpha (TOP2A) were found to be 
significantly associated with poor clinical outcomes among 
patients with HBV-related HCC (19). However, little is 
known about how aberrant genes drive cancer phenotypes 
in HBV-related HCC.

Unlike other WGCNA studies that focused on 
discovering differentially expressed genes between HBV (+) 
HCC tumor tissues and HBV (+) normal liver tissues, we 

Table 1 The number of genes in different modules

Module No. of gene

Black 120

Blue 869

Brown 780

Green 479

Grey 857

Magenta 59

Pink 82

Red 157

Turquoise 1,070

Yellow 527

https://cdn.amegroups.cn/static/public/jgo-21-764-02.pdf
https://cdn.amegroups.cn/static/public/jgo-21-764-02.pdf
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Figure 2 WGCNA construction. (A) The cluster dendrogram of the most variant 5,000 genes for HCC. The clustering was based on  
58 samples with hepatitis B surface antigen positive status, and 127 samples without HBV infection. Each branch in the figure represents  
1 gene, and every color below represents 1 co-expression module. (B) Interaction relationship analysis of co-expression genes. The different 
colors of the horizontal axis and the vertical axis represent different modules. The brightness of the yellow in the middle represents the 
degree of connectivity of different modules. No significant difference was found in the interactions among the different modules, indicating 
a high level of independence among these modules. WGCNA, weighted gene co-expression network analysis; HCC, hepatocellular 
carcinoma; HBV, hepatitis B virus.
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Figure 3 Clinical trait-related key modules. (A) Heatmap showing the correlation between module eigengenes and the clinical traits of 
HCC. Module-trait relationships were evaluated by correlations between MEs and clinical traits. Each row corresponds to a module 
eigengene, and each column to a trait. Each cell contains the corresponding correlation (the first line), and P value (the second line). The 
table is color-coded by correlation according to the color legend. (B) Scatter plot of module eigengenes in the yellow module. (C) Scatter 
plot of module eigengenes in the brown module. HCC, hepatocellular carcinoma; MEs, module eigengenes.
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Figure 4 Functional enrichment analysis of genes in the 2 key modules. (A) GO cellular component and molecular function of genes in the 
yellow module. (B) The top 10 significantly enriched GO biological processes, cellular components, and molecular functions of the genes 
in the brown module. (C) The top 10 significantly enriched KEGG pathways of genes in the brown module. The size of bubbles represents 
the numbers of the genes; the color of the bars corresponds to the P value according to the legend. GO, gene ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes.
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examined the association between co-expression modules 
and clinical traits based on the gene expression profiles of 
HCC tissues. In our study, we conducted a WGCNA to 
determine the clinical trait modules of HCC and identified 
two key modules (brown and yellow) that were significantly 
associated with HBV infection. Notably, we found that 
the brown and yellow modules were also significantly 
related to race. Previous studies have reported significant 

geographic and ethnic differences in HCC (20,21). From 
the perspective of genomics, it may become possible to 
analyze HBV infection susceptibility based on race. In this 
study, the data sets included 5 races (i.e., Asian, White, 
Black or African American and unknown). However, this 
classification is sketchy, and a more detailed study of the 
association between races and HBV-related HCC needs to 
be conducted.

A B

Figure 5 PPI network construction. (A) Interaction network of genes in the brown module. (B) Interaction network of genes in the yellow 
module. The nodes represent the genes; the size of the nodes represents the power of the interrelation among the nodes, and the edge 
between 2 nodes represents the correlation between the genes. The larger the node, the higher the degree. The coarser the edge, the more 
central the gene in the network. PPI, protein-protein interaction.

A B

Figure 6 Hub gene analysis of the PPI network. The top 10 hub genes were identified in the brown module (A) and the yellow module (B) 
using the cytohubba plugin of Cytoscape software. The nodes represent genes, the size of the nodes represents the power of the interrelation 
among the nodes, the color of the nodes indicates the score calculated according to the MCC method, and the edge between 2 nodes 
represents the correlation between the genes. The larger the node, the higher the degree. The coarser the edge, the more central the gene 
in the network. The red indicates a high MCC score, and the yellow indicates a low MCC score. PPI, protein-protein interaction; MCC, 
Mathew correlation coefficient.
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Functional and pathway enrichment analyses are 
important to understand the functions and potential 
molecular mechanisms of a gene in a disease. In this study, 
our results revealed that the genes in the brown module 
were mainly involved in the PI3K-Akt signaling pathway, 
the Rap1 signaling pathway, focal adhesion, and the cGMP-

PKG signaling pathway. Among these, the PI3K-Akt 
signaling pathway plays a pivotal role in the pathogenesis 
of HCC induced by HBV infection (22-25). The Rap1 
signaling pathway is also associated with the development 
of HBV-related HCC. As previously shown, HBV infection 
elevates the expression of Rap1b by inhibiting miR-101-3p, 
and thereby promoting the proliferation and migration of 
HCC cells (26). In another study, HBV infection was shown 
to suppress Rap1a expression by up-regulating miR-203a, 
thereby mediating the PI3K/ERK/p38/NFκB pathway, 
and eventually inducing hepatitis inflammation (24).  
The interactions between the above two pathways are  
complex (27). These findings show the credibility of the 
data we obtained.

Focal adhesion kinase, a tyrosine kinase, is overexpressed 
in a variety of human tumors, including HCC (28). Many 
previous studies have reported that focal adhesion kinase 
overexpression is closely related to the pathological stage 
and clinical outcomes of patients with HCC (29). Notably, 
Wang demonstrated that notch activated by iNOS/NO/
sGC/cGMP/PKG-dependent TACE may be an important 
mechanism in the promotion of liver cancer stem cell 
enrichment and function in HCC (30). To date, no research 
appears to have been conducted on the role of focal 
adhesion and the cGMP-PKG signaling pathway in HBV-
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Figure 7 Module analysis of the PPI network. Core subnetworks with the highest score were identified for the brown module (A) and the 
yellow module (B) using the MCODE plugin of Cytoscape software. The nodes represent genes, the size of the nodes represent the power 
of the interrelation among the nodes, and the edge between 2 nodes represents the correlation between the genes. The larger the node, the 
higher the degree. The coarser the edge, the more central the gene in the network. PPI, protein-protein interaction.
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Figure 8 OS analysis of the hub gene ANTXR1 for patients with 
HBV-related HCC. The red lines represent high expression; the 
blue lines represent low expression. OS, overall survival; HBV, 
hepatitis B virus; HCC, hepatocellular carcinoma.
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related HCC patients. Notably, human papillomavirus 
infection was also found to be involved in the genes in the 
brown module, which suggests that different viral infections 
may share the same pathways. Further investigations should 
examine these aspects.

In the PPI network, 20 hub genes were identified (i.e., 
COL3A1, ANTXR1, COL14A1, THBS2, ADAMTS2, 
AEBP1, PRELP, EMILIN1, DCN, and PODN in the brown 
module, and USP34, SEC24C, ZNF770, STAG1, TSTD2, 
PKD1P6, CCNK, GFT2I, NT5C2, and SMG6 in the yellow 
module). Among hub genes, ANTXR1 was significantly 
correlated with HBV-related HCC patients’ OS. ANTXR1, 
also known as tumor endothelial marker 8 (TEM8), is a 
highly conserved single-pass cell-surface protein that was 
originally identified in endothelial cells derived from the 
blood vessels of human malignant colorectal tissues (31). It 
is also expressed in the endothelial cells (32,33) and stromal 
cells of tumors (34-36).

There is increasing evidence that ANTXR1 plays an 
important role in tumor angiogenesis (35). ANTXR1 could 
also mediate the receptor activator of nuclear factor kappa B 
ligand-induced osteoclast differentiation and bone resorption 
without affecting osteoblast differentiation (37). ANTXR1 
knockdown may suppress tumor growth in multiple cancer 
types (34,38). ANTXR1 was confirmed to be a downstream 
molecule of miR-26b-3p in glioma (39) and miR-493 in 
HCC (40). Molecular mechanistic investigation indicated 
that ANTXR1 exerted its promoting effects through 
activation of the Wnt/beta-catenin signaling pathway in 
lung adenocarcinoma (41) and HCC (40). The PI3K/AKT/
mTOR signaling pathway can also be activated by ANTXR1 
in gastric cancer (42). Further, the disruption of ANTXR1 
gene in mice cannot affect physiological angiogenesis and 
wound healing (33). This study suggests that ANTXR1 is 
necessary for tumor rather than physiological angiogenesis.

ANTXR1 is also an anthrax-toxin receptor, which binds 
to the nontoxic protective antigen component secreted by 
Bacillus anthracis, and mediates the enzymatic toxins into 
the cytoplasm of host target cells (43). The systemic anti-
tumor activity of the anthrax lethal toxin has been observed 
in a range of human solid tumors attributed to ANTXR1 
(44-47). Based on these features, TEM8 antagonists and the 
TEM8-mediated transport of anticancer drugs may have 
potential as effective cancer therapeutics. TEM8-Fc is an 
antibody-like molecule comprising the protective antigen-
binding domain of human TEM8 linked to the Fc portion 
of human immunoglobulin G1, which has been shown to 
suppress the growth and metastasis of xenograft human 

tumors in athymic nude mice (48). TEM8 CAR T cells were 
used to kill triple-negative breast cancer cells in local and 
metastatic murine models (49). High ANTXR1 expression 
was found in gastric adenocarcinoma cells (50). ANTXR1 
is also considered a probable target in CAR T-cell therapy 
for gastric adenocarcinoma (51). Anti-TEM8 antibody-
drug conjugate treatment has been shown to induce 
regression and eradicate multiple solid tumor types, block 
metastatic growth, and prolong OS through a surprising 
killing mechanism called DAaRTS (drug activation and 
release through stroma) (36). Thus, the expression level 
of ATNXR1 in tumors might be used as a predictor of the 
treatment efficacy of ANTXR1-targeted cancer therapy.

A xenogeneic DNA vaccine encoding human TEM8 
carried by attenuated Salmonella typhimurium could 
overcome peripheral immune tolerance and produce 
TEM8-specific CD8 cytotoxic T-cell responses (52). 
Yang (53) reported that dendritic cells transduced with 
TEM8 recombinant adenovirus prevent angiogenesis and 
inhibit cell growth of HCC. Recent research suggests that 
ANTXR1 is an essential receptor for the Seneca Valley 
virus infection (54), which is a prototype member of the 
Seneca virus genus in the Picornaviridae family (55). In our 
study, ANTXR1 was found to be significantly associated 
with HBV infection in HCC patients. Further, the KEGG 
analysis revealed that the genes in the brown module were 
significantly enriched in human papillomavirus infection, 
a virus infected pathway. These findings suggest that 
ANTXR1 is both an anthrax-toxin receptor and may be a 
virus receptor for many kinds of mammalian viruses. To 
date, no association between ANTXR1 and HBV infection 
has been reported; however, ANTXR1 may be a cellular 
receptor for HBV.

ANTXR1 might play a dual role in the pathogenesis 
and treatment of HBV-related HCC. First, it may act as 
a cellular receptor for HBV that assists HBV infection 
and promotes tumor growth. Second, ATNXR1 may 
transport certain unknown anticancer drugs into tumor 
cells to exert a killing mechanism, or some effective 
therapy induced by ANTXR1 overexpression. ANTXR1 
expression is upregulated in endothelial cells of the gastric 
adenocarcinoma regions with a history of neoadjuvant 
therapy (50), and no therapeutic information is supplied in 
TCGA database. This may explain why HBV-related HCC 
patients with high ANTXR1 expression had a significantly 
longer OS time in our analysis. However, this study was 
limited by the small number of HBV (+) samples. The 
expression and function of ANTXR1 in HBV-related HCC 
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tumorigenesis are still unclear, and need to be further 
validated by large-scale studies.

Conclusions

Our study suggests that ANTXR1, which regulates tumor 
angiogenesis and participates in transmembrane transport, 
is a potential therapeutic target for HCC. Further, it might 
play an important role in HBV infection and HBV-related 
HCC. These findings provide novel insights into the 
molecular mechanisms of HBV-related HCC.
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