

Tumor mutation burden determined by a 645-cancer gene panel and compared with microsatellite instability and mismatch repair genes in colorectal cancer

Zhaofei Zhou¹, Kang Li², Qiang Wei², Lingxiang Chen¹, You Shuai¹, Yajing Wang¹, Kang He¹, Lixiang Si¹, Yuejiao Zhong¹, Jianwei Lu¹

¹Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China; ²Department of Radiology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China

Contributions: (I) Conception and design: Z Zhou, K Li; (II) Administrative support: None; (III) Provision of study materials or patients: Y Shuai, K He, L Si; (IV) Collection and assembly of data: Q Wei, Y Wang; (V) Data analysis and interpretation: L Chen, Y Zhong, J Lu; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Yuejiao Zhong; Jianwei Lu. Department of Medical Oncology, Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and The Affiliated Cancer Hospital of Nanjing Medical University, Baiziting 42, Nanjing 210009, China. Email: Zhongyuejiao1977@126.com; lujw@medmail.com.cn.

Background: Tumor mutation burden (TMB) assessed by tumor-related gene panels (CRGP), microsatellite instability (MSI), and mismatch repair (MMR) has been proven to be associated with prognosis, and these factors are prognostic indicators in predicting the benefits of immune checkpoint blockade (ICB) in solid tumors. However, whether the TMB calculated by CRGPs, MSI, and MMR is associated with overall survival (OS) in patients with colorectal cancer (CRC) remains to be explored.

Methods: The prognostic threshold of the panel-TMB was explored by a panel of 645 genes (*GP645*) from 41 CRC patients in Jiangsu Cancer Hospital (JCH dataset). The results were further validated using 531 CRC patients from The Cancer Genome Atlas (TCGA) database.

Results: Mutations of the *GP645* genes were distributed on 21 chromosomes. Spearman correlation analysis showed that the panel-TMB was positively correlated with TMB measured by whole-exome sequencing (WES) (wTMB) in the TCGA dataset (R=0.75, P<0.001). Kaplan-Meier survival analysis demonstrated that higher panel-TMB in CRC patients was significantly associated with a poor OS (P=0.0062). MSI and MMR status were determined using the *GP645* by next-generation sequencing (NGS). The proportions of MSI-H and dMMR accounted for less than 10% in CRC, the vast majority of MSI-H/dMMR samples also had high TMB [positive predictive value (PPV) =66.6%], and only 13.3% of samples with high TMB were classified as MSI-high/dMMR. In addition, patients with low-TMB were associated with MSS/ pMMR (96.2%), and these results are consistent with earlier studies.

Conclusions: GP645 was constructed to evaluate OS in Chinese CRC patients. Panel-TMB and MSI/ MMR might be potential prognostic predictors of CRC patients using the *GP645*.

Keywords: Tumor mutation burden (TMB); microsatellite instability (MSI); mismatch repair (MMR); gene panel; colorectal cancer (CRC)

Submitted Jul 30, 2021. Accepted for publication Dec 16, 2021. doi: 10.21037/jgo-21-572 View this article at: https://dx.doi.org/10.21037/jgo-21-572

Introduction

Colorectal cancer (CRC) is the fourth leading cause of cancer-related death in China (1-3). With the improvement of surgical methods and the combination of chemotherapy drugs and other medical technology, the treatment level of CRC has improved, while the overall prognosis of patients has not significantly improved. Over the past 2 decades, many drugs, including targeted drugs such as antibodies targeting vascular endothelial growth factor (bevacizumab) and the epidermal growth factor receptor (EGFR; cetuximab and panitumumab), and immunotherapy drugs have been approved for the treatment of metastatic CRC (mCRC). The survival period of advanced CRC patients has increased from less than 1 to 3 years, and even 20% of patients can survive for more than 5 years (4-7). However, the optimal combination of these drugs is likely dependent on many factors, including the mutational status of the tumor cells. With the continuous development of genome sequencing, targeted therapy and immunotherapy for CRC have made great progress in recent years. Scientists have found several groups of biomarkers such as gene mutations (KRAS, NRAS, BRAF, HER2, NTRK), tumor mutation burden (TMB), and microsatellite instability/mismatch repair (MSI/MMR) which can be used as prognostic indicators of targeted therapy and immunotherapy (8-14).

MSI are DNA elements composed of repeating motifs that occur as alleles of variable lengths. It was first found in hereditary non-polyposis colorectal cancer (HNPCC) (15), and was then identified in a variety of sporadic tumors (such as gastric cancer, lung cancer, and endometrial cancer) (16). MSI has been associated with improved prognosis and immune checkpoint inhibitors (ICIs). Some evidence has shown that MSI-high (MSI-H) mCRC patients who received nivolumab and nivolumab + ipilimumab had a better response rate and survival time (17,18). MSI increases the probability of somatic mutation. The incidence of somatic mutation was 10-50 times higher than that of MMR proficiency (pMMR) (19). As the increase of mutation frequency would lead to the enhancement of tumor immunogenicity (20), patients with MMR deficiency (dMMR) had higher sensitivity to immunotherapy. Recent studies suggest that dMMR may also be a marker for predicting the efficacy of immunotherapy (21). Solid tumor patients with MSI-H/ dMMR usually develop immunogenicity and extensive T-cell infiltration, which results in a high response to ICI treatment. These findings indicate that MSI/MMR

gene deletion may predict the efficacy of immunotherapy, however, the incidence of dMMR/MSI-H in CRC is only about 10–15% (22). Therefore, more molecular markers are needed to predict the efficacy of immunotherapy.

TMB measured by whole-exome sequencing (WES) is a novel prognostic biomarker for ICI therapy in cancers (12,23). However, TMB is difficult to popularize because of the cost, timeliness, and bioinformatics challenges of WES in the clinical setting (24,25).

Hence, in this study, 645 cancer-related genes and 5 MSI loci (BAT-25, BAT-26, NR-21, NR-24, MONO-27) were obtained for developing a panel for TMB estimation (panel-TMB) and predicting the efficacy of targeted therapy and immunotherapy in CRC. In this study, somatic and genetic mutations of patients were detected in the same experimental species, and TMB, HRR, MMR and MSI of patients were analyzed at the same time, which could provide patients with a better comprehensive treatment plan including targeted drugs, genetic and immunotherapy. The correlation between TMB, MMR and MSI was also analyzed, and multiple tests were combined in one experiment to shorten the detection cycle and cost. In addition, this study clinical samples of the department and TCGA database were comprehensively analyzed to verify the accuracy of the process and shorten the overall smooth testing development cycle. We present the following article in accordance with the REMARK reporting checklist (available at https://dx.doi.org/10.21037/jgo-21-572).

Methods

Patient samples

A total of 41 tumor biopsies and whole blood samples were collected from newly diagnosed patients at Jiangsu Cancer Hospital (JCH) between November 29, 2017 and March 18, 2020 for targeted sequencing using the 645 cancer gene panel (GP645). All procedures performed in this study involving human participants were in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Ethics Committee of Jiangsu Cancer Hospital (No. 2016-062-06). All participants provided written informed consent.

Library construction

Genomic DNA was extracted from tumor biopsies and whole blood. Libraries were constructed by the KAPA

Hyper DNA Library Prep Kit (KAPA Biosystem). Finally, dual-index libraries were cleaned up with purification beads (AxyPrep Fragment Select-I kit, Corning). The concentration and quality of these libraries were measured using the Qubit 3.0 system (Invitrogen) and Bioanalyzer 2100 (Agilent HS DNA Reagent, Agilent), respectively.

Hybrid selection and ultra-deep next-generation sequencing (NGS)

5'-biotinylated probes for targeted sequencing covered exons, selected introns, MSI, MMR-related genes, and genetic genes in the 645 cancer-related genes, and were designed and synthesized by the Targetseq Enrichment Kit (Gensmile and iGeneTech, China) (Table S1) in a cohort of 41 patients. These libraries were hybridized to the *GP645* to capture targeted fragments according to the manufacturer's protocol. Then, these fragments were sequenced by the NovaSeq 6000 System (Illumina, USA), and the depth of sequencing was 1,000× for germline mutations and 5,000× for somatic mutations.

Acquisition of mutation data

The Cancer Genome Atlas (TCGA) database of CRC was obtained from the Genomic Data Commons (GDC) website (https://portal.gdc.cancer.gov/) using the University of California Santa Cruz (UCSC) Xena platform (https:// xenabrowser.net/datapages/) (26), including CRC mutation data and clinical information, such as age, sex, AJCC-TNM stages, pathological stages, tumor stages, and survival outcomes. The statistical results of somatic mutations were visualized with the maftools software.

Correlation analysis between TMB and overall survival (OS)

First, we screened the TCGA dataset for dbSNP and ExACannotated germline mutations using *GP645*. Meanwhile, we filtered out the germline mutations via blood cell mutations for the JCH dataset using the *GP645*. Then, we calculated the panel-TMB for each sample as the total amount of coding variants/exons length (38 million) based on the number of non-synonymous somatic mutations, including frameshift deletion mutation, in-frame deletion mutation, frameshift insertion mutation, in-frame insertion mutation, missense mutation, nonsense mutation, nonstop mutation, and silent mutation. Using median as the threshold, patients were divided into high TMB group and low TMB group (27).

MSI status determined by NGS

Five microsatellite loci (BAT40, BAT26, BAT25, NR27, NR21) were used to identify MSI in the *GP645*. The number of microsatellite loci was counted for each of the JCH patients. Only insertions or deletions that increased or decreased the number of repeats were considered. Samples with 2 or more MSIs were identified as MSI-H, samples with one MSI were classified as MSI-low (MSI-L), and samples without MSI were classified as microsatellite stable (MSS). In the outcome analysis, MSI-L samples were grouped with MSS tumors. We further identified MMR status by functional loss mutation of MLH1, MSH2, MSH6, PMS1, PMS2, MSH3, and MLH3.

Statistical analyses

All statistical analyses were performed using R software (Version 3.5.2). The Benjamini-Hochberg method was used to conduct multiple test adjustments for P values based on false discovery rate (FDR), and P value <0.05 was considered statistically significant. Differential analysis and normalization were mainly carried out using the "limma" package of R software (version 3.5.2). Kaplan-Meier analysis with the log-rank test or Cox regression model was performed using the "survival" package. Student's *t*-test was used for continuous variables, while χ^2 test was used for categorical variables.

Results

The mutation profiling of the GP645 in CRC

The somatic and germline mutation data of CRC patients from the JCH and TCGA datasets were processed as shown in *Figure 1* and their clinical information is presented in *Table 1*. The mean age was 58.32 years, and 12 (29.3%) women and 29 (70.7%) men were included. Utilizing maftools software, we classified these mutations into various groups and depicted mutation groups in box plots using various colors (*Figure 1*). We compared the mutation profiling of the JCH and TCGA datasets using the *GP645* developed by us and found that the most common type was missense mutation (*Figure 1*). Single nucleotide polymorphism occurred more frequently than deletion or

Table 1 Clinical data of CRC patients in the JCH (n=41) and TCGA (n=629) datasets in this research

Level	JCH dataset	TCGA dataset
Ν	41	629
Age [median (IQR)]	58.32	61.00
Gender (%)		
Female	12 (29.3)	335 (53.3)
Male	29 (70.7)	294 (46.7)
Status (%)		
Alive	NA	473 (75.2)
Dead	NA	124 (19.7)
Not reported	NA	32 (5.0)
Pathologic_T (%)		
T1	0 (0)	20 (3.2)
T2	3 (7.3)	109 (17.3)
Т3	11 (26.8)	427 (67.9)
Τ4	10 (24.3)	70 (10.6)
ТХ	17 (43.4)	1 (0.2)
Pathologic_N (%)		
NO	9 (21.9)	356 (56.6)
N1	10 (24.3)	151 (24.0)
N2	4 (9.7)	NA
NX	18 (43.9)	118 (18.6)
Pathologic_M (%)		
MO	12 (29.2)	466 (74.1)
M1	15 (36.5)	75 (11.9)
Μ	1 (2.4)	NA
MX	0 (31.7)	64 (10.2)
Pathologic_stage (%)		
Stage I	NA	109 (17.3)
Stage II	NA	229 (36.4)
Stage III	NA	181 (28.8)
Stage IV	NA	90 (14.3)

CRC, colorectal cancer; JCH, Jiangsu Cancer Hospital; TCGA, The Cancer Genome Atlas.

insertion (INS) (*Figure 1*), and C>T transition was the most common form of single nucleotide variants in both the JCH and TCGA datasets (*Figure 1*). The mutation categories

are shown in box plots. We further found that the mutation frequencies of APC, TP53, KRAS, PIK3CA, LRP1B, FAT3, FBXW7, ATM, KMT2D, SMAD4, SOX9, BRAF, SPTA1, AMER1, FAT1, ARID1A, ZFHX3, KMT2B, DYNC2H1, and PTPRT (Figure 1) were greater than 10% in both the JCH and TCGA datasets. Besides, the GP645 genes were distributed on 21 chromosomes (Figure S1). The cooccurrences and exclusive associations between mutated genes of the JCH and TCGA databases are shown in Figure 2A (TCGA dataset) and Figure 2B (JCH dataset).

Next, the pathways of the GP645 genes were investigated in both the JCH and TCGA datasets. As shown Figure 3, the genes in the GP645 were involved in 10 pathways in both the JCH and TCGA databases, including RTK-RAS, PI3K, cell cycle, NOTCH, WNT, Hippo, TGF-Beta, MYC, TP53, and NRF2, and, respectively, the number of genes with mutations in each category was 46, 20, 13, 12, 10, 7, 6, 6, 5, and 3 in TCGA dataset (Figure 3A) and the number of samples with gene mutations in each category was 401, 236, 49, 172, 474, 147, 145, 66, 366, and 23 in JCH dataset (Figure 3C). Meanwhile, the number of genes in each pathway was 45, 18, 12, 11, 10, 5, 6, 5, 4, and 2 in the JCH dataset (Figure 3B), and the number of samples with gene mutations in each category was 40, 36, 26, 40, 35, 33, 16, 35, 29, and 11 in TCGA dataset respectively (Figure 3D). These results suggested that the GP645 genes are primarily involved in important processes in tumor progression.

The relationship between the panel-TMB database and TMB estimated by TCGA database

To evaluate whether the panel-TMB could reflect TMB estimated by WES (wTMB), we calculated the number of TMB per million bases for 531 CRC patients in TCGA dataset and analyzed the correlation between panel-TMB and wTMB. Non-synonymous mutations (NsMs) derived from WES and the *GP645* were relatively consistent in CRC (*Figure 4A*). Furthermore, panel-TMB and wTMB had a significant positive correlation (R=0.75, P<0.001, 95% CI: 0.75 to 0.82, *Figure 4B*). These results suggested that the panel-TMB of the *GP645* could represent wTMB and might be a potential predictor of prognostic stratification for CRC patients.

Higher TMB estimated by the panel-TMB is associated with improved OS

We determined the median value as the threshold for panel-

2780

Zhou et al. The 645-cancer gene panel determines tumor mutation burden

Figure 2 The co-occurrences and exclusive associations between mutated genes of the JCH and TCGA databases. (A) The association between mutated genes in TCGA patients. (B) The association between mutated genes in the JCH patients. JCH, Jiangsu Cancer Hospital; TCGA, The Cancer Genome Atlas.

Figure 3 The pathways of the *GP645* genes in both the JCH and TCGA datasets. (A,C) The numbers of genes with mutations in each category in TCGA and JCH cases. (B,D) The numbers of samples with gene mutations in each category in TCGA and JCH cases. JCH, Jiangsu Cancer Hospital; TCGA, The Cancer Genome Atlas.

Figure 4 The relationship between panel-TMB and wTMB in TCGA dataset. (A) The distribution of NsMs was obtained by whole-exome sequencing (upper) for 531 CRC patients of TCGA dataset and a 645-gene panel (lower) for 41 CRC patients of the JCH dataset. (B) Panel-TMB and wTMB demonstrated a significant positive correlation in CRC patients. R, Spearman correlation coefficient. TMB, tumor mutation burden; wTMB, TMB by whole-exome sequencing; TCGA, The Cancer Genome Atlas; NsMs, non-synonymous mutations; CRC, colorectal cancer; JCH, Jiangsu Cancer Hospital.

TMB to assess the impact of panel-TMB on the OS of CRC. Kaplan-Meier survival analysis indicated that patients with a higher panel-TMB had improved OS in TCGA dataset (P=0.0062) (*Figure 5A*). Moreover, the low panel-TMB group had a longer 3-year restricted mean survival time (RMST) than the high panel-TMB group in TCGA dataset [2,944.97 (95% CI: 2,574 to 3,315) vs. 2,315.8 (95% CI: 1,926 to 2,705) days] (*Figure 5B*). Unfortunately, there was not enough clinical data to analyze the survival curve of panel-TMB in the JCH dataset.

Panel-TMB subgroup analysis in the JCH dataset

We calculated the number of TMB per million bases for 41 samples of the JCH dataset and classified them into high-TMB and low-TMB groups (*Table 2, Figure 6*), and also classified MSI status and MMR gene mutations for each of the 41 samples. A total of 15 patients (34.2%) were classified into the high-TMB group, and 26 (65.7%) were classified into the low-TMB group (*Figure 6*). Only 3 patients (7.3%) were identified as having dMMR, and the 3 patients (7.3%)

were also classified as MSI-H (*Figure 6*). The proportion of patients with pMMR was about 92.6% (*Figure 6*). Moreover, we analyzed the MMR and MSI of the high-TMB and low-TMB groups in the JCH dataset. We found that 3 patients were identified as MSI-H and dMMR, and 2 of them had a high TMB value (*Table 2*). Furthermore, dMMR status was identified in 3 cases (7.3%) (*Table 3*), while MSI-H was identified in the same patients (7.3%), and high-TMB was identified in 15 cases (34.2%).

Compared with MMR cases, MSI had a positive predictive value (PPV) of 100.0% and a negative predictive value (NPV) of 100.0%, and TMB had a PPV of 13.6% and an NPV of 96.2%. Compared with TMB, MSI had a PPV of 66.6% and an NPV of 65.8%, and MMR had a PPV of 66.6% and an NPV of 65.8%. Compared with MSI cases, TMB had a PPV of 13.6% and an NPV of 96.2%, and MMR had a PPV of 100.0% and an NPV of 100.0%. These results showed that patients with dMMR were associated with MSI-H, and patients with low-TMB were associated with pMMR and MSS. Meanwhile, patients with high-TMB were not associated with MSI status and MMR status.

Figure 5 OS analysis of tumor mutation burden as estimated by a 645 cancer-related gene panel (panel-TMB) in TCGA dataset. (A) Panel-TMB was associated with poor OS in TCGA dataset. (B) The RMST was determined by the "survRM2" package in R. OS, overall survival; TMB, tumor mutation burden; TCGA, The Cancer Genome Atlas; RMST, restricted mean survival time.

Table 2 Galculation of panel- 1101b, 10151, and 10101 11 patients in the JC11 Galaset								
Sample	TMB	TMB-group	MSI	MMR				
GS645-171130-01	6.9	L	MSS	pMMR				
GS645-171214-02	2.3	L	MSS	pMMR				
GS645-171226-01	0.26	L	MSS	pMMR				
GS645-180131-01	5.38	L	MSI-H	dMMR				
GS645-180319-04	5.38	L	MSI-L	pMMR				
GS645-180428-01	3.85	L	MSS	pMMR				
GS645-180606-01	4.62	L	MSS	pMMR				
GS645-180621-03	13.85	Н	MSS	pMMR				
GS645-180621-01	8.46	L	MSI-L	pMMR				
GS645-180711-03	11.54	Н	MSS	pMMR				
GS645-180711-03	10	Н	MSS	pMMR				
GS645-180716-02	5.38	L	MSS	pMMR				

Table 2 Calculation of panel-TMB, MSI, and MMR for 41 patients in the JCH dataset

Table 2 (continued)

 Table 2 (continued)

Sample	TMB	TMB-group	MSI	MMR
GS645-180815-01	11.54	Н	MSS	pMMR
GS645-180912-02	8.92	L	MSS	pMMR
GS645-181019-01	4.12	L	MSS	pMMR
GS645-181107-02	25.81	Н	MSS	pMMR
GS645-181112-02	5.62	L	MSS	pMMR
GS645-181128-02	72.76	Н	MSI-H	dMMR
GS645-181229-02	2.75	L	MSS	pMMR
GS645-190107-02	3.43	L	MSS	pMMR
GS645-190107-07	1.42	L	MSS	pMMR
GS645-190117-02	22.65	Н	MSS	pMMR
GS645-190129-04	24.02	Н	MSI-L	pMMR
GS645-190214-01	6.18	L	MSS	pMMR
GS645-190228-03	5.49	L	MSS	pMMR
GS645-190304-03	4.8	L	MSS	pMMR
GS645-190304-04	23.34	Н	MSS	pMMR
GS645-190313-03	10.13	Н	MSI-L	pMMR
GS645-190319-04	12.76	Н	MSS	pMMR
GS645-190322-05	2.06	L	MSS	pMMR
GS645-190329-03	30.2	Н	MSS	pMMR
GS645-190404-05	4.12	L	MSS	pMMR
GS645-190408-03	5.49	L	MSS	pMMR
GS645-190412-05	4.8	L	MSS	pMMR
GS645-190426-03	6.29	L	MSS	pMMR
GS645-190428-02	12.76	Н	MSS	pMMR
GS645-190620-01	5.49	L	MSS	pMMR
GS645-190628-04	4.12	L	MSS	pMMR
GS645-190729-05	85.8	Н	MSI-H	dMMR
GS645-200224-04	10.13	Н	MSS	pMMR
GS645-200318-07	8.81	L	MSS	pMMR

TMB, tumor mutation burden; MSI, microsatellite instability; MMR, mismatch repair; JCH, Jiangsu Cancer Hospital; L, low-TMB group; H, high-TMB group; MSI-H, high-MSI group; MSI-L, low-MSI group; MMS, MSI-stability group; pMMR, mismatch repair proficiency; dMMR, mismatch repair deficiency.

Zhou et al. The 645-cancer gene panel determines tumor mutation burden

Group	No. (%)	MSI-H (%)	MSI-L (%)	MSS (%)	PPV (%)	NPV (%)	dMMR (%)	pMMR (%)	PPV (%)	NPV (%)
TMB-H	15 (34.2)	2 (13.3)	2 (13.3)	11 (73.3)	66.6	65.8	2 (13.3)	13 (86.6)	66.6	65.8
TMB-L	26 (65.7)	1 (3.8)	2 (7.6)	23 (88.4)			1 (3.8)	25 (96.1)		
		MSI-H (%)	MSI-L (%)	MSS (%)	PPV (%)	NPV (%)	TMB-H (%)	TMB-L (%)	PPV (%)	NPV (%)
dMMR	3 (7.3)	3 (100.0)	0 (0.0)	0 (0.0)	100.0	100.0	2 (66.6)	1 (33.3)	13.3	96.2
pMMR	38 (92.6)	0 (0.0)	4 (10.5)	34 (89.4)			13 (34.2)	25 (65.7)		
		TMB-H (%)	TMB-L (%)	PPV (%)	NPV (%)	dMMR (%)	pMMR (%)	PPV (%)	NPV (%)	
MSI-H	3 (7.3)	2 (66.6)	1 (33.3)	13.3	96.2	3 (100.0)	0 (0.0)	100.0	100.0	
MSI-L	4 (9.7)	2 (50.0)	2 (50.0)			0 (0.0)	4 (100.0)			
MSS	34 (82.9)	11 (32.3)	23 (67.6)			0 (0.0)	34 (100.0)			

Figure 6 Classification of MSI by next-generation sequencing for 41 patients of the JCH dataset compared with MMR and TMB. TMB, tumor mutation burden; MMR, mismatch repair; JCH, Jiangsu Cancer Hospital; L, low-TMB group; H, high-TMB group; MSI, microsatellite instability; MSI-H, high-MSI group; MSI-L, low-MSI group; MMS, MSI-stability group; pMMR, mismatch repair proficiency; dMMR, mismatch repair deficiency; NPV, negative predictive value; PPV, positive predictive value.

Table 3 Mutations of MMR genes

Sampla	Somatic r	nutation	Germline mutation				
Sample	Gene	Gene Loci Gene		Loci	Frequency (%)		
GS645-180131-01	MSH6	p.y394	MLH3	p.N932Y	18.9		
GS645-181128-02	MSH6	p.R1068*	MSH3	p.K383Rfs*32	27.5		
GS645-190729-05	NA	NA	MSH3	p.K383Rfs*32	11.6		

MMR, mismatch repair.

Discussion

To established a prognostic system for cancer patients, cancer-related genes have been used to develop cancer panels in lung cancer (28), malignant lymphoma (29), melanoma (30), gastric cancer (31), and other cancers (32). In non-small cell lung cancer (27), TMB quantified by a gene panel was significantly correlated with WES results (P=0.81), and panel/WES TMB could effectively predict the efficacy of immunotherapy in the high-TMB population. Meanwhile, using a cancer panel, the dynamic monitoring of ctDNA could indicate the efficacy of immunotherapy for gastric cancer, and showed potential clinical value in the analysis of drug resistance mechanisms and the prediction of immune-related side effects (31). In this study, to construct a prediction system for Chinese CRC patients, we

also developed a 2.1-Mb *GP645* which includes 5 MSI loci, 7 MMR genes, and 645 cancer-related genes distributed on 21 chromosomes. We found a positive correlation between the panel-TMB and the wTMB. These results suggest that the panel-TMB measured by the *GP645* is an accurate and clinically available tool for measuring TMB and represents the genomic instability in CRC patients, and can replace wTMB in evaluating prognosis. These results are in accordance with those in non-small cell lung cancer (33).

Furthermore, we performed a survival analysis of the panel-TMB measured by the *GP645* using TCGA database and found that high-TMB patients were strongly associated with poor OS in CRC. Previous studies confirmed that TMB measured by a cancer-related gene panel (CRGP) could be used for prognosis and to predict the benefits of immunotherapy (30-32). Thus, these findings indicated that

higher panel-TMB might be an adverse prognostic factor for CRC. However, the present study accounted for less than 40% of cases with high TMB in the JCH dataset.

Understanding genomic instability is also important to carcinogenesis and progression. MSI status has clear guiding significance for CRC patients of different stages. In addition, among CRC patients in China, the incidence of MSI-H/dMMR in right colon cancer is 20.5%, 9.2% in left colon cancer, and 5.1% in rectal cancer. Therefore, MSI/MMR should be tested for left/right colon cancer and rectal cancer (34). Both domestic and international guidelines and consensus recommend that all CRC patients be tested for MMR or MSI. This information is of great significance for patient prognosis, drug efficacy prediction and lynch syndrome screening (35). dMMR/MSI-H is an important molecular marker guiding immunotherapy in advanced patients. For early resectable CRC patients, dMMR/MSI-H patients generally have a good prognosis, but are less likely to benefit from 5-FU-based adjuvant chemotherapy (36). We identified MSI status and MMR genes which are markers of genomic instability to establish a prognostic system in CRC. Solid tumors with MSI-H/ dMMR are usually immunogenic and have extensive T-cell infiltration, and are highly responsive to ICIs. Patients with MSI-H benefited from bevacizumab, while only 5% of mCRC patients with MSI-H benefited from ICIs (8,37). The NICHE clinical trial showed that patients with dMMR benefited from ICIs for early-stage colon cancers, and that neoadjuvant immunotherapy may be a potential defined standard for treating CRC patients (38). In this study, the proportions of MSI-H (7.3%) and dMMR (7.3%) accounted for less than 10% of CRC, and the vast majority of MSI-H/ dMMR samples also had high TMB (PPV =66.6%). However, the converse was not true, as only 13.3% (PPV =13.3%) of samples with high TMB were classified as MSIhigh/dMMR. In addition, patients with low-TMB were associated with MSS/pMMR (96.2%), and these results are consistent with earlier studies (8,32,37).

In summary, we analyzed TMB, MSI/MMR, and gene mutations and found that these biomarkers for clinical detection can provide new classifications for precision medicine in CRC, predict the prognosis of patients with CRC, and improve treatment methods to improve the survival rate of patients with CRC. The panel-TMB measured by the *GP645* targeting ~2.1 Mb of MSI loci, MMR genes, and cancer-related genes could replace wTMB, and higher panel-TMB is associated with poor OS. MSI-H/dMMR and high-TMB was fairly common

but MSI-high was very uncommon in CRC. Panel-TMB and MSI/MMR might be potential prognostic indexes in Chinese CRC patients.

Acknowledgments

Funding: This study was supported by Medical Research Project of Jiangsu Provincial Health Commission in 2021 (No. Z2021056).

Footnote

Reporting Checklist: The authors have completed the REMARK reporting checklist. Available at https://dx.doi. org/10.21037/jgo-21-572

Data Sharing Statement: Available at https://dx.doi. org/10.21037/jgo-21-572

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at https://dx.doi. org/10.21037/jgo-21-572). The authors have no conflicts of interest to declare.

Ethical Statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All procedures performed in this study involving human participants were in accordance with the Declaration of Helsinki (as revised in 2013). The study was approved by the Ethics Committee of Jiangsu Cancer Hospital (No. 2016-062-06). All participants provided written informed consent.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65:5-29.

- 2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016;66:115-32.
- Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018;68:394-424.
- Yao JC, Phan A, Hoff PM, et al. Targeting vascular endothelial growth factor in advanced carcinoid tumor: a random assignment phase II study of depot octreotide with bevacizumab and pegylated interferon alpha-2b. J Clin Oncol 2008;26:1316-23.
- Rawla P, Barsouk A, Hadjinicolaou AV, et al. Immunotherapies and Targeted Therapies in the Treatment of Metastatic Colorectal Cancer. Med Sci (Basel) 2019;7:83.
- Tol J, Punt CJ. Monoclonal antibodies in the treatment of metastatic colorectal cancer: a review. Clin Ther 2010;32:437-53.
- Feng QY, Wei Y, Chen JW, et al. Anti-EGFR and anti-VEGF agents: important targeted therapies of colorectal liver metastases. World J Gastroenterol 2014;20:4263-75.
- Innocenti F, Ou FS, Qu X, et al. Mutational Analysis of Patients With Colorectal Cancer in CALGB/SWOG 80405 Identifies New Roles of Microsatellite Instability and Tumor Mutational Burden for Patient Outcome. J Clin Oncol 2019;37:1217-27.
- De Roock W, Claes B, Bernasconi D, et al. Effects of KRAS, BRAF, NRAS, and PIK3CA mutations on the efficacy of cetuximab plus chemotherapy in chemotherapyrefractory metastatic colorectal cancer: a retrospective consortium analysis. Lancet Oncol 2010;11:753-62.
- Taieb J, Le Malicot K, Shi Q, et al. Prognostic Value of BRAF and KRAS Mutations in MSI and MSS Stage III Colon Cancer. J Natl Cancer Inst 2016;109:djw272.
- Price TJ, Hardingham JE, Lee CK, et al. Impact of KRAS and BRAF Gene Mutation Status on Outcomes From the Phase III AGITG MAX Trial of Capecitabine Alone or in Combination With Bevacizumab and Mitomycin in Advanced Colorectal Cancer. J Clin Oncol 2011;29:2675-82.
- Romero D. TMB is linked with prognosis. Nat Rev Clin Oncol 2019;16:336.
- Vanderwalde A, Spetzler D, Xiao N, et al. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med 2018;7:746-56.
- 14. Xiao J, Li XY, Huang T, et al. A next-generation sequencing-based strategy combining microsatellite

instability and tumor mutation burden for comprehensive molecular diagnosis of advanced colorectal cancer. BMC Cancer 2021;21:282.

- de la Chapelle A, Hampel H. Clinical relevance of microsatellite instability in colorectal cancer. J Clin Oncol 2010;28:3380-7.
- Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016;22:1342-50.
- 17. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012;366:2443-54.
- Ribas A, Camacho LH, Lopez-Berestein G, et al. Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyteassociated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 2005;23:8968-77.
- Xiao Y, Freeman GJ. The microsatellite instable subset of colorectal cancer is a particularly good candidate for checkpoint blockade immunotherapy. Cancer Discov 2015;5:16-8.
- 20. Gubin MM, Zhang X, Schuster H, et al. Checkpoint blockade cancer immunotherapy targets tumour-specific mutant antigens. Nature 2014;515:577-81.
- Meng X, Huang Z, Teng F, et al. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev 2015;41:868-76.
- 22. Farchoukh L, Kuan SF, Dudley B, et al. MLH1-deficient Colorectal Carcinoma With Wild-type BRAF and MLH1 Promoter Hypermethylation Harbor KRAS Mutations and Arise From Conventional Adenomas. Am J Surg Pathol 2016;40:1390-9.
- 23. Wu Y, Xu J, Xu J, et al. The predictive value of tumor mutation burden for immune checkpoint inhibitors therapy in non-small cell lung cancer is affected by patients' age. Biomark Res 2020;8:9.
- 24. Paradiso V, Garofoli A, Tosti N, et al. Diagnostic Targeted Sequencing Panel for Hepatocellular Carcinoma Genomic Screening. J Mol Diagn 2018;20:836-48.
- Johnson DB, Frampton GM, Rioth MJ, et al. Targeted Next Generation Sequencing Identifies Markers of Response to PD-1 Blockade. Cancer Immunol Res 2016;4:959-67.
- 26. Chen C, Liang C, Wang S, et al. Expression patterns of immune checkpoints in acute myeloid leukemia. J Hematol Oncol 2020;13:28.
- 27. Liu S, Tang Q, Huang J, et al. Prognostic analysis of tumor mutation burden and immune infiltration in hepatocellular

2786

carcinoma based on TCGA data. Aging (Albany NY) 2021;13:11257-80.

- Zeng Y, Li N, Chen R, et al. Screening of hub genes associated with prognosis in non-small cell lung cancer by integrated bioinformatics analysis. Transl Cancer Res 2020;9:7149-64.
- Sun P, Chen C, Xia Y, et al. Mutation Profiling of Malignant Lymphoma by Next-Generation Sequencing of Circulating Cell-Free DNA. J Cancer 2019;10:323-31.
- Zhuang W, Ma J, Chen X, et al. The Tumor Mutational Burden of Chinese Advanced Cancer Patients Estimated by a 381-cancer-gene Panel. J Cancer 2018;9:2302-7.
- Jin Y, Chen DL, Wang F, et al. The predicting role of circulating tumor DNA landscape in gastric cancer patients treated with immune checkpoint inhibitors. Mol Cancer 2020;19:154.
- Zhu Y, Sun L, Yu J, et al. Identification of biomarkers in colon cancer based on bioinformatic analysis. Transl Cancer Res 2020;9:4879-95.
- 33. Wang Z, Duan J, Cai S, et al. Assessment of Blood Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Patients With Non-Small Cell Lung Cancer With Use of a Next-Generation Sequencing

Cite this article as: Zhou Z, Li K, Wei Q, Chen L, Shuai Y, Wang Y, He K, Si L, Zhong Y, Lu J. Tumor mutation burden determined by a 645-cancer gene panel and compared with microsatellite instability and mismatch repair genes in colorectal cancer. J Gastrointest Oncol 2021;12(6):2775-2787. doi: 10.21037/jgo-21-572

Cancer Gene Panel. JAMA Oncol 2019;5:696-702.

- Battaglin F, Naseem M, Lenz HJ, et al. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives. Clin Adv Hematol Oncol 2018;16:735-45.
- 35. Le DT, Kim TW, Van Cutsem E, et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J Clin Oncol 2020;38:11-9.
- Sargent DJ, Marsoni S, Monges G, et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010;28:3219-26.
- Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 Inhibitors in Metastatic dMMR/MSI-H Colorectal Cancer. Front Oncol 2019;9:396.
- Chalabi M, Fanchi LF, Dijkstra KK, et al. Neoadjuvant immunotherapy leads to pathological responses in MMRproficient and MMR-deficient early-stage colon cancers. Nat Med 2020;26:566-76.

(English Language Editor: C. Betlzar)

Table S1 645 cancer-related gene list

		ARFRP1	C11orf30	CYP2D6	FANCD2	GSTM1	JUN	MSH6	PDGFRA	RAD52	SMARCD1	TSC1
ABCCCMACPNBPAMNBPAMNBPAMNBPAMNBPAMNBPAMNBAM <td></td> <td>ABCB1</td> <td>C8orf34</td> <td>CYP4B1</td> <td>FANCE</td> <td>GSTP1</td> <td>KAT6A</td> <td>MSI1</td> <td>PDGFRB</td> <td>RAD54B</td> <td>SMO</td> <td>TSC2</td>		ABCB1	C8orf34	CYP4B1	FANCE	GSTP1	KAT6A	MSI1	PDGFRB	RAD54B	SMO	TSC2
ABACCARLONCARLONHANCO <t< td=""><td></td><td>ABCC3</td><td>CALR</td><td>CYSLTR2</td><td>FANCF</td><td>H3F3A</td><td>KDM3B</td><td>MSI2</td><td>PDK1</td><td>RAD54L</td><td>SMYD3</td><td>TSHR</td></t<>		ABCC3	CALR	CYSLTR2	FANCF	H3F3A	KDM3B	MSI2	PDK1	RAD54L	SMYD3	TSHR
ALDCAURDCAURDFAUNCHANCLHANCLHANCLKAUMAK		ABL1	CARD11	DAXX	FANCG	H3F3B	KDM5A	MST1	PDPK1	RAF1	SNCAIP	TSHZ2
ACMCPCNSPDOMEAMACSMAC		ABL2	CARM1	DCUN1D1	FANCI	H3F3C	KDM5C	MST1R	PGR	RANBP2	SOCS1	TSHZ3
ACM02CARSCARCEFARCERANCE		ACVR1	CASP7	DDR1	FANCL	HAS3	KDM6A	MTAP	PHB	RARA	SOD2	TTF1
ACTCBLCHARCHARMACHMACHMACHMITAMMINGCOMEMSOUTOSOUTOSOUTOANTACBLDESMATMATMATMATMITAMMINGCORECOLSOUTOTOTALANTACCMUDUMJFRAMMISTIMEMATMIRAMRURAMRURAMRURAMSOUTO </td <td></td> <td>ACVR1B</td> <td>CASP8</td> <td>DDR2</td> <td>FANCM</td> <td>HDAC1</td> <td>KDR</td> <td>MTHFR</td> <td>PHOX2B</td> <td>RASA1</td> <td>SOS1</td> <td>TXN</td>		ACVR1B	CASP8	DDR2	FANCM	HDAC1	KDR	MTHFR	PHOX2B	RASA1	SOS1	TXN
M71CRUECRUEM73M32M33 <th< td=""><td></td><td>AGO2</td><td>CBFB</td><td>DDX43</td><td>FAS</td><td>HDAC6</td><td>KEAP1</td><td>MTOR</td><td>PIK3C2B</td><td>RB1</td><td>SOX10</td><td>TXNRD2</td></th<>		AGO2	CBFB	DDX43	FAS	HDAC6	KEAP1	MTOR	PIK3C2B	RB1	SOX10	TXNRD2
ANT2CENBDRAWFARSHIST1HEDKUTMUTMPKNCDPKNCDRECULSO/L2PVNCDANT3CCM00DMMTAFCBNANIST1HSBKLALMNC0PKNCDRECSO/L2UT1AALX12CCM00DMMTAFCGRANIST1HSBKLALMYCDPKNCDRELSO/L2UT1AALX12CCM00DMMTAFCGRANIST1HSBKLALMYCDPKNCBRFM20SPRCDULF1AAMRE1CCM0DMMTAFCGRANIST1HSBKLATMYCDPKNCBRFM20SPRCDULF1AAMRE1CCM0DMTAFCF1PNIST1HSBKLATSMYCDPKNCBRHADSFLATVEGRAAPCCD24DV54HFGF1PNIST1HSBKLATSMYCDPKNCBRHADSFLATVEGRAAPRA1CD26ADU54HFGF1PNIST1HSBLKASMCOBPKATRTTTSTLATVEGRAAPRA1CD26ADU54HFGF3NIST1HSBLKASMCOBPKATRTTTSTLATVEGRAAPRA1CD26AFGF4RHSTHSBLKASNODAPLATRTTTSTLATVEGRAAPRA1CD26AFGF3RHSTHSBLKASNODAPLATRTTTSTLATVEGRAAPRA1CD26AFGF4RHSTHSBLKASNODAPLATRTTTSTLATVEGRAAPRA1CD26AFGF4RHSTHSBLKASNODAPLATRTTTSTLATV		AKT1	CBL	DICER1	FAT1	HGF	KEL	MTRR	PIK3C2G	RBM10	SOX17	TYMS
ALXCOMUMARCHFEXILYHISTINGNKIATMARCMIRCOMRECOLLSUMAUZAF1ALX718COMEDMITANFCGRAHISTINGNKIATMIRCOMPICGORETSPAPULTAF1AMRDICOZ2DMITANFCGRAHISTINGNKIAT2MIRCOPICGORETSPAPULTAF1AMRDICOZ2DMITANFAF10HISTINGNKIAT20MIRCOPICBARESTPICBA <td></td> <td>AKT2</td> <td>CBR3</td> <td>DIS3</td> <td>FAT3</td> <td>HIST1H1C</td> <td>KIT</td> <td>MUTYH</td> <td>PIK3C3</td> <td>RECQL</td> <td>SOX2</td> <td>TYRO3</td>		AKT2	CBR3	DIS3	FAT3	HIST1H1C	KIT	MUTYH	PIK3C3	RECQL	SOX2	TYRO3
ALKCORREDMATTFOGREAMISTIMEKUTLEAMYCLPICKCDRELS0/39UCT/MIALCX122CCR03DMITTAFOGREAMISTIMEKUTLEAMYCLPICKCDRETSPENDUGT/MIAMRD11CC22DOTLFOF10MISTIMEKUTLEAMYCLPICKCDPIRADESPENDUFF1APRC1CC227DOTLFOF10MISTIMEKUTLEAMYCDPICKSD<		AKT3	CCND1	DNAJB1	FBXW7	HIST1H2BD	KLF4	MXI1	PIK3CA	RECQL4	SOX4	U2AF1
ALMERIECOUNCICOUNCIACOUNCIACOUNCIAHISTINGEKNTCAKNTCAMYACMYACOREVACSPENUSETINGANNEREICOZZEDOTILFOFI2HISTINGEKNTCAKNTCAKNTCARNBDESPETAIVEGASAPCKICOZZEDORADFOFI2HISTINGEKNTCAKNTCANENSERIBETASPETAIVEGASAPCKICOZZEDORADDOSANFOFI2HISTINGEKNTCANENSARICTASPETAIVEGASAPRICACOZZEDOSANFOFI2HISTINGEKNTSNNCOAPLATRITASTATAVIESCIAPRICACOZANEEDFOFI2HISTINGELUKINEGAPPLATRITASTATAVIESCIAPRICACOZANEEDFOFI2HISTINGELUKINEGAPPLATRITASTATAVIESCIAPRICACOZANEEDFOFI2HISTINGLUKINEGAPPLATRITANITAVIESCIAPRICACOZANEEDFOFI2HISTINGLUKINEGAPPLATRITANITAVIESCIAPRICACOZANEECFOFI2HISTINGLUKINEGAPPLATRITANITANITANITAAPRICACOZANEECFOFI2HISTINGLUKINITANITARITANITANITANITANITANITANITANITANITANITANITANITANITANITANITANITANITANITA </td <td></td> <td>ALK</td> <td>CCND2</td> <td>DNMT1</td> <td>FCGR2A</td> <td>HIST1H3A</td> <td>KLHL6</td> <td>MYC</td> <td>PIK3CB</td> <td>REL</td> <td>SOX9</td> <td>UGT1A1</td>		ALK	CCND2	DNMT1	FCGR2A	HIST1H3A	KLHL6	MYC	PIK3CB	REL	SOX9	UGT1A1
MRERICONETCONETCHATTFORTOMESTIMEDMATCAMYCMPRACOPRACOSPREDLMPTANREDICOLTILFGF14INSTIMEMATCAMYCBBPRACESPREDLPPTAPCCOLZICPQDCPQDRF14MESTIMEKMTCAMYCBBPRACESPREDCPPTAPECCOLZICPQDCPG14MESTIMEKMTSTMYCBIPRACESPREDCPTAVECALAPRCDDECPG14CPTTMESTIMEKMTSTNEOAPLUCRHTASTACEWESCILTARIDIACDD2CPG75FGF4MESTIMELATS2NCCATPLUCRHTASTATAWESCILTARIDIACDD2CPG76FGF7MESTIMELATS2NCCATPLUCRHTASTATAWESCILTARIDIACDD2CPG77FGF7MESTIMELATS2NCCATPLUCRHTASTATAWITTARIDIACDD2CPG77FGF7MESTIMELATS1NCCATPLUCRHTASTATAWITTARIDIACDD1FGF7MESTIMELATS1NCCATPLUCRHTASTATAWITTARIDIACDD1FGF7MESTIMELATS1NCCATPLUCRHTASTATAWITTARIDIACDD1FGF7MESTIMELATS1NCCATPLUCRHTASTATAWITTARIDIACDD1FGF7MESTIMELATS1NCCATPLUCRHTASTATANCTA <t< td=""><td></td><td>ALOX12B</td><td>CCND3</td><td>DNMT3A</td><td>FCGR3A</td><td>HIST1H3B</td><td>KMT2A</td><td>MYCL</td><td>PIK3CD</td><td>RET</td><td>SPEN</td><td>UGT1A4</td></t<>		ALOX12B	CCND3	DNMT3A	FCGR3A	HIST1H3B	KMT2A	MYCL	PIK3CD	RET	SPEN	UGT1A4
ANRIDITCO22DUT1LFGF12MISTIMADMMT2CMVD3BPRISITPMIRIDPMIRIDITPMIRIDITAPCCO224DPG70RGF4MISTIMATMVT2DPMICR2BRHEDSPTALVPCAAPRCO2EAPDUSA4FGF23MISTIMATKMT2DMVC3DPMICR3HACDSFR2VTCN1APALACO2EAPDUSA4FGF3MISTIMATLMT3MC0A0PLL2RUT0STA74WFSC1APALDACD270AEEDFGF8MISTIMATLMT3MC0A1PLL2ROS1STA74WFSC1APALDACD770AEEDFGF8MISTIMATLMT3MC0A1PLL2ROS1STA74WFSC1APALDACD770AEGF17FGF8MISTMALMT3MC01PLC2ROS1STA74WFSC1APALDACD770EGF17FGF8MISTMALMT3MC01PLC2ROS1STA74WFSC1ASNSCDC42EGF17FGF8MISTMALMT0NFE1PLC2ROS1STA74WFSC1ASNSCDC42EGF17FGF8MISTMALMT0NFE1PLC2ROS1STA74WFSC1ASNSCDC42EGF17FGF8MISTMALMT0NFE1PLC2ROS1STA74WFSC1ASNSCDC42EGF17FGF8MISTMALMT0NFE1PLC2ROS1STA74WFSC1ASNSCDC42EGF17FGF8MISTMALMT0NFE1PLC2 </td <td></td> <td>AMER1</td> <td>CCNE1</td> <td>DNMT3B</td> <td>FGF10</td> <td>HIST1H3C</td> <td>KMT2B</td> <td>MYCN</td> <td>PIK3CG</td> <td>RFWD2</td> <td>SPOP</td> <td>UMPS</td>		AMER1	CCNE1	DNMT3B	FGF10	HIST1H3C	KMT2B	MYCN	PIK3CG	RFWD2	SPOP	UMPS
APCCO274DPVDFGF14HISTHAGEMAT2DMYO3BEPRAREPRARESPA14VEGAAPACCO276DOSAMRGF29HISTHAGENASTENNYO3BEPRARESPACVTCNAPACCO4MDYNC2H1FGF29HISTHAGENASTENNUCOAPLATATTTSTAG2VHASCHAPADECO5MEEGAGRHISTHAGELIATS1NCOA3PLATATTTSTAG2VHASCHAPADD8CO778EEGFGR4HISTHAGELIAK1NEGB1PAAIP1PSSKA4STAT34VHT1APADD8CO778EGR7RGR78HIST2H3CLIAK1NEGB1PAAIP1PSSKA4STAT34VHT1APADD2CO738EGR7RGR78HIST2H3CLIAK1NEGB1PAAIC1RAGC2STAT34VHT1APAD2CO738EGR7RGR78HIST2H3CLIAK8NEL1PABC1RAGC3STAT41VKT1APAD2CO738EGR7RGR78HIST2H3CLIAK8NEL1PABC1RAGC3STAT41VKT1APAD3CO738EGR7RGR78HIST3H3LIA<1		ANKRD11	CD22	DOT1L	FGF12	HIST1H3D	KMT2C	MYD88	PIK3R1	RHBDF2	SPRED1	UPF1
PENI CO278 DROSHA FRIP HISTINGF KNSTIN MYODI PRIAB RHA SPAC VHL AR COBEAP DUS-4 RF33 MISTINGF KRAS NBN PRIAT RTIC STAG2 WISCI ARIDIA COTO E2P3 RGF4 HISTINSI LATS2 NCCAI PLCQ2 RWF4 STAT3 WHSCILT ARIDIA COTO E2P3 RGF4 HISTINSI LATS2 NCCAI PLCQ2 RWF4 STAT3 WTTN ARIDIA COA EGFR RGFR1 HISTINSI LATS NPL1 PMS1 RPS0 STAT4 WTTN ASM2 COCA EGFR RGFR1 HISTINSI LATS NPL2 PADD RRAS STAT4 WTTN ASM1 COCA EGFR RGFR1 HIAA LATS NADD RPL2 RADD STAT4 XPL0 ASM1 COCA EPAS RLT HIAAB LALD NEDD		APC	CD274	DPYD	FGF14	HIST1H3E	KMT2D	МҮОЗВ	PIK3R2	RHEB	SPTA1	VEGFA
AR COBEAP DUSPL PGF23 HISTHAG KRAS NBN PIMT RICTOR SRF2 VTCN1 ARIDA COTO EZ7 FGF4 HISTHAD LATS RCCA2 RIFL STATA WHSCLL ARIDA COT79 EEGL FGF4 HISTHAD LUA NDRG1 PLC22 RUFL STATA WHSCLL ARIDA COT79 EEGL7 FGFR1 HISTHAD LUA NDRG1 PLA2 RDS1 STATA WTT ARIDA COC73 EEGL7 FGFR3 HATA LIPL8 NEL1 PMS2 RPG70 STATA VTT ASIL2 COC13 EFL4P PGFR3 HATA LIPL8 NFE12 POL1 RRAC STAT3 XAPC1 ASIL2 COC14 EFL4P PLA HATA LIPL4 NFE12 POL1 RRAC STAT3 XAPC1 ASIL4 COC14 EFL4P PLA HATA LIPL4 NRAC NRAC		APEX1	CD276	DROSHA	FGF19	HIST1H3F	KNSTRN	MYOD1	PIK3R3	RHOA	SRC	VHL
ARAF CD44 DYNC2H1 PGF3 HISTIH3H LATS1 NCOA3 PLAT RIT STAG2 WHSC1 ARIDIA CO70 EE73 FGF4 HISTIH3J LATS2 NCOR1 PLC2 RIF43 STAT4 WHSC1 ARID2 CO73B EGF1 FGFR HIST1H3J LAG NRG1 PMAP1 RPS6K4 STAT3B WUT1 ARID3 CO730 EGFA FGFR1 HIST3H3 LMO1 NF1 PMS2 RPFGR STAT3B WUT1 ASNL1 COC42 EFTAX FGFR3 HIST3H3 LMO1 NF1 PMS2 RFTG RFAG STAT3B WUT1 ASNL1 COC42 EFTA HCHA LZT11 NK24 PMR0 RRAS STAG XPC1 ATT CAK8 EPA31 FLT1 HK14 LZT11 NK24 POA1 RMR1 SUT2 XRC2 ATR COK8 EPA31 FLT1 HK14 NK24 NK44		AR	CD3EAP	DUSP4	FGF23	HIST1H3G	KRAS	NBN	PIM1	RICTOR	SRSF2	VTCN1
ARIDIA CD70 E2F3 FGF4 HISTIHAJ LATS2 NCORI PLC2 RNF43 STAT3 WHSCH.T ARID2 CD79A EED FGFR HISTIHAJ LIG4 NDR01 PLX2 ROS1 STAT4 WISP3 ARID50 CD74 EED FGFR1 HIST2H3C LINKI NERB1 PMAIP RPS6K42 STAT4 WISP3 ARID53 CDA12 EIF1AX FGFR2 HIST2H3D LINRI NE22 PNRC1 RPASK22 STAT3 WIT1 ASNL1 CDC12 EIF4A2 FGFR4 HLA-A LRN NFR2 PNRC1 RRAS2 STAT9 XPC1 ASNL2 CDK12 EIF3 FLCN HAMAR LTN NFEBA POL1 RRAS2 STAT9 XPC21 ATR CDK4 EP300 FLT4 HRF1A LZT1 NCO21 PPAR0 RRF1 STAT9 XPC21 AURK6 CDK13 FLT4 HRAS1 MAD21 NOT101		ARAF	CD44	DYNC2H1	FGF3	HIST1H3H	LATS1	NCOA3	PLAT	RIT1	STAG2	WHSC1
ARID18 CD734 EED FGF8 HIST1HSJ LIG4 NDRG1 PLX2 ROS1 STAT4 WISP3 ARID2 CD738 EGFL7 FGFR1 HIST3HC LIMK1 NEGR1 PMAP1 RPS6KJ8 STATA WTT1 ARID62 CD738 EGFR1 FGFR3 HIST3H0 LIN28 NEL1 PMS2 RPTC0 STK11 XAP ASNS CDC73 EIF4A2 FGFR3 HLA-A LRP18 NF2 PNRC1 RRAGC STK19 XAP ASXL1 CDC73 EIF4A2 FGFR3 HLA-A LRP18 NF2 PNRC1 RRAGC STK19 XAPC ASXL1 CDK13 EF442 FGFR3 FLC9 HNF1A LTR1 NK02-1 PON1 RM11 SUZ12 XRC21 ATR CDK8 EFAS1 FLT3 HK281 MAT NK02-1 PPR21A RUK11 TAP2 ZBTS2 AURA CDK182 EFAS1 FC13 HK281		ARID1A	CD70	E2F3	FGF4	HIST1H3I	LATS2	NCOR1	PLCG2	RNF43	STAT3	WHSC1L1
ARID2 CD73B EGFL7 FGFR1 HIST2H3C LIMK1 NEGR1 PMAIP1 RPSKA4 STAT3A WTT1 ABNS CDCA EGFR FGFR4 HIST3H3 LMO1 NF1 PMS2 RPT0R STAT3B WWTR1 ASNL CDC73 EIFAX FGFR4 HIST3H3 LMO1 NF1 PMS2 RPT0R STAT3B WWTR1 ASNL CDC13 EIFAX FGFR4 HIA-A LRT NFE2L2 POLD1 RRAGC STK49 XPC02 ATT CDK12 ELF3 FLON HMMR LYN NFRB4 POLE RRAGC STK49 XPC02 ATT CDK3 EFA31 FL13 HOK13 LTN NAF1 NOTCH1 PPA10 RRAT STAT3 XRC02 ATTR CDK3 EFA43 FOX1 HSD313 MAF1 NOTCH1 PPA27A RUX1T TAP2 ZST22 AURRA CDK14 EPHA3 FOX1 HSD34 MA		ARID1B	CD79A	EED	FGF6	HIST1H3J	LIG4	NDRG1	PLK2	ROS1	STAT4	WISP3
ARIDEB CDA EGFR FGFR2 HIST2H3D LIN28B NEL1 PMS1 RPSCR2 STAT3B WUTT1 ASNL1 CDC42 EIFLAX FGFR3 HIST2H3D LNO1 NF1 PMS2 PFTOR STK10 XPC ASNL1 CDC473 EIFLAX FGFR4 HLA-A LIN NF2 PINC1 RFASS STK10 XPC1 ASNL1 CDK1 EIFLA FL HH HLA-A LIN NFKBIA POLE RFASS STK40 XPC1 ATR CDK4 EPAS1 FLT1 HMF1A LZTR1 NCX2-1 PON1 RFM1 SVX XPC2 ATR CDK6 EPAM1 FLT1 HMF3 MAGI2 NCS3-1 PDN1 RFL1 TAF1 YZ AURKA CDKN1B EPHA3 FOX1 HSP3A1 MAP2K1 NOT0+2 PPP2R2 RUWX1T1 TAP2 ZBT2 AXNN CDKN2A EPHA3 FOX1 HSP3A1 MAP2K1 </td <td></td> <td>ARID2</td> <td>CD79B</td> <td>EGFL7</td> <td>FGFR1</td> <td>HIST2H3C</td> <td>LIMK1</td> <td>NEGR1</td> <td>PMAIP1</td> <td>RPS6KA4</td> <td>STAT5A</td> <td>WT1</td>		ARID2	CD79B	EGFL7	FGFR1	HIST2H3C	LIMK1	NEGR1	PMAIP1	RPS6KA4	STAT5A	WT1
SNNS CDC42 EIF IAX FGFR9 HIST3H2 LMO1 NF1 PMS2 RPTOR STK11 XAP ASXL1 CDC73 EIF4A2 FGFR4 HLA-A LRP1B NF2 PNRC1 RRAGC STK19 XPC ASXL2 CDH1 EIF4 FL HLA-A LRN NF22L POLE RRAS STK40 XPC1 ATTC CDK4 EF430 FL1 HNF1A LZTR1 NK22-1 PONT RRM1 SUZ1 XRCC1 ATTR CDK6 EPAS1 FL13 HOXB13 MAF NK23-1 PPARG RSF1 SYK XRCC2 ATTR CDK6 EPAS1 FL13 HAB3 MAF NK23-1 PPARG RSF1 SYK XRC23 AURK8 CDKR1A EPHA2 FOX1 HSB3B1 MAP2K1 NOTC14 PPAR2 RKRA TBK2 ZBT2 AURK4 CDKR1A EPHA3 FOX1 HSD3B1 MAP2K1 NOTC14		ARID5B	CDA	EGFR	FGFR2	HIST2H3D	LIN28B	NEIL1	PMS1	RPS6KB2	STAT5B	WWTR1
SXL1 CDC73 EIFA42 FGFR4 HLA-A LIPIB NF2 PNRC1 RRAGC STN:49 XPC1 ASXL2 CDH1 EF4E FH HLA-B LTK NFE2L2 POLD1 RRAS STN:40 XPC1 ATC CDK12 ELT3 FLCN HMRTA LYN NFKBIA POLE RRAS SUL2 XRCC1 ATR CDK6 EP4S1 FLT3 HNC813 MAF NKX3-1 PPARG RSF1 SYK XCC23 ATR CDK8 EP4S1 FLT3 HNC813 MAE NKX3-1 PPARG RDX1 TAP1 YAP1 AURK8 CDKN18 EP4A3 FOX1 HSD81 MALT NOTCH3 PP4R2 RUNX111 TAP2 ZETS1 AURK CDKN2A EP4A5 FOX1 HSD81 MAP2K1 NOTCH3 PP4R2 RUNX111 TAP2 ZETS1 AUR CDKN2A EP4A5 FOX1 HSD81 MAP3K1 ND71		ASNS	CDC42	EIF1AX	FGFR3	HIST3H3	LMO1	NF1	PMS2	RPTOR	STK11	XIAP
ASXL2 CDH1 EF4E FH HLA-8 LTK NFE2L2 POLD RRAS STM40 XPC1 ATIC CDK12 ELF3 FLCN HMMR LYN NFE2L2 POLD RRAS2 SUFU XRCC1 ATM CDK4 EP30 FLT1 HNFLA LZTR1 NKX2-1 PON1 RRM1 SUZ12 XRCC2 ATR CDK8 EPCAM FLT3 HOXB13 MAF NKX3-1 PPARG RFL1 TAP1 YAP1 AURKA CDKN14 EPHA2 FOXA1 HSD3B1 MAL1 NOTCH2 PP2R2R RUNX1 TAP1 YEP1 AURKA CDKN18 EPHA3 FOX1 HSD3B1 MAP2K1 NOTCH2 PP2R2R RUNX1 TAP2<		ASXL1	CDC73	FIF4A2	FGFR4	HI A-A	I RP1R	NF2	PNRC1	RRAGC	STK19	XPC
ATC CDM1 ELGN HIMMR LVN INREIA POLE RPASE SUUU XRCC1 ATM CDM4 EP300 FLT1 HIMMR LZTR1 NKX2-1 PON1 RRAS SUUU XRCC2 ATR CDK8 EPAS1 FLT3 HKB13 MAF NKX2-1 PPARG RSF1 SYK XRC23 ATR CDK8 EPAS1 FLT4 HRAS MAGI2 NOS2 PPARG RSF1 SYK XRC3 AURK8 CDKN18 EPH43 FOX11 HSD381 MAF1 NOTCH1 PPP2R1A RUNX11T1 TAP1 YES1 AURK8 CDKN18 EPH43 FOX11 HSD381 MAF1 NOTCH3 PP4R2 RXRA TBX3 ZHF3 AXIN2 CDKN28 EPH43 FOX11 HSD381 MAF2K1 NOTCH3 PP4R2 RXRA TBX3 ZHF3 AXIN2 CDKN28 EPH44 FSH7 ICN14 MAP3K1 NOT14 PDF41<		ASXL2	CDH1	FIF4F	FH	HLA-B	ITK	NFF2L2	POLD1	RRAS	STK40	XPO1
ATM CDK4 EP300 FLT INDUX INDUX </td <td></td> <td>ATIC</td> <td>CDK12</td> <td>ELE3</td> <td>FLCN</td> <td>HMMR</td> <td></td> <td>NEKRIA</td> <td>POLE</td> <td>RRAS2</td> <td>SUEL</td> <td>XBCC1</td>		ATIC	CDK12	ELE3	FLCN	HMMR		NEKRIA	POLE	RRAS2	SUEL	XBCC1
ATR CDK6 EP35 FLT IM Left IM Im <td></td> <td>ΔΤΜ</td> <td></td> <td>EP300</td> <td>FIT1</td> <td>HNIF1A</td> <td>1 7TR1</td> <td>NKX2-1</td> <td>PON1</td> <td>RRM1</td> <td>SU712</td> <td>XBCC2</td>		ΔΤΜ		EP300	FIT1	HNIF1A	1 7TR1	NKX2-1	PON1	RRM1	SU712	XBCC2
ATTR CLORAB EVECAM FLIG HRAD MAGI2 NOS2 PPINID RTEL1 TAFF YAP1 AURKA CDKN1A EPHA2 FOXA1 HSD3B1 MAGI2 NOS2 PPINID RTEL1 TAFF YAP1 AURKB CDKN1A EPHA3 FOXL2 HSP90AA1 MAGI2 NOTCH2 PPP2R2A RUNX1T TAP1 YES1 AURKB CDKN2B EPHA3 FOXL2 HSP90A1 MAP2K1 NOTCH2 PPP2R2 RUNA TAS3 ZHF33 AXIN CDKN2B EPHA5 FOXD1 HSP81 MAP2K1 NOTCH3 PPPAR2 RVRA TAS3 ZHF33 AXIN CDKN2B EPHB1 FRS2 ID3 MAP2K1 NOTCH4 PPP6R2 RVRA TEX3 ZHF73 AXIN CDKN2B EPHB4 FSHR IDH1 MAP3K1 NDO1 PRIX4 SDH0 TEX ZMF73 BABM1 CENPA ERBB3 FVN INGR1 MAPX4		ATR	CDK6	EPAS1	FLT3	HOXB13	ΜΔΕ	NKX3-1	PPARG	RSF1	SVK	XRCC3
AURKA COURT EP-MAP FLA* INAC MAURA COURT FINITE INAC			CDK8	EPCAM	FLTA	HEAS	MAGI2				TAE1	
NUMA CLANITA FLOATA INDUCT INDUCT <thinduct< th=""> <thinduct< th=""> <thinduct< th=""></thinduct<></thinduct<></thinduct<>		ΔΠΡΚΔ			FOXA1	HSD3B1	ΜΑΔΙΤ1	NOTCH1				VES1
AXIM1 CORNAZ EFNAS FOXEL Hols OSM INTEXT HOLGLE HOLGLE </td <td></td> <td>AUIRKB</td> <td></td> <td>EDHA3</td> <td></td> <td>HSPONAAI</td> <td></td> <td>NOTCH2</td> <td>DDD2R2A</td> <td>RUNX1T1</td> <td></td> <td>ZBTB2</td>		AUIRKB		EDHA3		HSPONAAI		NOTCH2	DDD2R2A	RUNX1T1		ZBTB2
AXINU CUMULA FUNJ			CDKNDA	EPHAS	FOXL2	HORDI	MAP2KI	NOTCH2			TAF2	75472
AXL CUNN2C EPHRA FUSSE INSPERS INSPERS <thinspers< th=""> <thinspers< <="" td=""><td></td><td></td><td></td><td>EPHAJ</td><td>FOXO1</td><td></td><td></td><td>NOTCHA</td><td></td><td></td><td></td><td>ZFNA3</td></thinspers<></thinspers<>				EPHAJ	FOXO1			NOTCHA				ZFNA3
ALL CLANCE EPHBJ FR32 IDS IMAPSA INMINIT FPMINIT SUMA TOPS 2XM73 B2M CEBPA EPHB4 FSHR IDH1 MAPSATIS NQO1 PRDM14 SDHAFZ TCF7L2 BABAMI CENPA ERBB2 FUBP1 IDH2 MAPSATIS NQO1 PREX2 SDHB TDG BARAMI CHD2 ERBB3 FVN IFNGR1 MAPKA NRASS PRKA1 SDHC TEK BARD1 CHD4 ERBB4 GAB2 IGF1 MAPKA1 NRAS PRKA1 SDHA TER BCL10 CHEK2 ERCC2 GALNT12 IGF2 MAX NTHL1 PRKD1 SEM3C TERT BCL211 CREBP ERCC4 GATA1 IKBKE MC1 NTRK3 PTCH1 SETD3 TGFB1 BCL211 CRL ERCC5 GATA4 IL1A MDM4 NUP2 PTN SETD8 TIPAP BCD8 CSF1R<			CDKN2D			100320					TOER	ZNF217
DEM CEDPA EPRB4 FORM DR11 IMAPSA'S NGU1 PREX2 SDMB TOG BABAM1 CENPA ERBB2 FUBP1 IDH2 MAPSA'S1 NOO1 PREX2 SDHB TDG BAR1 CHD2 ERBB3 FYN IFNGF1 MAPK3 NSD1 PRKA11 SDHA TCF BAR1 CHD4 ERBB4 GAB2 IGF1 MAPK3 NSD1 PRKA11 SDHA TERC BC10 CHEK2 ERCC2 GALNT12 IGF2 MAX NTH1 PRK0 SEM32 TERT BC11 CHEK2 ERCC3 GATA1 IKBKE MCL1 NTRK1 PRK0 SEN3 TGFB1 BC1211 CRKL ERCC4 GATA ILA MDC1 NTRK2 PRS8 SEN3 TGFB1 BC1211 CRKL ERC5 GATA ILA MDC1 NTR3 PTCH1 SETD2 TGFB1 BC2211 CRKL ERG5 GA		ROM	CDRN2C		FROZ		MAPSKI			SDHAED		ZNF703
BADMINCEUVAENB22FUBP1IDR2IMAPSILIANGU2FIREZSUTBTUSBAP1CHD2ERBB3FYNIFNGR1MAPK1NRASPRKAA1SDHCTEKBARD1CHD4ERBB4GAB2IGF1MAPK3NSD1PRKAA11SDHDTERCBBC3CHEK1ERCC1GABRA6IGF1MAPK3NSD1PRKA11ASDHDTERCBC10CHEK2ERCC2GALNT12IGF2MAXNTHL1PRKDCSESN1TET1BC12CICERCC3GATA1IKBKEMCL1NTRK1PRKDCSESN2TET2BC1211CRKLERCC4GATA2IKZF1MDC1NTRK3PTCH1SETD2TGFB1BC122CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BC16CSDE1ERGGATA6IL4MECOMNUP33PTP4A1SF3B1TIPARPBC0RCSF1RERRF11GEHIL8MEF2BP2RV8PTPDSH2B3TMEM127BCR1CTLA4ETV1GL1INHAMEN1PAK1PTPOSH2D3TMFM127BCR3CTLFESR2GID4INHAMETPAK3PTPRSH0C2TNFABCR4CTLNETV1GL1INHAMETPAK7PTPRSH01TMFA93BIRC3CTLA4ETV1GL1INHAMETPAK7PTPRSH02TMFA193BIRC4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>ו חעו</td> <td>MAPSK 13</td> <td>NQOT</td> <td></td> <td>SDHAF2</td> <td></td> <td></td>						ו חעו	MAPSK 13	NQOT		SDHAF2		
BAPTCHU2EHBS3FTNIPNGH1MAPK1NPASPHKA11SDHCTEKBARD1CHD4ERBB4GAB2IGF1MAPK3NSD1PRKAR14SDHDTERCBBC3CHEK1ERCC1GABRA6IGF1RMAPKAP1NTSC2PRKC1SEM3CTERTBCL10CHEK2ERCC2GALNT12IGF2MAXNTHL1PRKD1SESN1TET1BCL2CICERCC3GATA1IKBKEMCL1NTRK1PRKDCSESN2TET2BCL211CREBPERCC4GATA2IKZF1MDC1NTRK2PRS8SESN3TGFB1BCL211CRKLERCSGATA3I.10MDM2NTRK3PTCH1SETD2TGFBR1BCL212CRLF2ERFGATA4I.1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6I.L4MECOMNUP33PTPA1SF3B1TIPARPBCORCTCFESR1GGHI.L7MED12OPRM1PTPN11SGK1TLR2BCR3CTLA4ETV1GIL1INHAMEN1PAK1PTPR0SH2B3TMEM127BCR4CTLA4ETV1GIL1INPA4METPAK3PTPR5SH0C2TNFBIRC7CTLA4ETV1GIL1INPA4METPAK7PTPR5SH0C1TNFSF14BIRC7CTNA1ETV5GNA13INPP4BMGAPALB2QK1SLO1B1TNFSF14<		BABAMI	CENPA	ERBB2	FUBPT		MAP3K14	NQU2	PREX2	SDHB	TDG	
BARDICHD4EHBB4GAB2ICF1MAPK3NSD1PHRAH1ASDHDTERCBBC3CHEK1ERCC1GABRA6IGF1RMAPKAP1NT5C2PRKCISEMA3CTERTBCL10CHEK2ERCC2GALNT12IGF2MAXNTHL1PRKD1SESN1TET1BCL2CICERCC3GATA1IKBKEMCL1NTRK1PRKDCSESN2TET2BCL2L1CREBBPERCC4GATA2IKZF1MDC1NTRK2PRS8SESN3TGFB1BCL2L2CRLF2ERFGATA4IL10MDM2NTRK3PTCH1SETD2TGFBR1BCL2L2CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCCACSDE1ERGGATA6IL4MECOMNUP33PTPA1SF3B1TIPARPBCCRCSF1RERRF11GEN1IL7RMED12OPRM1PTPN1SGK1TLR2BCRACTCFESR2GID4INHAMEN1PAK1PTPR0SH2B3TMEM127BCR3CTLA4ETV1GL1INPA4METPAK3PTPR5SH0C2TNFBIRC7CTNA1ETV6GNA11INP4AMETPAK7PTPRSH01TNFRSF14BIRC7CTNA1ETV6GNA13INP4BMGAPALB2QK1SLO1B3TNFSF11BIRC4CUL3EZ/11GNA2INSRMITFPAR12RA25SLO21B3TNFSF11		BAP I	CHD2	ERBB3	FYN			NRAS	PRKAAT	SDHC	TER	
BBC3 CHEK1 EHCC1 GABRAB IGF1H MAPAPT NI5C2 PHKC1 SEMM3C TEH1 BCL10 CHEK2 ERCC2 GALNT12 IGF2 MAX NTHL1 PRKD1 SESN1 TET1 BCL2 CIC ERCC3 GATA1 IKBKE MCL1 NTRK1 PRKDC SESN2 TET2 BCL211 CREBBP ERCC4 GATA2 IKZF1 MDC1 NTRK3 PTCH1 SETD2 TGFB1 BCL211 CRKL ERCC5 GATA3 IL10 MDM2 NTRK3 PTCH1 SETD3 TGFB1 BCL212 CRL72 ERF GATA4 IL1A MDM4 NUP2 PTEN SETD3 TGFBR2 BCCR CSP1R ERRF11 GEN1 IL7R MED12 OPRM1 PTPA1 SF3B1 TIMPAP BCOR CSF1R ERRF1 GAH IL8 MEP2B P2RY8 PTRD SH2B3 TMEM127 BCR CTCF ESR2		BARDI	CHD4	ERBB4	GAB2	IGFI		NSDI	PRKARTA	SDHD	TERC	
BCL10CHER2EHCC2GALN 172IGF2MAXNIHL1PHRD1SESN1IEH1BCL2CICERCC3GATA1IKBKEMCL1NTRK1PRKDCSESN2TET2BCL2L1CREBBPERCC4GATA2IKZF1MDC1NTRK2PRSS8SESN3TGFB1BCL2L11CRKLERCC5GATA3IL10MDM2NTRK3PTCH1SETD2TGFBR1BCL2L2CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6IL4MECOMNUP93PTP411SF3B1TIPARPBCORCSF1RERRF11GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPOSH2D1ATMPRS22BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPRSH0C2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRSH01TNFAIP3BLMCTNNB1EWS11GNA2INSRMITFPAR12QKISLC01B1TNFSF14BMPR1ACTINEXT1GNA3INSRMITFPAR14RAC1SLT1TOP1BRC41CUL4AEZH2GPR124IRF2MKNK1PAR52RAC2SLT1TOP2A<		BBC3	CHEKI	ERCC1	GABRAG	IGF1R	MAPKAPI	NT5C2	PRKCI	SEMA3C	TERI	
BCL2CICERCC3GATA1IKBKEMCL1NTHK1PHKDCSESN2TET2BCL2L1CREBBPERCC4GATA2IKZF1MDC1NTRK2PRS8SESN3TGFB1BCL2L11CRKLERCC5GATA3IL10MDM2NTRK3PTCH1SETD2TGFBR1BCL2L2CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6IL4MECOMNUP93PTP4A1SF3B1TIPARPBCORCSF1RERRF11GEN1IL7RMED12OPRM1PTPN1SGK1TLR2BCORCSF1RERRF11GEN1IL7RMED12OPRM1PTPN0SH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPR0SH2D1ATMPRSS2BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPR5SHOC2TNFBIRC7CTNNA1ETV6GNA111INPP4BMGAPALB2QKISLC01B1TNFRSF14BMR14CTTNEXT1GNA2INSRMITFPARP1RAC1SLT1TOP1BRC41CUL3EZH1GNA3INSRMITFPARP2RAC2SLC1B3TNFSF11BRA4CUL3EZH1GNA3INSRMITFPARP1RAC1SLT1TOP1BRC41CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLX4TP53 <td></td> <td>BCL10</td> <td>CHEK2</td> <td>ERCC2</td> <td>GALN112</td> <td>IGF2</td> <td>MAX</td> <td>NIHL1</td> <td>PRKD1</td> <td>SESN1</td> <td>1E11</td> <td></td>		BCL10	CHEK2	ERCC2	GALN112	IGF2	MAX	NIHL1	PRKD1	SESN1	1E11	
BCL2L1CHEBBPERCC4GATA2IKZF-1MDC1NTHK2PHSS8SESN3TGFB1BCL2L11CRKLERCC5GATA3IL10MDM2NTRK3PTCH1SETD2TGFBR1BCL2L2CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6IL4MECOMNUP93PTP4A1SF3B1TIPARPBCORCSF1RERRF11GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPR0SH2D1ATMPRSS2BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPR5SHOC2TNFBIRC7CTINNA1ETV6GNA111INPP4AMETPAK7PTPRTSHQ1TNFAF14BMR14CTTNEXT1GNAQINPP11MGMTPARK2RAB35SLC01B1TNFRSF14BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLT1TOP1BRC41CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLX4TP53BRD4CYLDFAM175AGRM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM66CGRIN2AIRS2MPLPBRM1RAD51SMAD3 <td< td=""><td></td><td>BCL2</td><td></td><td>ERCC3</td><td>GAIA1</td><td>IKBKE</td><td>MCL1</td><td>NIRK1</td><td>PRKDC</td><td>SESN2</td><td>1E12</td><td></td></td<>		BCL2		ERCC3	GAIA1	IKBKE	MCL1	NIRK1	PRKDC	SESN2	1E12	
BCL2L11CHRLEHCCSGATA3IL10MDM2NTHR3PTCH1SETD2TGHBH1BCL2L2CRLF2ERFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6IL4MECOMNUP93PTP4A1SF3B1TIPARPBCORCSF1RERRFI1GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPR0SH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPR0SH2D1ATMPRSS2BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPR0SH0C2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPR1SH01TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QK1SLC01B1TNFSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SL11TOP1BRCA2CXCR4FADDGPS2IRF4MLH1PARP2RAC2SL12TOP2ABRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRD4CYLDFAM46CGRIN3AJAK1MRE11APCAPRAD51BSMAD4TRAF		BCL2L1	CREBBP	ERCC4	GATA2	IKZF1	MDC1	NTRK2	PRSS8	SESN3	TGFB1	
BCL2L2CHLP2EHFGATA4IL1AMDM4NUF2PTENSETD8TGFBR2BCL6CSDE1ERGGATA6IL4MECOMNUP93PTP411SF3B1TIPARPBCORCSF1RERRFI1GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPROSH2D1ATMPRSS2BIRC3CTLA4ETV1GL11INHBAMETKPAK3PTPRSH0C2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA2INPP4BMGAPALB2QKISLC01B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRG1CYP17A1FAM46CGRIM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51DSMAD4TRAF7		BCL2L11	CRKL	ERCC5	GATA3	IL10	MDM2	NTRK3	PICH1	SEID2	IGFBR1	
BCL6CSDE1ERGGATA6IL4MECOMNUP33PTP4A1SF3B1TIPARPBCORCSF1RERRFI1GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPRDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPROSH2D3ATMFMPSS2BIRC3CTLA4ETV1GLI1INHBAMERTKPAK3PTPRSSHOC2TNFBIRC7CTNNA1ETV6GNA11INPP4MMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA3INPP4BMGAPALB2QKISLC01B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPAR2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRI91CYP17A1FAM6CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51DSMARCA4TRAF7BTG2CYP1C8FANCCGST1JAK3MSH3PDCD1LG2RAD51DSMARCA4 <td></td> <td>BCL2L2</td> <td>CRLF2</td> <td>ERF</td> <td>GATA4</td> <td>IL1A</td> <td>MDM4</td> <td>NUF2</td> <td>PTEN</td> <td>SETD8</td> <td>TGFBR2</td> <td></td>		BCL2L2	CRLF2	ERF	GATA4	IL1A	MDM4	NUF2	PTEN	SETD8	TGFBR2	
BCOHCSF1REHRFI1GEN1IL7RMED12OPRM1PTPN11SGK1TLR2BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPRDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPROSH2D1ATMPRSS2BIRC3CTLA4ETV1GLI1INHBAMERTKPAK3PTPRSSHOC2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLC01B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP1MGMTPARK2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS2MPLPBRM1RAD51SMAD3TP63BRG1CYP17A1FAM6CGRIN3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1 <t< td=""><td></td><td>BCL6</td><td>CSDE1</td><td>ERG</td><td>GATA6</td><td>IL4</td><td>MECOM</td><td>NUP93</td><td>PTP4A1</td><td>SF3B1</td><td>IIPARP</td><td></td></t<>		BCL6	CSDE1	ERG	GATA6	IL4	MECOM	NUP93	PTP4A1	SF3B1	IIPARP	
BCORL1CSF3RESR1GGHIL8MEF2BP2RY8PTPRDSH2B3TMEM127BCRCTCFESR2GID4INHAMEN1PAK1PTPROSH2D1ATMPRSS2BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPRSSHOC2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLCO1B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLCO1B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH3PDCD1LG2RAD51DSMARCB1TRAP		BCOR	CSF1R	ERRFI1	GEN1	IL7R	MED12	OPRM1	PTPN11	SGK1	TLR2	
BCRCTCFESR2GID4INHAMEN1PAK1PTPROSH2D1ATMPRSS2BIRC3CTLA4ETV1GLI1INHBAMERTKPAK3PTPRSSH0C2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLC01B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH3PARP3RAD21SLX4TP53BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSX3BJAK2MSH2PDCD1LG2RAD51DSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BCORL1	CSF3R	ESR1	GGH	IL8	MEF2B	P2RY8	PTPRD	SH2B3	TMEM127	
BIRC3CTLA4ETV1GL11INHBAMERTKPAK3PTPRSSHOC2TNFBIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLCO1B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLCO1B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSX3BJAK2MSH3PDCD1LG2RAD51DSMARCB1TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BCR	CTCF	ESR2	GID4	INHA	MEN1	PAK1	PTPRO	SH2D1A	TMPRSS2	
BIRC7CTNNA1ETV6GNA11INPP4AMETPAK7PTPRTSHQ1TNFAIP3BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLCO1B1TNFRSF14BMPR1ACTTNEXT1GNAQINPP11MGMTPARK2RAB35SLCO1B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH3PDCD1LG2RAD51DSMARCA1TRAPBTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BIRC3	CTLA4	ETV1	GLI1	INHBA	MERTK	PAK3	PTPRS	SHOC2	TNF	
BLMCTNNB1EWSR1GNA13INPP4BMGAPALB2QKISLCO1B1TNFRSF14BMPR1ACTTNEXT1GNAQINPPL1MGMTPARK2RAB35SLCO1B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH3PDCD1LG2RAD51DSMARCB1TRAP		BIRC7	CTNNA1	ETV6	GNA11	INPP4A	MET	PAK7	PTPRT	SHQ1	TNFAIP3	
BMPR1ACTTNEXT1GNAQINPPL1MGMTPARK2RAB35SLC01B3TNFSF11BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSX3BJAK2MSH3PDCD1LG2RAD51DSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BLM	CTNNB1	EWSR1	GNA13	INPP4B	MGA	PALB2	QKI	SLCO1B1	TNFRSF14	
BRAFCUL3EZH1GNASINSRMITFPARP1RAC1SLIT1TOP1BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1LG2RAD51DSMARCA1TRAPBTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BMPR1A	CTTN	EXT1	GNAQ	INPPL1	MGMT	PARK2	RAB35	SLCO1B3	TNFSF11	
BRCA1CUL4AEZH2GPR124IRF2MKNK1PARP2RAC2SLIT2TOP2ABRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BRAF	CUL3	EZH1	GNAS	INSR	MITF	PARP1	RAC1	SLIT1	TOP1	
BRCA2CXCR4FADDGPS2IRF4MLH1PARP3RAD21SLX4TP53BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRRAP		BRCA1	CUL4A	EZH2	GPR124	IRF2	MKNK1	PARP2	RAC2	SLIT2	TOP2A	
BRD4CYLDFAM175AGREM1IRS1MLH3PAX5RAD50SMAD2TP53BP1BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BRCA2	CXCR4	FADD	GPS2	IRF4	MLH1	PARP3	RAD21	SLX4	TP53	
BRIP1CYP17A1FAM46CGRIN2AIRS2MPLPBRM1RAD51SMAD3TP63BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BRD4	CYLD	FAM175A	GREM1	IRS1	MLH3	PAX5	RAD50	SMAD2	TP53BP1	
BTG1CYP19A1FAM58AGRM3JAK1MRE11APCAPRAD51BSMAD4TRAF2BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRAP		BRIP1	CYP17A1	FAM46C	GRIN2A	IRS2	MPL	PBRM1	RAD51	SMAD3	TP63	
BTG2CYP1B1FANCAGSK3BJAK2MSH2PDCD1RAD51CSMARCA4TRAF7BTKCYP2C8FANCCGSTA1JAK3MSH3PDCD1LG2RAD51DSMARCB1TRRAP		BTG1	CYP19A1	FAM58A	GRM3	JAK1	MRE11A	PCAP	RAD51B	SMAD4	TRAF2	
BTK CYP2C8 FANCC GSTA1 JAK3 MSH3 PDCD1LG2 RAD51D SMARCB1 TRRAP		BTG2	CYP1B1	FANCA	GSK3B	JAK2	MSH2	PDCD1	RAD51C	SMARCA4	TRAF7	
	-	BTK	CYP2C8	FANCC	GSTA1	JAK3	MSH3	PDCD1LG2	RAD51D	SMARCB1	TRRAP	

© Journal of Gastrointestinal Oncology. All rights reserved.

https://dx.doi.org/10.21037/jgo-21-572

Figure S1 The distribution of mutation information in the JCH and TCGA samples. The mutations of *GP645* genes were distributed on 21 chromosomes in TCGA (A) and JCH datasets (B).